|
|
|
// Copyright (c) 2014-2016 The Bitcoin Core developers
|
|
|
|
// Distributed under the MIT software license, see the accompanying
|
|
|
|
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
|
|
|
|
|
|
|
|
#include "chain.h"
|
|
|
|
#include "versionbits.h"
|
|
|
|
#include "test/test_bitcoin.h"
|
|
|
|
#include "test/test_random.h"
|
|
|
|
#include "chainparams.h"
|
|
|
|
#include "main.h"
|
|
|
|
#include "consensus/params.h"
|
|
|
|
|
|
|
|
#include <boost/test/unit_test.hpp>
|
|
|
|
|
|
|
|
/* Define a virtual block time, one block per 10 minutes after Nov 14 2014, 0:55:36am */
|
|
|
|
int32_t TestTime(int nHeight) { return 1415926536 + 600 * nHeight; }
|
|
|
|
|
|
|
|
static const Consensus::Params paramsDummy = Consensus::Params();
|
|
|
|
|
|
|
|
class TestConditionChecker : public AbstractThresholdConditionChecker
|
|
|
|
{
|
|
|
|
private:
|
|
|
|
mutable ThresholdConditionCache cache;
|
|
|
|
|
|
|
|
public:
|
|
|
|
int64_t BeginTime(const Consensus::Params& params) const { return TestTime(10000); }
|
|
|
|
int64_t EndTime(const Consensus::Params& params) const { return TestTime(20000); }
|
|
|
|
int Period(const Consensus::Params& params) const { return 1000; }
|
|
|
|
int Threshold(const Consensus::Params& params) const { return 900; }
|
|
|
|
bool Condition(const CBlockIndex* pindex, const Consensus::Params& params) const { return (pindex->nVersion & 0x100); }
|
|
|
|
|
|
|
|
ThresholdState GetStateFor(const CBlockIndex* pindexPrev) const { return AbstractThresholdConditionChecker::GetStateFor(pindexPrev, paramsDummy, cache); }
|
|
|
|
int GetStateSinceHeightFor(const CBlockIndex* pindexPrev) const { return AbstractThresholdConditionChecker::GetStateSinceHeightFor(pindexPrev, paramsDummy, cache); }
|
|
|
|
};
|
|
|
|
|
|
|
|
#define CHECKERS 6
|
|
|
|
|
|
|
|
class VersionBitsTester
|
|
|
|
{
|
|
|
|
// A fake blockchain
|
|
|
|
std::vector<CBlockIndex*> vpblock;
|
|
|
|
|
|
|
|
// 6 independent checkers for the same bit.
|
|
|
|
// The first one performs all checks, the second only 50%, the third only 25%, etc...
|
|
|
|
// This is to test whether lack of cached information leads to the same results.
|
|
|
|
TestConditionChecker checker[CHECKERS];
|
|
|
|
|
|
|
|
// Test counter (to identify failures)
|
|
|
|
int num;
|
|
|
|
|
|
|
|
public:
|
|
|
|
VersionBitsTester() : num(0) {}
|
|
|
|
|
|
|
|
VersionBitsTester& Reset() {
|
|
|
|
for (unsigned int i = 0; i < vpblock.size(); i++) {
|
|
|
|
delete vpblock[i];
|
|
|
|
}
|
|
|
|
for (unsigned int i = 0; i < CHECKERS; i++) {
|
|
|
|
checker[i] = TestConditionChecker();
|
|
|
|
}
|
|
|
|
vpblock.clear();
|
|
|
|
return *this;
|
|
|
|
}
|
|
|
|
|
|
|
|
~VersionBitsTester() {
|
|
|
|
Reset();
|
|
|
|
}
|
|
|
|
|
|
|
|
VersionBitsTester& Mine(unsigned int height, int32_t nTime, int32_t nVersion) {
|
|
|
|
while (vpblock.size() < height) {
|
|
|
|
CBlockIndex* pindex = new CBlockIndex();
|
|
|
|
pindex->nHeight = vpblock.size();
|
|
|
|
pindex->pprev = vpblock.size() > 0 ? vpblock.back() : NULL;
|
|
|
|
pindex->nTime = nTime;
|
|
|
|
pindex->nVersion = nVersion;
|
|
|
|
pindex->BuildSkip();
|
|
|
|
vpblock.push_back(pindex);
|
|
|
|
}
|
|
|
|
return *this;
|
|
|
|
}
|
|
|
|
|
|
|
|
VersionBitsTester& TestStateSinceHeight(int height) {
|
|
|
|
for (int i = 0; i < CHECKERS; i++) {
|
|
|
|
if ((insecure_rand() & ((1 << i) - 1)) == 0) {
|
|
|
|
BOOST_CHECK_MESSAGE(checker[i].GetStateSinceHeightFor(vpblock.empty() ? NULL : vpblock.back()) == height, strprintf("Test %i for StateSinceHeight", num));
|
|
|
|
}
|
|
|
|
}
|
|
|
|
num++;
|
|
|
|
return *this;
|
|
|
|
}
|
|
|
|
|
|
|
|
VersionBitsTester& TestDefined() {
|
|
|
|
for (int i = 0; i < CHECKERS; i++) {
|
|
|
|
if ((insecure_rand() & ((1 << i) - 1)) == 0) {
|
|
|
|
BOOST_CHECK_MESSAGE(checker[i].GetStateFor(vpblock.empty() ? NULL : vpblock.back()) == THRESHOLD_DEFINED, strprintf("Test %i for DEFINED", num));
|
|
|
|
}
|
|
|
|
}
|
|
|
|
num++;
|
|
|
|
return *this;
|
|
|
|
}
|
|
|
|
|
|
|
|
VersionBitsTester& TestStarted() {
|
|
|
|
for (int i = 0; i < CHECKERS; i++) {
|
|
|
|
if ((insecure_rand() & ((1 << i) - 1)) == 0) {
|
|
|
|
BOOST_CHECK_MESSAGE(checker[i].GetStateFor(vpblock.empty() ? NULL : vpblock.back()) == THRESHOLD_STARTED, strprintf("Test %i for STARTED", num));
|
|
|
|
}
|
|
|
|
}
|
|
|
|
num++;
|
|
|
|
return *this;
|
|
|
|
}
|
|
|
|
|
|
|
|
VersionBitsTester& TestLockedIn() {
|
|
|
|
for (int i = 0; i < CHECKERS; i++) {
|
|
|
|
if ((insecure_rand() & ((1 << i) - 1)) == 0) {
|
|
|
|
BOOST_CHECK_MESSAGE(checker[i].GetStateFor(vpblock.empty() ? NULL : vpblock.back()) == THRESHOLD_LOCKED_IN, strprintf("Test %i for LOCKED_IN", num));
|
|
|
|
}
|
|
|
|
}
|
|
|
|
num++;
|
|
|
|
return *this;
|
|
|
|
}
|
|
|
|
|
|
|
|
VersionBitsTester& TestActive() {
|
|
|
|
for (int i = 0; i < CHECKERS; i++) {
|
|
|
|
if ((insecure_rand() & ((1 << i) - 1)) == 0) {
|
|
|
|
BOOST_CHECK_MESSAGE(checker[i].GetStateFor(vpblock.empty() ? NULL : vpblock.back()) == THRESHOLD_ACTIVE, strprintf("Test %i for ACTIVE", num));
|
|
|
|
}
|
|
|
|
}
|
|
|
|
num++;
|
|
|
|
return *this;
|
|
|
|
}
|
|
|
|
|
|
|
|
VersionBitsTester& TestFailed() {
|
|
|
|
for (int i = 0; i < CHECKERS; i++) {
|
|
|
|
if ((insecure_rand() & ((1 << i) - 1)) == 0) {
|
|
|
|
BOOST_CHECK_MESSAGE(checker[i].GetStateFor(vpblock.empty() ? NULL : vpblock.back()) == THRESHOLD_FAILED, strprintf("Test %i for FAILED", num));
|
|
|
|
}
|
|
|
|
}
|
|
|
|
num++;
|
|
|
|
return *this;
|
|
|
|
}
|
|
|
|
|
|
|
|
CBlockIndex * Tip() { return vpblock.size() ? vpblock.back() : NULL; }
|
|
|
|
};
|
|
|
|
|
|
|
|
BOOST_FIXTURE_TEST_SUITE(versionbits_tests, TestingSetup)
|
|
|
|
|
|
|
|
BOOST_AUTO_TEST_CASE(versionbits_test)
|
|
|
|
{
|
|
|
|
for (int i = 0; i < 64; i++) {
|
|
|
|
// DEFINED -> FAILED
|
|
|
|
VersionBitsTester().TestDefined().TestStateSinceHeight(0)
|
|
|
|
.Mine(1, TestTime(1), 0x100).TestDefined().TestStateSinceHeight(0)
|
|
|
|
.Mine(11, TestTime(11), 0x100).TestDefined().TestStateSinceHeight(0)
|
|
|
|
.Mine(989, TestTime(989), 0x100).TestDefined().TestStateSinceHeight(0)
|
|
|
|
.Mine(999, TestTime(20000), 0x100).TestDefined().TestStateSinceHeight(0)
|
|
|
|
.Mine(1000, TestTime(20000), 0x100).TestFailed().TestStateSinceHeight(1000)
|
|
|
|
.Mine(1999, TestTime(30001), 0x100).TestFailed().TestStateSinceHeight(1000)
|
|
|
|
.Mine(2000, TestTime(30002), 0x100).TestFailed().TestStateSinceHeight(1000)
|
|
|
|
.Mine(2001, TestTime(30003), 0x100).TestFailed().TestStateSinceHeight(1000)
|
|
|
|
.Mine(2999, TestTime(30004), 0x100).TestFailed().TestStateSinceHeight(1000)
|
|
|
|
.Mine(3000, TestTime(30005), 0x100).TestFailed().TestStateSinceHeight(1000)
|
|
|
|
|
|
|
|
// DEFINED -> STARTED -> FAILED
|
|
|
|
.Reset().TestDefined().TestStateSinceHeight(0)
|
|
|
|
.Mine(1, TestTime(1), 0).TestDefined().TestStateSinceHeight(0)
|
|
|
|
.Mine(1000, TestTime(10000) - 1, 0x100).TestDefined().TestStateSinceHeight(0) // One second more and it would be defined
|
|
|
|
.Mine(2000, TestTime(10000), 0x100).TestStarted().TestStateSinceHeight(2000) // So that's what happens the next period
|
|
|
|
.Mine(2051, TestTime(10010), 0).TestStarted().TestStateSinceHeight(2000) // 51 old blocks
|
|
|
|
.Mine(2950, TestTime(10020), 0x100).TestStarted().TestStateSinceHeight(2000) // 899 new blocks
|
|
|
|
.Mine(3000, TestTime(20000), 0).TestFailed().TestStateSinceHeight(3000) // 50 old blocks (so 899 out of the past 1000)
|
|
|
|
.Mine(4000, TestTime(20010), 0x100).TestFailed().TestStateSinceHeight(3000)
|
|
|
|
|
|
|
|
// DEFINED -> STARTED -> FAILED while threshold reached
|
|
|
|
.Reset().TestDefined().TestStateSinceHeight(0)
|
|
|
|
.Mine(1, TestTime(1), 0).TestDefined().TestStateSinceHeight(0)
|
|
|
|
.Mine(1000, TestTime(10000) - 1, 0x101).TestDefined().TestStateSinceHeight(0) // One second more and it would be defined
|
|
|
|
.Mine(2000, TestTime(10000), 0x101).TestStarted().TestStateSinceHeight(2000) // So that's what happens the next period
|
|
|
|
.Mine(2999, TestTime(30000), 0x100).TestStarted().TestStateSinceHeight(2000) // 999 new blocks
|
|
|
|
.Mine(3000, TestTime(30000), 0x100).TestFailed().TestStateSinceHeight(3000) // 1 new block (so 1000 out of the past 1000 are new)
|
|
|
|
.Mine(3999, TestTime(30001), 0).TestFailed().TestStateSinceHeight(3000)
|
|
|
|
.Mine(4000, TestTime(30002), 0).TestFailed().TestStateSinceHeight(3000)
|
|
|
|
.Mine(14333, TestTime(30003), 0).TestFailed().TestStateSinceHeight(3000)
|
|
|
|
.Mine(24000, TestTime(40000), 0).TestFailed().TestStateSinceHeight(3000)
|
|
|
|
|
|
|
|
// DEFINED -> STARTED -> LOCKEDIN at the last minute -> ACTIVE
|
|
|
|
.Reset().TestDefined()
|
|
|
|
.Mine(1, TestTime(1), 0).TestDefined().TestStateSinceHeight(0)
|
|
|
|
.Mine(1000, TestTime(10000) - 1, 0x101).TestDefined().TestStateSinceHeight(0) // One second more and it would be defined
|
|
|
|
.Mine(2000, TestTime(10000), 0x101).TestStarted().TestStateSinceHeight(2000) // So that's what happens the next period
|
|
|
|
.Mine(2050, TestTime(10010), 0x200).TestStarted().TestStateSinceHeight(2000) // 50 old blocks
|
|
|
|
.Mine(2950, TestTime(10020), 0x100).TestStarted().TestStateSinceHeight(2000) // 900 new blocks
|
|
|
|
.Mine(2999, TestTime(19999), 0x200).TestStarted().TestStateSinceHeight(2000) // 49 old blocks
|
|
|
|
.Mine(3000, TestTime(29999), 0x200).TestLockedIn().TestStateSinceHeight(3000) // 1 old block (so 900 out of the past 1000)
|
|
|
|
.Mine(3999, TestTime(30001), 0).TestLockedIn().TestStateSinceHeight(3000)
|
|
|
|
.Mine(4000, TestTime(30002), 0).TestActive().TestStateSinceHeight(4000)
|
|
|
|
.Mine(14333, TestTime(30003), 0).TestActive().TestStateSinceHeight(4000)
|
|
|
|
.Mine(24000, TestTime(40000), 0).TestActive().TestStateSinceHeight(4000)
|
|
|
|
|
|
|
|
// DEFINED multiple periods -> STARTED multiple periods -> FAILED
|
|
|
|
.Reset().TestDefined().TestStateSinceHeight(0)
|
|
|
|
.Mine(999, TestTime(999), 0).TestDefined().TestStateSinceHeight(0)
|
|
|
|
.Mine(1000, TestTime(1000), 0).TestDefined().TestStateSinceHeight(0)
|
|
|
|
.Mine(2000, TestTime(2000), 0).TestDefined().TestStateSinceHeight(0)
|
|
|
|
.Mine(3000, TestTime(10000), 0).TestStarted().TestStateSinceHeight(3000)
|
|
|
|
.Mine(4000, TestTime(10000), 0).TestStarted().TestStateSinceHeight(3000)
|
|
|
|
.Mine(5000, TestTime(10000), 0).TestStarted().TestStateSinceHeight(3000)
|
|
|
|
.Mine(6000, TestTime(20000), 0).TestFailed().TestStateSinceHeight(6000)
|
|
|
|
.Mine(7000, TestTime(20000), 0x100).TestFailed().TestStateSinceHeight(6000);
|
|
|
|
}
|
|
|
|
|
|
|
|
// Sanity checks of version bit deployments
|
|
|
|
const Consensus::Params &mainnetParams = Params(CBaseChainParams::MAIN).GetConsensus();
|
|
|
|
for (int i=0; i<(int) Consensus::MAX_VERSION_BITS_DEPLOYMENTS; i++) {
|
|
|
|
uint32_t bitmask = VersionBitsMask(mainnetParams, (Consensus::DeploymentPos)i);
|
|
|
|
// Make sure that no deployment tries to set an invalid bit.
|
|
|
|
BOOST_CHECK_EQUAL(bitmask & ~(uint32_t)VERSIONBITS_TOP_MASK, bitmask);
|
|
|
|
|
|
|
|
// Verify that the deployment windows of different deployment using the
|
|
|
|
// same bit are disjoint.
|
|
|
|
// This test may need modification at such time as a new deployment
|
|
|
|
// is proposed that reuses the bit of an activated soft fork, before the
|
|
|
|
// end time of that soft fork. (Alternatively, the end time of that
|
|
|
|
// activated soft fork could be later changed to be earlier to avoid
|
|
|
|
// overlap.)
|
|
|
|
for (int j=i+1; j<(int) Consensus::MAX_VERSION_BITS_DEPLOYMENTS; j++) {
|
|
|
|
if (VersionBitsMask(mainnetParams, (Consensus::DeploymentPos)j) == bitmask) {
|
|
|
|
BOOST_CHECK(mainnetParams.vDeployments[j].nStartTime > mainnetParams.vDeployments[i].nTimeout ||
|
|
|
|
mainnetParams.vDeployments[i].nStartTime > mainnetParams.vDeployments[j].nTimeout);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
BOOST_AUTO_TEST_CASE(versionbits_computeblockversion)
|
|
|
|
{
|
|
|
|
// Check that ComputeBlockVersion will set the appropriate bit correctly
|
|
|
|
// on mainnet.
|
|
|
|
const Consensus::Params &mainnetParams = Params(CBaseChainParams::MAIN).GetConsensus();
|
|
|
|
|
|
|
|
// Use the TESTDUMMY deployment for testing purposes.
|
|
|
|
int64_t bit = mainnetParams.vDeployments[Consensus::DEPLOYMENT_TESTDUMMY].bit;
|
|
|
|
int64_t nStartTime = mainnetParams.vDeployments[Consensus::DEPLOYMENT_TESTDUMMY].nStartTime;
|
|
|
|
int64_t nTimeout = mainnetParams.vDeployments[Consensus::DEPLOYMENT_TESTDUMMY].nTimeout;
|
|
|
|
|
|
|
|
assert(nStartTime < nTimeout);
|
|
|
|
|
|
|
|
// In the first chain, test that the bit is set by CBV until it has failed.
|
|
|
|
// In the second chain, test the bit is set by CBV while STARTED and
|
|
|
|
// LOCKED-IN, and then no longer set while ACTIVE.
|
|
|
|
VersionBitsTester firstChain, secondChain;
|
|
|
|
|
|
|
|
// Start generating blocks before nStartTime
|
|
|
|
int64_t nTime = nStartTime - 1;
|
|
|
|
|
|
|
|
// Before MedianTimePast of the chain has crossed nStartTime, the bit
|
|
|
|
// should not be set.
|
|
|
|
CBlockIndex *lastBlock = NULL;
|
|
|
|
lastBlock = firstChain.Mine(2016, nTime, VERSIONBITS_LAST_OLD_BLOCK_VERSION).Tip();
|
|
|
|
BOOST_CHECK_EQUAL(ComputeBlockVersion(lastBlock, mainnetParams) & (1<<bit), 0);
|
|
|
|
|
|
|
|
// Mine 2011 more blocks at the old time, and check that CBV isn't setting the bit yet.
|
|
|
|
for (int i=1; i<2012; i++) {
|
|
|
|
lastBlock = firstChain.Mine(2016+i, nTime, VERSIONBITS_LAST_OLD_BLOCK_VERSION).Tip();
|
|
|
|
// This works because VERSIONBITS_LAST_OLD_BLOCK_VERSION happens
|
|
|
|
// to be 4, and the bit we're testing happens to be bit 28.
|
|
|
|
BOOST_CHECK_EQUAL(ComputeBlockVersion(lastBlock, mainnetParams) & (1<<bit), 0);
|
|
|
|
}
|
|
|
|
// Now mine 5 more blocks at the start time -- MTP should not have passed yet, so
|
|
|
|
// CBV should still not yet set the bit.
|
|
|
|
nTime = nStartTime;
|
|
|
|
for (int i=2012; i<=2016; i++) {
|
|
|
|
lastBlock = firstChain.Mine(2016+i, nTime, VERSIONBITS_LAST_OLD_BLOCK_VERSION).Tip();
|
|
|
|
BOOST_CHECK_EQUAL(ComputeBlockVersion(lastBlock, mainnetParams) & (1<<bit), 0);
|
|
|
|
}
|
|
|
|
|
|
|
|
// Advance to the next period and transition to STARTED,
|
|
|
|
lastBlock = firstChain.Mine(6048, nTime, VERSIONBITS_LAST_OLD_BLOCK_VERSION).Tip();
|
|
|
|
// so ComputeBlockVersion should now set the bit,
|
|
|
|
BOOST_CHECK((ComputeBlockVersion(lastBlock, mainnetParams) & (1<<bit)) != 0);
|
|
|
|
// and should also be using the VERSIONBITS_TOP_BITS.
|
|
|
|
BOOST_CHECK_EQUAL(ComputeBlockVersion(lastBlock, mainnetParams) & VERSIONBITS_TOP_MASK, VERSIONBITS_TOP_BITS);
|
|
|
|
|
|
|
|
// Check that ComputeBlockVersion will set the bit until nTimeout
|
|
|
|
nTime += 600;
|
|
|
|
int blocksToMine = 4032; // test blocks for up to 2 time periods
|
|
|
|
int nHeight = 6048;
|
|
|
|
// These blocks are all before nTimeout is reached.
|
|
|
|
while (nTime < nTimeout && blocksToMine > 0) {
|
|
|
|
lastBlock = firstChain.Mine(nHeight+1, nTime, VERSIONBITS_LAST_OLD_BLOCK_VERSION).Tip();
|
|
|
|
BOOST_CHECK((ComputeBlockVersion(lastBlock, mainnetParams) & (1<<bit)) != 0);
|
|
|
|
BOOST_CHECK_EQUAL(ComputeBlockVersion(lastBlock, mainnetParams) & VERSIONBITS_TOP_MASK, VERSIONBITS_TOP_BITS);
|
|
|
|
blocksToMine--;
|
|
|
|
nTime += 600;
|
|
|
|
nHeight += 1;
|
|
|
|
};
|
|
|
|
|
|
|
|
nTime = nTimeout;
|
|
|
|
// FAILED is only triggered at the end of a period, so CBV should be setting
|
|
|
|
// the bit until the period transition.
|
|
|
|
for (int i=0; i<2015; i++) {
|
|
|
|
lastBlock = firstChain.Mine(nHeight+1, nTime, VERSIONBITS_LAST_OLD_BLOCK_VERSION).Tip();
|
|
|
|
BOOST_CHECK((ComputeBlockVersion(lastBlock, mainnetParams) & (1<<bit)) != 0);
|
|
|
|
nHeight += 1;
|
|
|
|
}
|
|
|
|
// The next block should trigger no longer setting the bit.
|
|
|
|
lastBlock = firstChain.Mine(nHeight+1, nTime, VERSIONBITS_LAST_OLD_BLOCK_VERSION).Tip();
|
|
|
|
BOOST_CHECK_EQUAL(ComputeBlockVersion(lastBlock, mainnetParams) & (1<<bit), 0);
|
|
|
|
|
|
|
|
// On a new chain:
|
|
|
|
// verify that the bit will be set after lock-in, and then stop being set
|
|
|
|
// after activation.
|
|
|
|
nTime = nStartTime;
|
|
|
|
|
|
|
|
// Mine one period worth of blocks, and check that the bit will be on for the
|
|
|
|
// next period.
|
|
|
|
lastBlock = secondChain.Mine(2016, nStartTime, VERSIONBITS_LAST_OLD_BLOCK_VERSION).Tip();
|
|
|
|
BOOST_CHECK((ComputeBlockVersion(lastBlock, mainnetParams) & (1<<bit)) != 0);
|
|
|
|
|
|
|
|
// Mine another period worth of blocks, signaling the new bit.
|
|
|
|
lastBlock = secondChain.Mine(4032, nStartTime, VERSIONBITS_TOP_BITS | (1<<bit)).Tip();
|
|
|
|
// After one period of setting the bit on each block, it should have locked in.
|
|
|
|
// We keep setting the bit for one more period though, until activation.
|
|
|
|
BOOST_CHECK((ComputeBlockVersion(lastBlock, mainnetParams) & (1<<bit)) != 0);
|
|
|
|
|
|
|
|
// Now check that we keep mining the block until the end of this period, and
|
|
|
|
// then stop at the beginning of the next period.
|
|
|
|
lastBlock = secondChain.Mine(6047, nStartTime, VERSIONBITS_LAST_OLD_BLOCK_VERSION).Tip();
|
|
|
|
BOOST_CHECK((ComputeBlockVersion(lastBlock, mainnetParams) & (1<<bit)) != 0);
|
|
|
|
lastBlock = secondChain.Mine(6048, nStartTime, VERSIONBITS_LAST_OLD_BLOCK_VERSION).Tip();
|
|
|
|
BOOST_CHECK_EQUAL(ComputeBlockVersion(lastBlock, mainnetParams) & (1<<bit), 0);
|
|
|
|
|
|
|
|
// Finally, verify that after a soft fork has activated, CBV no longer uses
|
|
|
|
// VERSIONBITS_LAST_OLD_BLOCK_VERSION.
|
|
|
|
//BOOST_CHECK_EQUAL(ComputeBlockVersion(lastBlock, mainnetParams) & VERSIONBITS_TOP_MASK, VERSIONBITS_TOP_BITS);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
BOOST_AUTO_TEST_SUITE_END()
|