Kevacoin source tree
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

121 lines
3.7 KiB

(note: this is a temporary file, to be added-to by anybody, and moved to
release-notes at release time)
estimatefee / estimatepriority RPC methods New RPC methods: return an estimate of the fee (or priority) a transaction needs to be likely to confirm in a given number of blocks. Mike Hearn created the first version of this method for estimating fees. It works as follows: For transactions that took 1 to N (I picked N=25) blocks to confirm, keep N buckets with at most 100 entries in each recording the fees-per-kilobyte paid by those transactions. (separate buckets are kept for transactions that confirmed because they are high-priority) The buckets are filled as blocks are found, and are saved/restored in a new fee_estiamtes.dat file in the data directory. A few variations on Mike's initial scheme: To estimate the fee needed for a transaction to confirm in X buckets, all of the samples in all of the buckets are used and a median of all of the data is used to make the estimate. For example, imagine 25 buckets each containing the full 100 entries. Those 2,500 samples are sorted, and the estimate of the fee needed to confirm in the very next block is the 50'th-highest-fee-entry in that sorted list; the estimate of the fee needed to confirm in the next two blocks is the 150'th-highest-fee-entry, etc. That algorithm has the nice property that estimates of how much fee you need to pay to get confirmed in block N will always be greater than or equal to the estimate for block N+1. It would clearly be wrong to say "pay 11 uBTC and you'll get confirmed in 3 blocks, but pay 12 uBTC and it will take LONGER". A single block will not contribute more than 10 entries to any one bucket, so a single miner and a large block cannot overwhelm the estimates.
11 years ago
Notable changes
===============
SSL support for RPC dropped
----------------------------
SSL support for RPC, previously enabled by the option `rpcssl` has been dropped
from both the client and the server. This was done in preparation for removing
the dependency on OpenSSL for the daemon completely.
Trying to use `rpcssl` will result in an error:
Error: SSL mode for RPC (-rpcssl) is no longer supported.
If you are one of the few people that relies on this feature, a flexible
migration path is to use `stunnel`. This is an utility that can tunnel
arbitrary TCP connections inside SSL. On e.g. Ubuntu it can be installed with:
sudo apt-get install stunnel4
Then, to tunnel a SSL connection on 28332 to a RPC server bound on localhost on port 18332 do:
stunnel -d 28332 -r 127.0.0.1:18332 -p stunnel.pem -P ''
It can also be set up system-wide in inetd style.
Another way to re-attain SSL would be to setup a httpd reverse proxy. This solution
would allow the use of different authentication, loadbalancing, on-thy-fly compressing and
caching. A sample config for apache2 could look like:
Listen 443
NameVirtualHost *:443
<VirtualHost *:443>
SSLEngine On
SSLCertificateFile /etc/apache2/ssl/server.crt
SSLCertificateKeyFile /etc/apache2/ssl/server.key
<Location /bitcoinrpc>
ProxyPass http://127.0.0.1:8332/
ProxyPassReverse http://127.0.0.1:8332/
# optional enable digest auth
# AuthType Digest
# ...
# optional bypass bitcoind rpc basic auth
# RequestHeader set Authorization "Basic <hash>"
# get the <hash> from the shell with: base64 <<< bitcoinrpc:<password>
</Location>
# Or, balance the load:
# ProxyPass / balancer://balancer_cluster_name
</VirtualHost>
Random-cookie RPC authentication
---------------------------------
When no `-rpcpassword` is specified, the daemon now uses a special 'cookie'
file for authentication. This file is generated with random content when the
daemon starts, and deleted when it exits. Its contents are used as
authentication token. Read access to this file controls who can access through
RPC. By default it is stored in the data directory but its location can be
overridden with the option `-rpccookiefile`.
This is similar to Tor's CookieAuthentication: see
https://www.torproject.org/docs/tor-manual.html.en
This allows running bitcoind without having to do any manual configuration.
Low-level RPC API changes
--------------------------
- Monetary amounts can be provided as strings. This means that for example the
argument to sendtoaddress can be "0.0001" instead of 0.0001. This can be an
advantage if a JSON library insists on using a lossy floating point type for
numbers, which would be dangerous for monetary amounts.
Option parsing behavior
-----------------------
Command line options are now parsed strictly in the order in which they are
specified. It used to be the case that `-X -noX` ends up, unintuitively, with X
set, as `-X` had precedence over `-noX`. This is no longer the case. Like for
other software, the last specified value for an option will hold.
0.12.0 Change log
=================
Detailed release notes follow. This overview includes changes that affect
behavior, not code moves, refactors and string updates. For convenience in locating
the code changes and accompanying discussion, both the pull request and
git merge commit are mentioned.
### RPC and REST
### Configuration and command-line options
### Block and transaction handling
### P2P protocol and network code
### Validation
### Build system
### Wallet
### GUI
### Tests
### Miscellaneous
- Removed bitrpc.py from contrib