Kevacoin source tree
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

387 lines
16 KiB

#!/usr/bin/env python2
# Copyright (c) 2014-2015 The Bitcoin Core developers
# Distributed under the MIT software license, see the accompanying
# file COPYING or http://www.opensource.org/licenses/mit-license.php.
#
# Test BIP68 implementation (mempool only)
#
from test_framework.test_framework import BitcoinTestFramework
from test_framework.util import *
from test_framework.script import *
from test_framework.mininode import *
from test_framework.blocktools import *
SEQUENCE_LOCKTIME_DISABLE_FLAG = (1<<31)
SEQUENCE_LOCKTIME_TYPE_FLAG = (1<<22) # this means use time (0 means height)
SEQUENCE_LOCKTIME_GRANULARITY = 9 # this is a bit-shift
SEQUENCE_LOCKTIME_MASK = 0x0000ffff
# RPC error for non-BIP68 final transactions
NOT_FINAL_ERROR = "64: non-BIP68-final"
class BIP68Test(BitcoinTestFramework):
def setup_network(self):
self.nodes = []
self.nodes.append(start_node(0, self.options.tmpdir, ["-debug", "-blockprioritysize=0"]))
self.is_network_split = False
self.relayfee = self.nodes[0].getnetworkinfo()["relayfee"]
def run_test(self):
# Generate some coins
self.nodes[0].generate(110)
print "Running test disable flag"
self.test_disable_flag()
print "Running test sequence-lock-confirmed-inputs"
self.test_sequence_lock_confirmed_inputs()
print "Running test sequence-lock-unconfirmed-inputs"
self.test_sequence_lock_unconfirmed_inputs()
# This test needs to change when BIP68 becomes consensus
print "Running test BIP68 not consensus"
self.test_bip68_not_consensus()
print "Passed\n"
# Test that BIP68 is not in effect if tx version is 1, or if
# the first sequence bit is set.
def test_disable_flag(self):
# Create some unconfirmed inputs
new_addr = self.nodes[0].getnewaddress()
self.nodes[0].sendtoaddress(new_addr, 2) # send 2 BTC
utxos = self.nodes[0].listunspent(0, 0)
assert(len(utxos) > 0)
utxo = utxos[0]
tx1 = CTransaction()
value = satoshi_round(utxo["amount"] - self.relayfee)*COIN
# Check that the disable flag disables relative locktime.
# If sequence locks were used, this would require 1 block for the
# input to mature.
sequence_value = SEQUENCE_LOCKTIME_DISABLE_FLAG | 1
tx1.vin = [CTxIn(COutPoint(int(utxo["txid"], 16), utxo["vout"]), nSequence=sequence_value)]
tx1.vout = [CTxOut(value, CScript([b'a']))]
tx1_signed = self.nodes[0].signrawtransaction(ToHex(tx1))["hex"]
tx1_id = self.nodes[0].sendrawtransaction(tx1_signed)
tx1_id = int(tx1_id, 16)
# This transaction will enable sequence-locks, so this transaction should
# fail
tx2 = CTransaction()
tx2.nVersion = 2
sequence_value = sequence_value & 0x7fffffff
tx2.vin = [CTxIn(COutPoint(tx1_id, 0), nSequence=sequence_value)]
tx2.vout = [CTxOut(int(value-self.relayfee*COIN), CScript([b'a']))]
tx2.rehash()
try:
self.nodes[0].sendrawtransaction(ToHex(tx2))
except JSONRPCException as exp:
assert_equal(exp.error["message"], NOT_FINAL_ERROR)
else:
assert(False)
# Setting the version back down to 1 should disable the sequence lock,
# so this should be accepted.
tx2.nVersion = 1
self.nodes[0].sendrawtransaction(ToHex(tx2))
# Calculate the median time past of a prior block ("confirmations" before
# the current tip).
def get_median_time_past(self, confirmations):
block_hash = self.nodes[0].getblockhash(self.nodes[0].getblockcount()-confirmations)
return self.nodes[0].getblockheader(block_hash)["mediantime"]
# Test that sequence locks are respected for transactions spending confirmed inputs.
def test_sequence_lock_confirmed_inputs(self):
# Create lots of confirmed utxos, and use them to generate lots of random
# transactions.
max_outputs = 50
addresses = []
while len(addresses) < max_outputs:
addresses.append(self.nodes[0].getnewaddress())
while len(self.nodes[0].listunspent()) < 200:
import random
random.shuffle(addresses)
num_outputs = random.randint(1, max_outputs)
outputs = {}
for i in xrange(num_outputs):
outputs[addresses[i]] = random.randint(1, 20)*0.01
self.nodes[0].sendmany("", outputs)
self.nodes[0].generate(1)
utxos = self.nodes[0].listunspent()
# Try creating a lot of random transactions.
# Each time, choose a random number of inputs, and randomly set
# some of those inputs to be sequence locked (and randomly choose
# between height/time locking). Small random chance of making the locks
# all pass.
for i in xrange(400):
# Randomly choose up to 10 inputs
num_inputs = random.randint(1, 10)
random.shuffle(utxos)
# Track whether any sequence locks used should fail
should_pass = True
# Track whether this transaction was built with sequence locks
using_sequence_locks = False
tx = CTransaction()
tx.nVersion = 2
value = 0
for j in xrange(num_inputs):
sequence_value = 0xfffffffe # this disables sequence locks
# 50% chance we enable sequence locks
if random.randint(0,1):
using_sequence_locks = True
# 10% of the time, make the input sequence value pass
input_will_pass = (random.randint(1,10) == 1)
sequence_value = utxos[j]["confirmations"]
if not input_will_pass:
sequence_value += 1
should_pass = False
# Figure out what the median-time-past was for the confirmed input
# Note that if an input has N confirmations, we're going back N blocks
# from the tip so that we're looking up MTP of the block
# PRIOR to the one the input appears in, as per the BIP68 spec.
orig_time = self.get_median_time_past(utxos[j]["confirmations"])
cur_time = self.get_median_time_past(0) # MTP of the tip
# can only timelock this input if it's not too old -- otherwise use height
can_time_lock = True
if ((cur_time - orig_time) >> SEQUENCE_LOCKTIME_GRANULARITY) >= SEQUENCE_LOCKTIME_MASK:
can_time_lock = False
# if time-lockable, then 50% chance we make this a time lock
if random.randint(0,1) and can_time_lock:
# Find first time-lock value that fails, or latest one that succeeds
time_delta = sequence_value << SEQUENCE_LOCKTIME_GRANULARITY
if input_will_pass and time_delta > cur_time - orig_time:
sequence_value = ((cur_time - orig_time) >> SEQUENCE_LOCKTIME_GRANULARITY)
elif (not input_will_pass and time_delta <= cur_time - orig_time):
sequence_value = ((cur_time - orig_time) >> SEQUENCE_LOCKTIME_GRANULARITY)+1
sequence_value |= SEQUENCE_LOCKTIME_TYPE_FLAG
tx.vin.append(CTxIn(COutPoint(int(utxos[j]["txid"], 16), utxos[j]["vout"]), nSequence=sequence_value))
value += utxos[j]["amount"]*COIN
# Overestimate the size of the tx - signatures should be less than 120 bytes, and leave 50 for the output
tx_size = len(ToHex(tx))/2 + 120*num_inputs + 50
tx.vout.append(CTxOut(value-self.relayfee*tx_size*COIN/1000, CScript([b'a'])))
rawtx = self.nodes[0].signrawtransaction(ToHex(tx))["hex"]
try:
self.nodes[0].sendrawtransaction(rawtx)
except JSONRPCException as exp:
assert(not should_pass and using_sequence_locks)
assert_equal(exp.error["message"], NOT_FINAL_ERROR)
else:
assert(should_pass or not using_sequence_locks)
# Recalculate utxos if we successfully sent the transaction
utxos = self.nodes[0].listunspent()
# Test that sequence locks on unconfirmed inputs must have nSequence
# height or time of 0 to be accepted.
# Then test that BIP68-invalid transactions are removed from the mempool
# after a reorg.
def test_sequence_lock_unconfirmed_inputs(self):
# Store height so we can easily reset the chain at the end of the test
cur_height = self.nodes[0].getblockcount()
# Create a mempool tx.
txid = self.nodes[0].sendtoaddress(self.nodes[0].getnewaddress(), 2)
tx1 = FromHex(CTransaction(), self.nodes[0].getrawtransaction(txid))
tx1.rehash()
# Anyone-can-spend mempool tx.
# Sequence lock of 0 should pass.
tx2 = CTransaction()
tx2.nVersion = 2
tx2.vin = [CTxIn(COutPoint(tx1.sha256, 0), nSequence=0)]
tx2.vout = [CTxOut(int(tx1.vout[0].nValue - self.relayfee*COIN), CScript([b'a']))]
tx2_raw = self.nodes[0].signrawtransaction(ToHex(tx2))["hex"]
tx2 = FromHex(tx2, tx2_raw)
tx2.rehash()
self.nodes[0].sendrawtransaction(tx2_raw)
# Create a spend of the 0th output of orig_tx with a sequence lock
# of 1, and test what happens when submitting.
# orig_tx.vout[0] must be an anyone-can-spend output
def test_nonzero_locks(orig_tx, node, relayfee, use_height_lock):
sequence_value = 1
if not use_height_lock:
sequence_value |= SEQUENCE_LOCKTIME_TYPE_FLAG
tx = CTransaction()
tx.nVersion = 2
tx.vin = [CTxIn(COutPoint(orig_tx.sha256, 0), nSequence=sequence_value)]
tx.vout = [CTxOut(int(orig_tx.vout[0].nValue - relayfee*COIN), CScript([b'a']))]
tx.rehash()
try:
node.sendrawtransaction(ToHex(tx))
except JSONRPCException as exp:
assert_equal(exp.error["message"], NOT_FINAL_ERROR)
assert(orig_tx.hash in node.getrawmempool())
else:
# orig_tx must not be in mempool
assert(orig_tx.hash not in node.getrawmempool())
return tx
test_nonzero_locks(tx2, self.nodes[0], self.relayfee, use_height_lock=True)
test_nonzero_locks(tx2, self.nodes[0], self.relayfee, use_height_lock=False)
# Now mine some blocks, but make sure tx2 doesn't get mined.
# Use prioritisetransaction to lower the effective feerate to 0
self.nodes[0].prioritisetransaction(tx2.hash, -1e15, int(-self.relayfee*COIN))
cur_time = int(time.time())
for i in xrange(10):
self.nodes[0].setmocktime(cur_time + 600)
self.nodes[0].generate(1)
cur_time += 600
assert(tx2.hash in self.nodes[0].getrawmempool())
test_nonzero_locks(tx2, self.nodes[0], self.relayfee, use_height_lock=True)
test_nonzero_locks(tx2, self.nodes[0], self.relayfee, use_height_lock=False)
# Mine tx2, and then try again
self.nodes[0].prioritisetransaction(tx2.hash, 1e15, int(self.relayfee*COIN))
# Advance the time on the node so that we can test timelocks
self.nodes[0].setmocktime(cur_time+600)
self.nodes[0].generate(1)
assert(tx2.hash not in self.nodes[0].getrawmempool())
# Now that tx2 is not in the mempool, a sequence locked spend should
# succeed
tx3 = test_nonzero_locks(tx2, self.nodes[0], self.relayfee, use_height_lock=False)
assert(tx3.hash in self.nodes[0].getrawmempool())
self.nodes[0].generate(1)
assert(tx3.hash not in self.nodes[0].getrawmempool())
# One more test, this time using height locks
tx4 = test_nonzero_locks(tx3, self.nodes[0], self.relayfee, use_height_lock=True)
assert(tx4.hash in self.nodes[0].getrawmempool())
# Now try combining confirmed and unconfirmed inputs
tx5 = test_nonzero_locks(tx4, self.nodes[0], self.relayfee, use_height_lock=True)
assert(tx5.hash not in self.nodes[0].getrawmempool())
utxos = self.nodes[0].listunspent()
tx5.vin.append(CTxIn(COutPoint(int(utxos[0]["txid"], 16), utxos[0]["vout"]), nSequence=1))
tx5.vout[0].nValue += int(utxos[0]["amount"]*COIN)
raw_tx5 = self.nodes[0].signrawtransaction(ToHex(tx5))["hex"]
try:
self.nodes[0].sendrawtransaction(raw_tx5)
except JSONRPCException as exp:
assert_equal(exp.error["message"], NOT_FINAL_ERROR)
else:
assert(False)
# Test mempool-BIP68 consistency after reorg
#
# State of the transactions in the last blocks:
# ... -> [ tx2 ] -> [ tx3 ]
# tip-1 tip
# And currently tx4 is in the mempool.
#
# If we invalidate the tip, tx3 should get added to the mempool, causing
# tx4 to be removed (fails sequence-lock).
self.nodes[0].invalidateblock(self.nodes[0].getbestblockhash())
assert(tx4.hash not in self.nodes[0].getrawmempool())
assert(tx3.hash in self.nodes[0].getrawmempool())
# Now mine 2 empty blocks to reorg out the current tip (labeled tip-1 in
# diagram above).
# This would cause tx2 to be added back to the mempool, which in turn causes
# tx3 to be removed.
tip = int(self.nodes[0].getblockhash(self.nodes[0].getblockcount()-1), 16)
height = self.nodes[0].getblockcount()
for i in xrange(2):
block = create_block(tip, create_coinbase(height), cur_time)
block.nVersion = 3
block.rehash()
block.solve()
tip = block.sha256
height += 1
self.nodes[0].submitblock(ToHex(block))
cur_time += 1
mempool = self.nodes[0].getrawmempool()
assert(tx3.hash not in mempool)
assert(tx2.hash in mempool)
# Reset the chain and get rid of the mocktimed-blocks
self.nodes[0].setmocktime(0)
self.nodes[0].invalidateblock(self.nodes[0].getblockhash(cur_height+1))
self.nodes[0].generate(10)
# Make sure that BIP68 isn't being used to validate blocks.
def test_bip68_not_consensus(self):
txid = self.nodes[0].sendtoaddress(self.nodes[0].getnewaddress(), 2)
tx1 = FromHex(CTransaction(), self.nodes[0].getrawtransaction(txid))
tx1.rehash()
# Make an anyone-can-spend transaction
tx2 = CTransaction()
tx2.nVersion = 1
tx2.vin = [CTxIn(COutPoint(tx1.sha256, 0), nSequence=0)]
tx2.vout = [CTxOut(int(tx1.vout[0].nValue - self.relayfee*COIN), CScript([b'a']))]
# sign tx2
tx2_raw = self.nodes[0].signrawtransaction(ToHex(tx2))["hex"]
tx2 = FromHex(tx2, tx2_raw)
tx2.rehash()
self.nodes[0].sendrawtransaction(ToHex(tx2))
# Now make an invalid spend of tx2 according to BIP68
sequence_value = 100 # 100 block relative locktime
tx3 = CTransaction()
tx3.nVersion = 2
tx3.vin = [CTxIn(COutPoint(tx2.sha256, 0), nSequence=sequence_value)]
tx3.vout = [CTxOut(int(tx2.vout[0].nValue - self.relayfee*COIN), CScript([b'a']))]
tx3.rehash()
try:
self.nodes[0].sendrawtransaction(ToHex(tx3))
except JSONRPCException as exp:
assert_equal(exp.error["message"], NOT_FINAL_ERROR)
else:
assert(False)
# make a block that violates bip68; ensure that the tip updates
tip = int(self.nodes[0].getbestblockhash(), 16)
block = create_block(tip, create_coinbase(self.nodes[0].getblockcount()+1))
block.nVersion = 3
block.vtx.extend([tx1, tx2, tx3])
block.hashMerkleRoot = block.calc_merkle_root()
block.rehash()
block.solve()
self.nodes[0].submitblock(ToHex(block))
assert_equal(self.nodes[0].getbestblockhash(), block.hash)
if __name__ == '__main__':
BIP68Test().main()