|
|
|
// Copyright (c) 2009-2010 Satoshi Nakamoto
|
|
|
|
// Copyright (c) 2011 The Bitcoin developers
|
|
|
|
// Distributed under the MIT/X11 software license, see the accompanying
|
|
|
|
// file license.txt or http://www.opensource.org/licenses/mit-license.php.
|
|
|
|
#include "headers.h"
|
|
|
|
|
|
|
|
using namespace std;
|
|
|
|
using namespace boost;
|
|
|
|
|
|
|
|
bool CheckSig(vector<unsigned char> vchSig, vector<unsigned char> vchPubKey, CScript scriptCode, const CTransaction& txTo, unsigned int nIn, int nHashType);
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
typedef vector<unsigned char> valtype;
|
|
|
|
static const valtype vchFalse(0);
|
|
|
|
static const valtype vchZero(0);
|
|
|
|
static const valtype vchTrue(1, 1);
|
|
|
|
static const CBigNum bnZero(0);
|
|
|
|
static const CBigNum bnOne(1);
|
|
|
|
static const CBigNum bnFalse(0);
|
|
|
|
static const CBigNum bnTrue(1);
|
|
|
|
static const size_t nMaxNumSize = 4;
|
|
|
|
|
|
|
|
|
|
|
|
CBigNum CastToBigNum(const valtype& vch)
|
|
|
|
{
|
|
|
|
if (vch.size() > nMaxNumSize)
|
|
|
|
throw runtime_error("CastToBigNum() : overflow");
|
|
|
|
// Get rid of extra leading zeros
|
|
|
|
return CBigNum(CBigNum(vch).getvch());
|
|
|
|
}
|
|
|
|
|
|
|
|
bool CastToBool(const valtype& vch)
|
|
|
|
{
|
|
|
|
for (int i = 0; i < vch.size(); i++)
|
|
|
|
{
|
|
|
|
if (vch[i] != 0)
|
|
|
|
{
|
|
|
|
// Can be negative zero
|
|
|
|
if (i == vch.size()-1 && vch[i] == 0x80)
|
|
|
|
return false;
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
|
|
|
void MakeSameSize(valtype& vch1, valtype& vch2)
|
|
|
|
{
|
|
|
|
// Lengthen the shorter one
|
|
|
|
if (vch1.size() < vch2.size())
|
|
|
|
vch1.resize(vch2.size(), 0);
|
|
|
|
if (vch2.size() < vch1.size())
|
|
|
|
vch2.resize(vch1.size(), 0);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
//
|
|
|
|
// Script is a stack machine (like Forth) that evaluates a predicate
|
|
|
|
// returning a bool indicating valid or not. There are no loops.
|
|
|
|
//
|
|
|
|
#define stacktop(i) (stack.at(stack.size()+(i)))
|
|
|
|
#define altstacktop(i) (altstack.at(altstack.size()+(i)))
|
|
|
|
static inline void popstack(vector<valtype>& stack)
|
|
|
|
{
|
|
|
|
if (stack.empty())
|
|
|
|
throw runtime_error("popstack() : stack empty");
|
|
|
|
stack.pop_back();
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
bool EvalScript(vector<vector<unsigned char> >& stack, const CScript& script, const CTransaction& txTo, unsigned int nIn, int nHashType)
|
|
|
|
{
|
|
|
|
CAutoBN_CTX pctx;
|
|
|
|
CScript::const_iterator pc = script.begin();
|
|
|
|
CScript::const_iterator pend = script.end();
|
|
|
|
CScript::const_iterator pbegincodehash = script.begin();
|
|
|
|
opcodetype opcode;
|
|
|
|
valtype vchPushValue;
|
|
|
|
vector<bool> vfExec;
|
|
|
|
vector<valtype> altstack;
|
|
|
|
if (script.size() > 10000)
|
|
|
|
return false;
|
|
|
|
int nOpCount = 0;
|
|
|
|
|
|
|
|
|
|
|
|
try
|
|
|
|
{
|
|
|
|
while (pc < pend)
|
|
|
|
{
|
|
|
|
bool fExec = !count(vfExec.begin(), vfExec.end(), false);
|
|
|
|
|
|
|
|
//
|
|
|
|
// Read instruction
|
|
|
|
//
|
|
|
|
if (!script.GetOp(pc, opcode, vchPushValue))
|
|
|
|
return false;
|
|
|
|
if (vchPushValue.size() > 520)
|
|
|
|
return false;
|
|
|
|
if (opcode > OP_16 && ++nOpCount > 201)
|
|
|
|
return false;
|
|
|
|
|
|
|
|
if (opcode == OP_CAT ||
|
|
|
|
opcode == OP_SUBSTR ||
|
|
|
|
opcode == OP_LEFT ||
|
|
|
|
opcode == OP_RIGHT ||
|
|
|
|
opcode == OP_INVERT ||
|
|
|
|
opcode == OP_AND ||
|
|
|
|
opcode == OP_OR ||
|
|
|
|
opcode == OP_XOR ||
|
|
|
|
opcode == OP_2MUL ||
|
|
|
|
opcode == OP_2DIV ||
|
|
|
|
opcode == OP_MUL ||
|
|
|
|
opcode == OP_DIV ||
|
|
|
|
opcode == OP_MOD ||
|
|
|
|
opcode == OP_LSHIFT ||
|
|
|
|
opcode == OP_RSHIFT)
|
|
|
|
return false;
|
|
|
|
|
|
|
|
if (fExec && 0 <= opcode && opcode <= OP_PUSHDATA4)
|
|
|
|
stack.push_back(vchPushValue);
|
|
|
|
else if (fExec || (OP_IF <= opcode && opcode <= OP_ENDIF))
|
|
|
|
switch (opcode)
|
|
|
|
{
|
|
|
|
//
|
|
|
|
// Push value
|
|
|
|
//
|
|
|
|
case OP_1NEGATE:
|
|
|
|
case OP_1:
|
|
|
|
case OP_2:
|
|
|
|
case OP_3:
|
|
|
|
case OP_4:
|
|
|
|
case OP_5:
|
|
|
|
case OP_6:
|
|
|
|
case OP_7:
|
|
|
|
case OP_8:
|
|
|
|
case OP_9:
|
|
|
|
case OP_10:
|
|
|
|
case OP_11:
|
|
|
|
case OP_12:
|
|
|
|
case OP_13:
|
|
|
|
case OP_14:
|
|
|
|
case OP_15:
|
|
|
|
case OP_16:
|
|
|
|
{
|
|
|
|
// ( -- value)
|
|
|
|
CBigNum bn((int)opcode - (int)(OP_1 - 1));
|
|
|
|
stack.push_back(bn.getvch());
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
|
|
|
|
|
|
|
|
//
|
|
|
|
// Control
|
|
|
|
//
|
|
|
|
case OP_NOP:
|
|
|
|
case OP_NOP1: case OP_NOP2: case OP_NOP3: case OP_NOP4: case OP_NOP5:
|
|
|
|
case OP_NOP6: case OP_NOP7: case OP_NOP8: case OP_NOP9: case OP_NOP10:
|
|
|
|
break;
|
|
|
|
|
|
|
|
case OP_IF:
|
|
|
|
case OP_NOTIF:
|
|
|
|
{
|
|
|
|
// <expression> if [statements] [else [statements]] endif
|
|
|
|
bool fValue = false;
|
|
|
|
if (fExec)
|
|
|
|
{
|
|
|
|
if (stack.size() < 1)
|
|
|
|
return false;
|
|
|
|
valtype& vch = stacktop(-1);
|
|
|
|
fValue = CastToBool(vch);
|
|
|
|
if (opcode == OP_NOTIF)
|
|
|
|
fValue = !fValue;
|
|
|
|
popstack(stack);
|
|
|
|
}
|
|
|
|
vfExec.push_back(fValue);
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
|
|
|
|
case OP_ELSE:
|
|
|
|
{
|
|
|
|
if (vfExec.empty())
|
|
|
|
return false;
|
|
|
|
vfExec.back() = !vfExec.back();
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
|
|
|
|
case OP_ENDIF:
|
|
|
|
{
|
|
|
|
if (vfExec.empty())
|
|
|
|
return false;
|
|
|
|
vfExec.pop_back();
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
|
|
|
|
case OP_VERIFY:
|
|
|
|
{
|
|
|
|
// (true -- ) or
|
|
|
|
// (false -- false) and return
|
|
|
|
if (stack.size() < 1)
|
|
|
|
return false;
|
|
|
|
bool fValue = CastToBool(stacktop(-1));
|
|
|
|
if (fValue)
|
|
|
|
popstack(stack);
|
|
|
|
else
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
|
|
|
|
case OP_RETURN:
|
|
|
|
{
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
|
|
|
|
|
|
|
|
//
|
|
|
|
// Stack ops
|
|
|
|
//
|
|
|
|
case OP_TOALTSTACK:
|
|
|
|
{
|
|
|
|
if (stack.size() < 1)
|
|
|
|
return false;
|
|
|
|
altstack.push_back(stacktop(-1));
|
|
|
|
popstack(stack);
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
|
|
|
|
case OP_FROMALTSTACK:
|
|
|
|
{
|
|
|
|
if (altstack.size() < 1)
|
|
|
|
return false;
|
|
|
|
stack.push_back(altstacktop(-1));
|
|
|
|
popstack(altstack);
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
|
|
|
|
case OP_2DROP:
|
|
|
|
{
|
|
|
|
// (x1 x2 -- )
|
|
|
|
if (stack.size() < 2)
|
|
|
|
return false;
|
|
|
|
popstack(stack);
|
|
|
|
popstack(stack);
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
|
|
|
|
case OP_2DUP:
|
|
|
|
{
|
|
|
|
// (x1 x2 -- x1 x2 x1 x2)
|
|
|
|
if (stack.size() < 2)
|
|
|
|
return false;
|
|
|
|
valtype vch1 = stacktop(-2);
|
|
|
|
valtype vch2 = stacktop(-1);
|
|
|
|
stack.push_back(vch1);
|
|
|
|
stack.push_back(vch2);
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
|
|
|
|
case OP_3DUP:
|
|
|
|
{
|
|
|
|
// (x1 x2 x3 -- x1 x2 x3 x1 x2 x3)
|
|
|
|
if (stack.size() < 3)
|
|
|
|
return false;
|
|
|
|
valtype vch1 = stacktop(-3);
|
|
|
|
valtype vch2 = stacktop(-2);
|
|
|
|
valtype vch3 = stacktop(-1);
|
|
|
|
stack.push_back(vch1);
|
|
|
|
stack.push_back(vch2);
|
|
|
|
stack.push_back(vch3);
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
|
|
|
|
case OP_2OVER:
|
|
|
|
{
|
|
|
|
// (x1 x2 x3 x4 -- x1 x2 x3 x4 x1 x2)
|
|
|
|
if (stack.size() < 4)
|
|
|
|
return false;
|
|
|
|
valtype vch1 = stacktop(-4);
|
|
|
|
valtype vch2 = stacktop(-3);
|
|
|
|
stack.push_back(vch1);
|
|
|
|
stack.push_back(vch2);
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
|
|
|
|
case OP_2ROT:
|
|
|
|
{
|
|
|
|
// (x1 x2 x3 x4 x5 x6 -- x3 x4 x5 x6 x1 x2)
|
|
|
|
if (stack.size() < 6)
|
|
|
|
return false;
|
|
|
|
valtype vch1 = stacktop(-6);
|
|
|
|
valtype vch2 = stacktop(-5);
|
|
|
|
stack.erase(stack.end()-6, stack.end()-4);
|
|
|
|
stack.push_back(vch1);
|
|
|
|
stack.push_back(vch2);
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
|
|
|
|
case OP_2SWAP:
|
|
|
|
{
|
|
|
|
// (x1 x2 x3 x4 -- x3 x4 x1 x2)
|
|
|
|
if (stack.size() < 4)
|
|
|
|
return false;
|
|
|
|
swap(stacktop(-4), stacktop(-2));
|
|
|
|
swap(stacktop(-3), stacktop(-1));
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
|
|
|
|
case OP_IFDUP:
|
|
|
|
{
|
|
|
|
// (x - 0 | x x)
|
|
|
|
if (stack.size() < 1)
|
|
|
|
return false;
|
|
|
|
valtype vch = stacktop(-1);
|
|
|
|
if (CastToBool(vch))
|
|
|
|
stack.push_back(vch);
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
|
|
|
|
case OP_DEPTH:
|
|
|
|
{
|
|
|
|
// -- stacksize
|
|
|
|
CBigNum bn(stack.size());
|
|
|
|
stack.push_back(bn.getvch());
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
|
|
|
|
case OP_DROP:
|
|
|
|
{
|
|
|
|
// (x -- )
|
|
|
|
if (stack.size() < 1)
|
|
|
|
return false;
|
|
|
|
popstack(stack);
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
|
|
|
|
case OP_DUP:
|
|
|
|
{
|
|
|
|
// (x -- x x)
|
|
|
|
if (stack.size() < 1)
|
|
|
|
return false;
|
|
|
|
valtype vch = stacktop(-1);
|
|
|
|
stack.push_back(vch);
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
|
|
|
|
case OP_NIP:
|
|
|
|
{
|
|
|
|
// (x1 x2 -- x2)
|
|
|
|
if (stack.size() < 2)
|
|
|
|
return false;
|
|
|
|
stack.erase(stack.end() - 2);
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
|
|
|
|
case OP_OVER:
|
|
|
|
{
|
|
|
|
// (x1 x2 -- x1 x2 x1)
|
|
|
|
if (stack.size() < 2)
|
|
|
|
return false;
|
|
|
|
valtype vch = stacktop(-2);
|
|
|
|
stack.push_back(vch);
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
|
|
|
|
case OP_PICK:
|
|
|
|
case OP_ROLL:
|
|
|
|
{
|
|
|
|
// (xn ... x2 x1 x0 n - xn ... x2 x1 x0 xn)
|
|
|
|
// (xn ... x2 x1 x0 n - ... x2 x1 x0 xn)
|
|
|
|
if (stack.size() < 2)
|
|
|
|
return false;
|
|
|
|
int n = CastToBigNum(stacktop(-1)).getint();
|
|
|
|
popstack(stack);
|
|
|
|
if (n < 0 || n >= stack.size())
|
|
|
|
return false;
|
|
|
|
valtype vch = stacktop(-n-1);
|
|
|
|
if (opcode == OP_ROLL)
|
|
|
|
stack.erase(stack.end()-n-1);
|
|
|
|
stack.push_back(vch);
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
|
|
|
|
case OP_ROT:
|
|
|
|
{
|
|
|
|
// (x1 x2 x3 -- x2 x3 x1)
|
|
|
|
// x2 x1 x3 after first swap
|
|
|
|
// x2 x3 x1 after second swap
|
|
|
|
if (stack.size() < 3)
|
|
|
|
return false;
|
|
|
|
swap(stacktop(-3), stacktop(-2));
|
|
|
|
swap(stacktop(-2), stacktop(-1));
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
|
|
|
|
case OP_SWAP:
|
|
|
|
{
|
|
|
|
// (x1 x2 -- x2 x1)
|
|
|
|
if (stack.size() < 2)
|
|
|
|
return false;
|
|
|
|
swap(stacktop(-2), stacktop(-1));
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
|
|
|
|
case OP_TUCK:
|
|
|
|
{
|
|
|
|
// (x1 x2 -- x2 x1 x2)
|
|
|
|
if (stack.size() < 2)
|
|
|
|
return false;
|
|
|
|
valtype vch = stacktop(-1);
|
|
|
|
stack.insert(stack.end()-2, vch);
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
|
|
|
|
|
|
|
|
//
|
|
|
|
// Splice ops
|
|
|
|
//
|
|
|
|
case OP_CAT:
|
|
|
|
{
|
|
|
|
// (x1 x2 -- out)
|
|
|
|
if (stack.size() < 2)
|
|
|
|
return false;
|
|
|
|
valtype& vch1 = stacktop(-2);
|
|
|
|
valtype& vch2 = stacktop(-1);
|
|
|
|
vch1.insert(vch1.end(), vch2.begin(), vch2.end());
|
|
|
|
popstack(stack);
|
|
|
|
if (stacktop(-1).size() > 520)
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
|
|
|
|
case OP_SUBSTR:
|
|
|
|
{
|
|
|
|
// (in begin size -- out)
|
|
|
|
if (stack.size() < 3)
|
|
|
|
return false;
|
|
|
|
valtype& vch = stacktop(-3);
|
|
|
|
int nBegin = CastToBigNum(stacktop(-2)).getint();
|
|
|
|
int nEnd = nBegin + CastToBigNum(stacktop(-1)).getint();
|
|
|
|
if (nBegin < 0 || nEnd < nBegin)
|
|
|
|
return false;
|
|
|
|
if (nBegin > vch.size())
|
|
|
|
nBegin = vch.size();
|
|
|
|
if (nEnd > vch.size())
|
|
|
|
nEnd = vch.size();
|
|
|
|
vch.erase(vch.begin() + nEnd, vch.end());
|
|
|
|
vch.erase(vch.begin(), vch.begin() + nBegin);
|
|
|
|
popstack(stack);
|
|
|
|
popstack(stack);
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
|
|
|
|
case OP_LEFT:
|
|
|
|
case OP_RIGHT:
|
|
|
|
{
|
|
|
|
// (in size -- out)
|
|
|
|
if (stack.size() < 2)
|
|
|
|
return false;
|
|
|
|
valtype& vch = stacktop(-2);
|
|
|
|
int nSize = CastToBigNum(stacktop(-1)).getint();
|
|
|
|
if (nSize < 0)
|
|
|
|
return false;
|
|
|
|
if (nSize > vch.size())
|
|
|
|
nSize = vch.size();
|
|
|
|
if (opcode == OP_LEFT)
|
|
|
|
vch.erase(vch.begin() + nSize, vch.end());
|
|
|
|
else
|
|
|
|
vch.erase(vch.begin(), vch.end() - nSize);
|
|
|
|
popstack(stack);
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
|
|
|
|
case OP_SIZE:
|
|
|
|
{
|
|
|
|
// (in -- in size)
|
|
|
|
if (stack.size() < 1)
|
|
|
|
return false;
|
|
|
|
CBigNum bn(stacktop(-1).size());
|
|
|
|
stack.push_back(bn.getvch());
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
|
|
|
|
|
|
|
|
//
|
|
|
|
// Bitwise logic
|
|
|
|
//
|
|
|
|
case OP_INVERT:
|
|
|
|
{
|
|
|
|
// (in - out)
|
|
|
|
if (stack.size() < 1)
|
|
|
|
return false;
|
|
|
|
valtype& vch = stacktop(-1);
|
|
|
|
for (int i = 0; i < vch.size(); i++)
|
|
|
|
vch[i] = ~vch[i];
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
|
|
|
|
case OP_AND:
|
|
|
|
case OP_OR:
|
|
|
|
case OP_XOR:
|
|
|
|
{
|
|
|
|
// (x1 x2 - out)
|
|
|
|
if (stack.size() < 2)
|
|
|
|
return false;
|
|
|
|
valtype& vch1 = stacktop(-2);
|
|
|
|
valtype& vch2 = stacktop(-1);
|
|
|
|
MakeSameSize(vch1, vch2);
|
|
|
|
if (opcode == OP_AND)
|
|
|
|
{
|
|
|
|
for (int i = 0; i < vch1.size(); i++)
|
|
|
|
vch1[i] &= vch2[i];
|
|
|
|
}
|
|
|
|
else if (opcode == OP_OR)
|
|
|
|
{
|
|
|
|
for (int i = 0; i < vch1.size(); i++)
|
|
|
|
vch1[i] |= vch2[i];
|
|
|
|
}
|
|
|
|
else if (opcode == OP_XOR)
|
|
|
|
{
|
|
|
|
for (int i = 0; i < vch1.size(); i++)
|
|
|
|
vch1[i] ^= vch2[i];
|
|
|
|
}
|
|
|
|
popstack(stack);
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
|
|
|
|
case OP_EQUAL:
|
|
|
|
case OP_EQUALVERIFY:
|
|
|
|
//case OP_NOTEQUAL: // use OP_NUMNOTEQUAL
|
|
|
|
{
|
|
|
|
// (x1 x2 - bool)
|
|
|
|
if (stack.size() < 2)
|
|
|
|
return false;
|
|
|
|
valtype& vch1 = stacktop(-2);
|
|
|
|
valtype& vch2 = stacktop(-1);
|
|
|
|
bool fEqual = (vch1 == vch2);
|
|
|
|
// OP_NOTEQUAL is disabled because it would be too easy to say
|
|
|
|
// something like n != 1 and have some wiseguy pass in 1 with extra
|
|
|
|
// zero bytes after it (numerically, 0x01 == 0x0001 == 0x000001)
|
|
|
|
//if (opcode == OP_NOTEQUAL)
|
|
|
|
// fEqual = !fEqual;
|
|
|
|
popstack(stack);
|
|
|
|
popstack(stack);
|
|
|
|
stack.push_back(fEqual ? vchTrue : vchFalse);
|
|
|
|
if (opcode == OP_EQUALVERIFY)
|
|
|
|
{
|
|
|
|
if (fEqual)
|
|
|
|
popstack(stack);
|
|
|
|
else
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
|
|
|
|
|
|
|
|
//
|
|
|
|
// Numeric
|
|
|
|
//
|
|
|
|
case OP_1ADD:
|
|
|
|
case OP_1SUB:
|
|
|
|
case OP_2MUL:
|
|
|
|
case OP_2DIV:
|
|
|
|
case OP_NEGATE:
|
|
|
|
case OP_ABS:
|
|
|
|
case OP_NOT:
|
|
|
|
case OP_0NOTEQUAL:
|
|
|
|
{
|
|
|
|
// (in -- out)
|
|
|
|
if (stack.size() < 1)
|
|
|
|
return false;
|
|
|
|
CBigNum bn = CastToBigNum(stacktop(-1));
|
|
|
|
switch (opcode)
|
|
|
|
{
|
|
|
|
case OP_1ADD: bn += bnOne; break;
|
|
|
|
case OP_1SUB: bn -= bnOne; break;
|
|
|
|
case OP_2MUL: bn <<= 1; break;
|
|
|
|
case OP_2DIV: bn >>= 1; break;
|
|
|
|
case OP_NEGATE: bn = -bn; break;
|
|
|
|
case OP_ABS: if (bn < bnZero) bn = -bn; break;
|
|
|
|
case OP_NOT: bn = (bn == bnZero); break;
|
|
|
|
case OP_0NOTEQUAL: bn = (bn != bnZero); break;
|
|
|
|
default: assert(!"invalid opcode"); break;
|
|
|
|
}
|
|
|
|
popstack(stack);
|
|
|
|
stack.push_back(bn.getvch());
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
|
|
|
|
case OP_ADD:
|
|
|
|
case OP_SUB:
|
|
|
|
case OP_MUL:
|
|
|
|
case OP_DIV:
|
|
|
|
case OP_MOD:
|
|
|
|
case OP_LSHIFT:
|
|
|
|
case OP_RSHIFT:
|
|
|
|
case OP_BOOLAND:
|
|
|
|
case OP_BOOLOR:
|
|
|
|
case OP_NUMEQUAL:
|
|
|
|
case OP_NUMEQUALVERIFY:
|
|
|
|
case OP_NUMNOTEQUAL:
|
|
|
|
case OP_LESSTHAN:
|
|
|
|
case OP_GREATERTHAN:
|
|
|
|
case OP_LESSTHANOREQUAL:
|
|
|
|
case OP_GREATERTHANOREQUAL:
|
|
|
|
case OP_MIN:
|
|
|
|
case OP_MAX:
|
|
|
|
{
|
|
|
|
// (x1 x2 -- out)
|
|
|
|
if (stack.size() < 2)
|
|
|
|
return false;
|
|
|
|
CBigNum bn1 = CastToBigNum(stacktop(-2));
|
|
|
|
CBigNum bn2 = CastToBigNum(stacktop(-1));
|
|
|
|
CBigNum bn;
|
|
|
|
switch (opcode)
|
|
|
|
{
|
|
|
|
case OP_ADD:
|
|
|
|
bn = bn1 + bn2;
|
|
|
|
break;
|
|
|
|
|
|
|
|
case OP_SUB:
|
|
|
|
bn = bn1 - bn2;
|
|
|
|
break;
|
|
|
|
|
|
|
|
case OP_MUL:
|
|
|
|
if (!BN_mul(&bn, &bn1, &bn2, pctx))
|
|
|
|
return false;
|
|
|
|
break;
|
|
|
|
|
|
|
|
case OP_DIV:
|
|
|
|
if (!BN_div(&bn, NULL, &bn1, &bn2, pctx))
|
|
|
|
return false;
|
|
|
|
break;
|
|
|
|
|
|
|
|
case OP_MOD:
|
|
|
|
if (!BN_mod(&bn, &bn1, &bn2, pctx))
|
|
|
|
return false;
|
|
|
|
break;
|
|
|
|
|
|
|
|
case OP_LSHIFT:
|
|
|
|
if (bn2 < bnZero || bn2 > CBigNum(2048))
|
|
|
|
return false;
|
|
|
|
bn = bn1 << bn2.getulong();
|
|
|
|
break;
|
|
|
|
|
|
|
|
case OP_RSHIFT:
|
|
|
|
if (bn2 < bnZero || bn2 > CBigNum(2048))
|
|
|
|
return false;
|
|
|
|
bn = bn1 >> bn2.getulong();
|
|
|
|
break;
|
|
|
|
|
|
|
|
case OP_BOOLAND: bn = (bn1 != bnZero && bn2 != bnZero); break;
|
|
|
|
case OP_BOOLOR: bn = (bn1 != bnZero || bn2 != bnZero); break;
|
|
|
|
case OP_NUMEQUAL: bn = (bn1 == bn2); break;
|
|
|
|
case OP_NUMEQUALVERIFY: bn = (bn1 == bn2); break;
|
|
|
|
case OP_NUMNOTEQUAL: bn = (bn1 != bn2); break;
|
|
|
|
case OP_LESSTHAN: bn = (bn1 < bn2); break;
|
|
|
|
case OP_GREATERTHAN: bn = (bn1 > bn2); break;
|
|
|
|
case OP_LESSTHANOREQUAL: bn = (bn1 <= bn2); break;
|
|
|
|
case OP_GREATERTHANOREQUAL: bn = (bn1 >= bn2); break;
|
|
|
|
case OP_MIN: bn = (bn1 < bn2 ? bn1 : bn2); break;
|
|
|
|
case OP_MAX: bn = (bn1 > bn2 ? bn1 : bn2); break;
|
|
|
|
default: assert(!"invalid opcode"); break;
|
|
|
|
}
|
|
|
|
popstack(stack);
|
|
|
|
popstack(stack);
|
|
|
|
stack.push_back(bn.getvch());
|
|
|
|
|
|
|
|
if (opcode == OP_NUMEQUALVERIFY)
|
|
|
|
{
|
|
|
|
if (CastToBool(stacktop(-1)))
|
|
|
|
popstack(stack);
|
|
|
|
else
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
|
|
|
|
case OP_WITHIN:
|
|
|
|
{
|
|
|
|
// (x min max -- out)
|
|
|
|
if (stack.size() < 3)
|
|
|
|
return false;
|
|
|
|
CBigNum bn1 = CastToBigNum(stacktop(-3));
|
|
|
|
CBigNum bn2 = CastToBigNum(stacktop(-2));
|
|
|
|
CBigNum bn3 = CastToBigNum(stacktop(-1));
|
|
|
|
bool fValue = (bn2 <= bn1 && bn1 < bn3);
|
|
|
|
popstack(stack);
|
|
|
|
popstack(stack);
|
|
|
|
popstack(stack);
|
|
|
|
stack.push_back(fValue ? vchTrue : vchFalse);
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
|
|
|
|
|
|
|
|
//
|
|
|
|
// Crypto
|
|
|
|
//
|
|
|
|
case OP_RIPEMD160:
|
|
|
|
case OP_SHA1:
|
|
|
|
case OP_SHA256:
|
|
|
|
case OP_HASH160:
|
|
|
|
case OP_HASH256:
|
|
|
|
{
|
|
|
|
// (in -- hash)
|
|
|
|
if (stack.size() < 1)
|
|
|
|
return false;
|
|
|
|
valtype& vch = stacktop(-1);
|
|
|
|
valtype vchHash((opcode == OP_RIPEMD160 || opcode == OP_SHA1 || opcode == OP_HASH160) ? 20 : 32);
|
|
|
|
if (opcode == OP_RIPEMD160)
|
|
|
|
RIPEMD160(&vch[0], vch.size(), &vchHash[0]);
|
|
|
|
else if (opcode == OP_SHA1)
|
|
|
|
SHA1(&vch[0], vch.size(), &vchHash[0]);
|
|
|
|
else if (opcode == OP_SHA256)
|
|
|
|
SHA256(&vch[0], vch.size(), &vchHash[0]);
|
|
|
|
else if (opcode == OP_HASH160)
|
|
|
|
{
|
|
|
|
uint160 hash160 = Hash160(vch);
|
|
|
|
memcpy(&vchHash[0], &hash160, sizeof(hash160));
|
|
|
|
}
|
|
|
|
else if (opcode == OP_HASH256)
|
|
|
|
{
|
|
|
|
uint256 hash = Hash(vch.begin(), vch.end());
|
|
|
|
memcpy(&vchHash[0], &hash, sizeof(hash));
|
|
|
|
}
|
|
|
|
popstack(stack);
|
|
|
|
stack.push_back(vchHash);
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
|
|
|
|
case OP_CODESEPARATOR:
|
|
|
|
{
|
|
|
|
// Hash starts after the code separator
|
|
|
|
pbegincodehash = pc;
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
|
|
|
|
case OP_CHECKSIG:
|
|
|
|
case OP_CHECKSIGVERIFY:
|
|
|
|
{
|
|
|
|
// (sig pubkey -- bool)
|
|
|
|
if (stack.size() < 2)
|
|
|
|
return false;
|
|
|
|
|
|
|
|
valtype& vchSig = stacktop(-2);
|
|
|
|
valtype& vchPubKey = stacktop(-1);
|
|
|
|
|
|
|
|
////// debug print
|
|
|
|
//PrintHex(vchSig.begin(), vchSig.end(), "sig: %s\n");
|
|
|
|
//PrintHex(vchPubKey.begin(), vchPubKey.end(), "pubkey: %s\n");
|
|
|
|
|
|
|
|
// Subset of script starting at the most recent codeseparator
|
|
|
|
CScript scriptCode(pbegincodehash, pend);
|
|
|
|
|
|
|
|
// Drop the signature, since there's no way for a signature to sign itself
|
|
|
|
scriptCode.FindAndDelete(CScript(vchSig));
|
|
|
|
|
|
|
|
bool fSuccess = CheckSig(vchSig, vchPubKey, scriptCode, txTo, nIn, nHashType);
|
|
|
|
|
|
|
|
popstack(stack);
|
|
|
|
popstack(stack);
|
|
|
|
stack.push_back(fSuccess ? vchTrue : vchFalse);
|
|
|
|
if (opcode == OP_CHECKSIGVERIFY)
|
|
|
|
{
|
|
|
|
if (fSuccess)
|
|
|
|
popstack(stack);
|
|
|
|
else
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
|
|
|
|
case OP_CHECKMULTISIG:
|
|
|
|
case OP_CHECKMULTISIGVERIFY:
|
|
|
|
{
|
|
|
|
// ([sig ...] num_of_signatures [pubkey ...] num_of_pubkeys -- bool)
|
|
|
|
|
|
|
|
int i = 1;
|
|
|
|
if (stack.size() < i)
|
|
|
|
return false;
|
|
|
|
|
|
|
|
int nKeysCount = CastToBigNum(stacktop(-i)).getint();
|
|
|
|
if (nKeysCount < 0 || nKeysCount > 20)
|
|
|
|
return false;
|
|
|
|
nOpCount += nKeysCount;
|
|
|
|
if (nOpCount > 201)
|
|
|
|
return false;
|
|
|
|
int ikey = ++i;
|
|
|
|
i += nKeysCount;
|
|
|
|
if (stack.size() < i)
|
|
|
|
return false;
|
|
|
|
|
|
|
|
int nSigsCount = CastToBigNum(stacktop(-i)).getint();
|
|
|
|
if (nSigsCount < 0 || nSigsCount > nKeysCount)
|
|
|
|
return false;
|
|
|
|
int isig = ++i;
|
|
|
|
i += nSigsCount;
|
|
|
|
if (stack.size() < i)
|
|
|
|
return false;
|
|
|
|
|
|
|
|
// Subset of script starting at the most recent codeseparator
|
|
|
|
CScript scriptCode(pbegincodehash, pend);
|
|
|
|
|
|
|
|
// Drop the signatures, since there's no way for a signature to sign itself
|
|
|
|
for (int k = 0; k < nSigsCount; k++)
|
|
|
|
{
|
|
|
|
valtype& vchSig = stacktop(-isig-k);
|
|
|
|
scriptCode.FindAndDelete(CScript(vchSig));
|
|
|
|
}
|
|
|
|
|
|
|
|
bool fSuccess = true;
|
|
|
|
while (fSuccess && nSigsCount > 0)
|
|
|
|
{
|
|
|
|
valtype& vchSig = stacktop(-isig);
|
|
|
|
valtype& vchPubKey = stacktop(-ikey);
|
|
|
|
|
|
|
|
// Check signature
|
|
|
|
if (CheckSig(vchSig, vchPubKey, scriptCode, txTo, nIn, nHashType))
|
|
|
|
{
|
|
|
|
isig++;
|
|
|
|
nSigsCount--;
|
|
|
|
}
|
|
|
|
ikey++;
|
|
|
|
nKeysCount--;
|
|
|
|
|
|
|
|
// If there are more signatures left than keys left,
|
|
|
|
// then too many signatures have failed
|
|
|
|
if (nSigsCount > nKeysCount)
|
|
|
|
fSuccess = false;
|
|
|
|
}
|
|
|
|
|
|
|
|
while (i-- > 0)
|
|
|
|
popstack(stack);
|
|
|
|
stack.push_back(fSuccess ? vchTrue : vchFalse);
|
|
|
|
|
|
|
|
if (opcode == OP_CHECKMULTISIGVERIFY)
|
|
|
|
{
|
|
|
|
if (fSuccess)
|
|
|
|
popstack(stack);
|
|
|
|
else
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
|
|
|
|
default:
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Size limits
|
|
|
|
if (stack.size() + altstack.size() > 1000)
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
catch (...)
|
|
|
|
{
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
if (!vfExec.empty())
|
|
|
|
return false;
|
|
|
|
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
uint256 SignatureHash(CScript scriptCode, const CTransaction& txTo, unsigned int nIn, int nHashType)
|
|
|
|
{
|
|
|
|
if (nIn >= txTo.vin.size())
|
|
|
|
{
|
|
|
|
printf("ERROR: SignatureHash() : nIn=%d out of range\n", nIn);
|
|
|
|
return 1;
|
|
|
|
}
|
|
|
|
CTransaction txTmp(txTo);
|
|
|
|
|
|
|
|
// In case concatenating two scripts ends up with two codeseparators,
|
|
|
|
// or an extra one at the end, this prevents all those possible incompatibilities.
|
|
|
|
scriptCode.FindAndDelete(CScript(OP_CODESEPARATOR));
|
|
|
|
|
|
|
|
// Blank out other inputs' signatures
|
|
|
|
for (int i = 0; i < txTmp.vin.size(); i++)
|
|
|
|
txTmp.vin[i].scriptSig = CScript();
|
|
|
|
txTmp.vin[nIn].scriptSig = scriptCode;
|
|
|
|
|
|
|
|
// Blank out some of the outputs
|
|
|
|
if ((nHashType & 0x1f) == SIGHASH_NONE)
|
|
|
|
{
|
|
|
|
// Wildcard payee
|
|
|
|
txTmp.vout.clear();
|
|
|
|
|
|
|
|
// Let the others update at will
|
|
|
|
for (int i = 0; i < txTmp.vin.size(); i++)
|
|
|
|
if (i != nIn)
|
|
|
|
txTmp.vin[i].nSequence = 0;
|
|
|
|
}
|
|
|
|
else if ((nHashType & 0x1f) == SIGHASH_SINGLE)
|
|
|
|
{
|
|
|
|
// Only lockin the txout payee at same index as txin
|
|
|
|
unsigned int nOut = nIn;
|
|
|
|
if (nOut >= txTmp.vout.size())
|
|
|
|
{
|
|
|
|
printf("ERROR: SignatureHash() : nOut=%d out of range\n", nOut);
|
|
|
|
return 1;
|
|
|
|
}
|
|
|
|
txTmp.vout.resize(nOut+1);
|
|
|
|
for (int i = 0; i < nOut; i++)
|
|
|
|
txTmp.vout[i].SetNull();
|
|
|
|
|
|
|
|
// Let the others update at will
|
|
|
|
for (int i = 0; i < txTmp.vin.size(); i++)
|
|
|
|
if (i != nIn)
|
|
|
|
txTmp.vin[i].nSequence = 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Blank out other inputs completely, not recommended for open transactions
|
|
|
|
if (nHashType & SIGHASH_ANYONECANPAY)
|
|
|
|
{
|
|
|
|
txTmp.vin[0] = txTmp.vin[nIn];
|
|
|
|
txTmp.vin.resize(1);
|
|
|
|
}
|
|
|
|
|
|
|
|
// Serialize and hash
|
|
|
|
CDataStream ss(SER_GETHASH);
|
|
|
|
ss.reserve(10000);
|
|
|
|
ss << txTmp << nHashType;
|
|
|
|
return Hash(ss.begin(), ss.end());
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
bool CheckSig(vector<unsigned char> vchSig, vector<unsigned char> vchPubKey, CScript scriptCode,
|
|
|
|
const CTransaction& txTo, unsigned int nIn, int nHashType)
|
|
|
|
{
|
|
|
|
CKey key;
|
|
|
|
if (!key.SetPubKey(vchPubKey))
|
|
|
|
return false;
|
|
|
|
|
|
|
|
// Hash type is one byte tacked on to the end of the signature
|
|
|
|
if (vchSig.empty())
|
|
|
|
return false;
|
|
|
|
if (nHashType == 0)
|
|
|
|
nHashType = vchSig.back();
|
|
|
|
else if (nHashType != vchSig.back())
|
|
|
|
return false;
|
|
|
|
vchSig.pop_back();
|
|
|
|
|
|
|
|
return key.Verify(SignatureHash(scriptCode, txTo, nIn, nHashType), vchSig);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
//
|
|
|
|
// Returns lists of public keys (or public key hashes), any one of which can
|
|
|
|
// satisfy scriptPubKey
|
|
|
|
//
|
|
|
|
bool Solver(const CScript& scriptPubKey, vector<vector<pair<opcodetype, valtype> > >& vSolutionsRet)
|
|
|
|
{
|
|
|
|
// Templates
|
|
|
|
static vector<CScript> vTemplates;
|
|
|
|
if (vTemplates.empty())
|
|
|
|
{
|
|
|
|
// Standard tx, sender provides pubkey, receiver adds signature
|
|
|
|
vTemplates.push_back(CScript() << OP_PUBKEY << OP_CHECKSIG);
|
|
|
|
|
|
|
|
// Bitcoin address tx, sender provides hash of pubkey, receiver provides signature and pubkey
|
|
|
|
vTemplates.push_back(CScript() << OP_DUP << OP_HASH160 << OP_PUBKEYHASH << OP_EQUALVERIFY << OP_CHECKSIG);
|
|
|
|
|
|
|
|
// Sender provides two pubkeys, receivers provides two signatures
|
|
|
|
vTemplates.push_back(CScript() << OP_2 << OP_PUBKEY << OP_PUBKEY << OP_2 << OP_CHECKMULTISIG);
|
|
|
|
|
|
|
|
// Sender provides two pubkeys, receivers provides one of two signatures
|
|
|
|
vTemplates.push_back(CScript() << OP_1 << OP_PUBKEY << OP_PUBKEY << OP_2 << OP_CHECKMULTISIG);
|
|
|
|
|
|
|
|
// Sender provides three pubkeys, receiver provides 2 of 3 signatures.
|
|
|
|
vTemplates.push_back(CScript() << OP_2 << OP_PUBKEY << OP_PUBKEY << OP_PUBKEY << OP_3 << OP_CHECKMULTISIG);
|
|
|
|
}
|
|
|
|
|
|
|
|
// Scan templates
|
|
|
|
const CScript& script1 = scriptPubKey;
|
|
|
|
BOOST_FOREACH(const CScript& script2, vTemplates)
|
|
|
|
{
|
|
|
|
vSolutionsRet.clear();
|
|
|
|
|
|
|
|
vector<pair<opcodetype, valtype> > currentSolution;
|
|
|
|
opcodetype opcode1, opcode2;
|
|
|
|
vector<unsigned char> vch1, vch2;
|
|
|
|
|
|
|
|
// Compare
|
|
|
|
CScript::const_iterator pc1 = script1.begin();
|
|
|
|
CScript::const_iterator pc2 = script2.begin();
|
|
|
|
loop
|
|
|
|
{
|
|
|
|
if (pc1 == script1.end() && pc2 == script2.end())
|
|
|
|
{
|
|
|
|
return !vSolutionsRet.empty();
|
|
|
|
}
|
|
|
|
if (!script1.GetOp(pc1, opcode1, vch1))
|
|
|
|
break;
|
|
|
|
if (!script2.GetOp(pc2, opcode2, vch2))
|
|
|
|
break;
|
|
|
|
if (opcode2 == OP_PUBKEY)
|
|
|
|
{
|
|
|
|
if (vch1.size() < 33 || vch1.size() > 120)
|
|
|
|
break;
|
|
|
|
currentSolution.push_back(make_pair(opcode2, vch1));
|
|
|
|
}
|
|
|
|
else if (opcode2 == OP_PUBKEYHASH)
|
|
|
|
{
|
|
|
|
if (vch1.size() != sizeof(uint160))
|
|
|
|
break;
|
|
|
|
currentSolution.push_back(make_pair(opcode2, vch1));
|
|
|
|
}
|
|
|
|
else if (opcode2 == OP_CHECKSIG)
|
|
|
|
{
|
|
|
|
vSolutionsRet.push_back(currentSolution);
|
|
|
|
currentSolution.clear();
|
|
|
|
}
|
|
|
|
else if (opcode2 == OP_CHECKMULTISIG)
|
|
|
|
{ // Dig out the "m" from before the pubkeys:
|
|
|
|
CScript::const_iterator it = script2.begin();
|
|
|
|
opcodetype op_m;
|
|
|
|
script2.GetOp(it, op_m, vch1);
|
|
|
|
int m = CScript::DecodeOP_N(op_m);
|
|
|
|
int n = currentSolution.size();
|
|
|
|
|
|
|
|
if (m == 2 && n == 2)
|
|
|
|
{
|
|
|
|
vSolutionsRet.push_back(currentSolution);
|
|
|
|
currentSolution.clear();
|
|
|
|
}
|
|
|
|
else if (m == 1 && n == 2)
|
|
|
|
{ // 2 solutions: either first key or second
|
|
|
|
for (int i = 0; i < 2; i++)
|
|
|
|
{
|
|
|
|
vector<pair<opcodetype, valtype> > s;
|
|
|
|
s.push_back(currentSolution[i]);
|
|
|
|
vSolutionsRet.push_back(s);
|
|
|
|
}
|
|
|
|
currentSolution.clear();
|
|
|
|
}
|
|
|
|
else if (m == 2 && n == 3)
|
|
|
|
{ // 3 solutions: any pair
|
|
|
|
for (int i = 0; i < 2; i++)
|
|
|
|
for (int j = i+1; j < 3; j++)
|
|
|
|
{
|
|
|
|
vector<pair<opcodetype, valtype> > s;
|
|
|
|
s.push_back(currentSolution[i]);
|
|
|
|
s.push_back(currentSolution[j]);
|
|
|
|
vSolutionsRet.push_back(s);
|
|
|
|
}
|
|
|
|
currentSolution.clear();
|
|
|
|
}
|
|
|
|
}
|
|
|
|
else if (opcode1 != opcode2 || vch1 != vch2)
|
|
|
|
{
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
vSolutionsRet.clear();
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
CWallet class
* A new class CKeyStore manages private keys, and script.cpp depends on access to CKeyStore.
* A new class CWallet extends CKeyStore, and contains all former wallet-specific globals; CWallet depends on script.cpp, not the other way around.
* Wallet-specific functions in CTransaction/CTxIn/CTxOut (GetDebit, GetCredit, GetChange, IsMine, IsFromMe), are moved to CWallet, taking their former 'this' argument as an explicit parameter
* CWalletTx objects know which CWallet they belong to, for convenience, so they have their own direct (and caching) GetDebit/... functions.
* Some code was moved from CWalletDB to CWallet, such as handling of reserve keys.
* Main.cpp keeps a set of all 'registered' wallets, which should be informed about updates to the block chain, and does not have any notion about any 'main' wallet. Function in main.cpp that require a wallet (such as GenerateCoins), take an explicit CWallet* argument.
* The actual CWallet instance used by the application is defined in init.cpp as "CWallet* pwalletMain". rpc.cpp and ui.cpp use this variable.
* Functions in main.cpp and db.cpp that are not used by other modules are marked static.
* The code for handling the 'submitorder' message is removed, as it not really compatible with the idea that a node is independent from the wallet(s) connected to it, and obsolete anyway.
14 years ago
|
|
|
bool Solver(const CKeyStore& keystore, const CScript& scriptPubKey, uint256 hash, int nHashType, CScript& scriptSigRet)
|
|
|
|
{
|
|
|
|
scriptSigRet.clear();
|
|
|
|
|
|
|
|
vector<vector<pair<opcodetype, valtype> > > vSolutions;
|
|
|
|
if (!Solver(scriptPubKey, vSolutions))
|
|
|
|
return false;
|
|
|
|
|
|
|
|
// See if we have all the keys for any of the solutions:
|
|
|
|
int whichSolution = -1;
|
|
|
|
for (int i = 0; i < vSolutions.size(); i++)
|
|
|
|
{
|
|
|
|
int keysFound = 0;
|
|
|
|
CScript scriptSig;
|
|
|
|
|
|
|
|
BOOST_FOREACH(PAIRTYPE(opcodetype, valtype)& item, vSolutions[i])
|
|
|
|
{
|
|
|
|
if (item.first == OP_PUBKEY)
|
|
|
|
{
|
|
|
|
const valtype& vchPubKey = item.second;
|
|
|
|
CKey key;
|
|
|
|
vector<unsigned char> vchSig;
|
|
|
|
if (keystore.GetKey(Hash160(vchPubKey), key) && key.GetPubKey() == vchPubKey
|
|
|
|
&& hash != 0 && key.Sign(hash, vchSig))
|
|
|
|
{
|
|
|
|
vchSig.push_back((unsigned char)nHashType);
|
|
|
|
scriptSig << vchSig;
|
|
|
|
++keysFound;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
else if (item.first == OP_PUBKEYHASH)
|
|
|
|
{
|
|
|
|
CKey key;
|
|
|
|
vector<unsigned char> vchSig;
|
|
|
|
if (keystore.GetKey(uint160(item.second), key)
|
|
|
|
&& hash != 0 && key.Sign(hash, vchSig))
|
|
|
|
{
|
|
|
|
vchSig.push_back((unsigned char)nHashType);
|
|
|
|
scriptSig << vchSig << key.GetPubKey();
|
|
|
|
++keysFound;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
if (keysFound == vSolutions[i].size())
|
|
|
|
{
|
|
|
|
whichSolution = i;
|
|
|
|
scriptSigRet = scriptSig;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
if (whichSolution == -1)
|
|
|
|
return false;
|
|
|
|
|
|
|
|
// CHECKMULTISIG bug workaround:
|
|
|
|
if (vSolutions.size() != 1 ||
|
|
|
|
vSolutions[0].size() != 1)
|
|
|
|
{
|
|
|
|
scriptSigRet.insert(scriptSigRet.begin(), OP_0);
|
|
|
|
}
|
|
|
|
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
bool IsStandard(const CScript& scriptPubKey)
|
|
|
|
{
|
|
|
|
vector<vector<pair<opcodetype, valtype> > > vSolutions;
|
|
|
|
return Solver(scriptPubKey, vSolutions);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
CWallet class
* A new class CKeyStore manages private keys, and script.cpp depends on access to CKeyStore.
* A new class CWallet extends CKeyStore, and contains all former wallet-specific globals; CWallet depends on script.cpp, not the other way around.
* Wallet-specific functions in CTransaction/CTxIn/CTxOut (GetDebit, GetCredit, GetChange, IsMine, IsFromMe), are moved to CWallet, taking their former 'this' argument as an explicit parameter
* CWalletTx objects know which CWallet they belong to, for convenience, so they have their own direct (and caching) GetDebit/... functions.
* Some code was moved from CWalletDB to CWallet, such as handling of reserve keys.
* Main.cpp keeps a set of all 'registered' wallets, which should be informed about updates to the block chain, and does not have any notion about any 'main' wallet. Function in main.cpp that require a wallet (such as GenerateCoins), take an explicit CWallet* argument.
* The actual CWallet instance used by the application is defined in init.cpp as "CWallet* pwalletMain". rpc.cpp and ui.cpp use this variable.
* Functions in main.cpp and db.cpp that are not used by other modules are marked static.
* The code for handling the 'submitorder' message is removed, as it not really compatible with the idea that a node is independent from the wallet(s) connected to it, and obsolete anyway.
14 years ago
|
|
|
bool IsMine(const CKeyStore &keystore, const CScript& scriptPubKey)
|
|
|
|
{
|
|
|
|
vector<vector<pair<opcodetype, valtype> > > vSolutions;
|
|
|
|
if (!Solver(scriptPubKey, vSolutions))
|
Add wallet privkey encryption.
This commit adds support for ckeys, or enCrypted private keys, to the wallet.
All keys are stored in memory in their encrypted form and thus the passphrase
is required from the user to spend coins, or to create new addresses.
Keys are encrypted with AES-256-CBC using OpenSSL's EVP library. The key is
calculated via EVP_BytesToKey using SHA512 with (by default) 25000 rounds and
a random salt.
By default, the user's wallet remains unencrypted until they call the RPC
command encryptwallet <passphrase> or, from the GUI menu, Options->
Encrypt Wallet.
When the user is attempting to call RPC functions which require the password
to unlock the wallet, an error will be returned unless they call
walletpassphrase <passphrase> <time to keep key in memory> first.
A keypoolrefill command has been added which tops up the users keypool
(requiring the passphrase via walletpassphrase first).
keypoolsize has been added to the output of getinfo to show the user the
number of keys left before they need to specify their passphrase (and call
keypoolrefill).
Note that walletpassphrase will automatically fill keypool in a separate
thread which it spawns when the passphrase is set. This could cause some
delays in other threads waiting for locks on the wallet passphrase, including
one which could cause the passphrase to be stored longer than expected,
however it will not allow the passphrase to be used longer than expected as
ThreadCleanWalletPassphrase will attempt to get a lock on the key as soon
as the specified lock time has arrived.
When the keypool runs out (and wallet is locked) GetOrReuseKeyFromPool
returns vchDefaultKey, meaning miners may start to generate many blocks to
vchDefaultKey instead of a new key each time.
A walletpassphrasechange <oldpassphrase> <newpassphrase> has been added to
allow the user to change their password via RPC.
Whenever keying material (unencrypted private keys, the user's passphrase,
the wallet's AES key) is stored unencrypted in memory, any reasonable attempt
is made to mlock/VirtualLock that memory before storing the keying material.
This is not true in several (commented) cases where mlock/VirtualLocking the
memory is not possible.
Although encryption of private keys in memory can be very useful on desktop
systems (as some small amount of protection against stupid viruses), on an
RPC server, the password is entered fairly insecurely. Thus, the only main
advantage encryption has for RPC servers is for RPC servers that do not spend
coins, except in rare cases, eg. a webserver of a merchant which only receives
payment except for cases of manual intervention.
Thanks to jgarzik for the original patch and sipa, gmaxwell and many others
for all their input.
Conflicts:
src/wallet.cpp
14 years ago
|
|
|
return false;
|
|
|
|
|
|
|
|
int keysFound = 0;
|
|
|
|
int keysRequired = 0;
|
|
|
|
for (int i = 0; i < vSolutions.size(); i++)
|
Add wallet privkey encryption.
This commit adds support for ckeys, or enCrypted private keys, to the wallet.
All keys are stored in memory in their encrypted form and thus the passphrase
is required from the user to spend coins, or to create new addresses.
Keys are encrypted with AES-256-CBC using OpenSSL's EVP library. The key is
calculated via EVP_BytesToKey using SHA512 with (by default) 25000 rounds and
a random salt.
By default, the user's wallet remains unencrypted until they call the RPC
command encryptwallet <passphrase> or, from the GUI menu, Options->
Encrypt Wallet.
When the user is attempting to call RPC functions which require the password
to unlock the wallet, an error will be returned unless they call
walletpassphrase <passphrase> <time to keep key in memory> first.
A keypoolrefill command has been added which tops up the users keypool
(requiring the passphrase via walletpassphrase first).
keypoolsize has been added to the output of getinfo to show the user the
number of keys left before they need to specify their passphrase (and call
keypoolrefill).
Note that walletpassphrase will automatically fill keypool in a separate
thread which it spawns when the passphrase is set. This could cause some
delays in other threads waiting for locks on the wallet passphrase, including
one which could cause the passphrase to be stored longer than expected,
however it will not allow the passphrase to be used longer than expected as
ThreadCleanWalletPassphrase will attempt to get a lock on the key as soon
as the specified lock time has arrived.
When the keypool runs out (and wallet is locked) GetOrReuseKeyFromPool
returns vchDefaultKey, meaning miners may start to generate many blocks to
vchDefaultKey instead of a new key each time.
A walletpassphrasechange <oldpassphrase> <newpassphrase> has been added to
allow the user to change their password via RPC.
Whenever keying material (unencrypted private keys, the user's passphrase,
the wallet's AES key) is stored unencrypted in memory, any reasonable attempt
is made to mlock/VirtualLock that memory before storing the keying material.
This is not true in several (commented) cases where mlock/VirtualLocking the
memory is not possible.
Although encryption of private keys in memory can be very useful on desktop
systems (as some small amount of protection against stupid viruses), on an
RPC server, the password is entered fairly insecurely. Thus, the only main
advantage encryption has for RPC servers is for RPC servers that do not spend
coins, except in rare cases, eg. a webserver of a merchant which only receives
payment except for cases of manual intervention.
Thanks to jgarzik for the original patch and sipa, gmaxwell and many others
for all their input.
Conflicts:
src/wallet.cpp
14 years ago
|
|
|
{
|
|
|
|
BOOST_FOREACH(PAIRTYPE(opcodetype, valtype)& item, vSolutions[i])
|
|
|
|
{
|
|
|
|
++keysRequired;
|
|
|
|
if (item.first == OP_PUBKEY)
|
|
|
|
{
|
|
|
|
const valtype& vchPubKey = item.second;
|
|
|
|
vector<unsigned char> vchPubKeyFound;
|
|
|
|
if (keystore.GetPubKey(Hash160(vchPubKey), vchPubKeyFound) && vchPubKeyFound == vchPubKey)
|
|
|
|
++keysFound;
|
|
|
|
}
|
|
|
|
else if (item.first == OP_PUBKEYHASH)
|
|
|
|
{
|
|
|
|
if (keystore.HaveKey(uint160(item.second)))
|
|
|
|
++keysFound;
|
|
|
|
}
|
Add wallet privkey encryption.
This commit adds support for ckeys, or enCrypted private keys, to the wallet.
All keys are stored in memory in their encrypted form and thus the passphrase
is required from the user to spend coins, or to create new addresses.
Keys are encrypted with AES-256-CBC using OpenSSL's EVP library. The key is
calculated via EVP_BytesToKey using SHA512 with (by default) 25000 rounds and
a random salt.
By default, the user's wallet remains unencrypted until they call the RPC
command encryptwallet <passphrase> or, from the GUI menu, Options->
Encrypt Wallet.
When the user is attempting to call RPC functions which require the password
to unlock the wallet, an error will be returned unless they call
walletpassphrase <passphrase> <time to keep key in memory> first.
A keypoolrefill command has been added which tops up the users keypool
(requiring the passphrase via walletpassphrase first).
keypoolsize has been added to the output of getinfo to show the user the
number of keys left before they need to specify their passphrase (and call
keypoolrefill).
Note that walletpassphrase will automatically fill keypool in a separate
thread which it spawns when the passphrase is set. This could cause some
delays in other threads waiting for locks on the wallet passphrase, including
one which could cause the passphrase to be stored longer than expected,
however it will not allow the passphrase to be used longer than expected as
ThreadCleanWalletPassphrase will attempt to get a lock on the key as soon
as the specified lock time has arrived.
When the keypool runs out (and wallet is locked) GetOrReuseKeyFromPool
returns vchDefaultKey, meaning miners may start to generate many blocks to
vchDefaultKey instead of a new key each time.
A walletpassphrasechange <oldpassphrase> <newpassphrase> has been added to
allow the user to change their password via RPC.
Whenever keying material (unencrypted private keys, the user's passphrase,
the wallet's AES key) is stored unencrypted in memory, any reasonable attempt
is made to mlock/VirtualLock that memory before storing the keying material.
This is not true in several (commented) cases where mlock/VirtualLocking the
memory is not possible.
Although encryption of private keys in memory can be very useful on desktop
systems (as some small amount of protection against stupid viruses), on an
RPC server, the password is entered fairly insecurely. Thus, the only main
advantage encryption has for RPC servers is for RPC servers that do not spend
coins, except in rare cases, eg. a webserver of a merchant which only receives
payment except for cases of manual intervention.
Thanks to jgarzik for the original patch and sipa, gmaxwell and many others
for all their input.
Conflicts:
src/wallet.cpp
14 years ago
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// Only consider transactions "mine" if we own ALL the
|
|
|
|
// keys involved. multi-signature transactions that are
|
|
|
|
// partially owned (somebody else has a key that can spend
|
|
|
|
// them) enable spend-out-from-under-you attacks, especially
|
|
|
|
// for shared-wallet situations.
|
|
|
|
return (keysFound == keysRequired);
|
|
|
|
}
|
|
|
|
|
|
|
|
bool ExtractAddress(const CScript& scriptPubKey, const CKeyStore* keystore, CBitcoinAddress& addressRet)
|
|
|
|
{
|
|
|
|
vector<vector<pair<opcodetype, valtype> > > vSolutions;
|
|
|
|
if (!Solver(scriptPubKey, vSolutions))
|
|
|
|
return false;
|
|
|
|
|
|
|
|
for (int i = 0; i < vSolutions.size(); i++)
|
|
|
|
{
|
|
|
|
if (vSolutions[i].size() != 1)
|
|
|
|
continue; // Can't return more than one address...
|
|
|
|
|
|
|
|
PAIRTYPE(opcodetype, valtype)& item = vSolutions[i][0];
|
|
|
|
if (item.first == OP_PUBKEY)
|
|
|
|
addressRet.SetPubKey(item.second);
|
|
|
|
else if (item.first == OP_PUBKEYHASH)
|
|
|
|
addressRet.SetHash160((uint160)item.second);
|
|
|
|
if (keystore == NULL || keystore->HaveKey(addressRet))
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
bool VerifyScript(const CScript& scriptSig, const CScript& scriptPubKey, const CTransaction& txTo, unsigned int nIn, int nHashType)
|
|
|
|
{
|
|
|
|
vector<vector<unsigned char> > stack;
|
|
|
|
if (!EvalScript(stack, scriptSig, txTo, nIn, nHashType))
|
|
|
|
return false;
|
|
|
|
if (!EvalScript(stack, scriptPubKey, txTo, nIn, nHashType))
|
|
|
|
return false;
|
|
|
|
if (stack.empty())
|
|
|
|
return false;
|
|
|
|
return CastToBool(stack.back());
|
|
|
|
}
|
|
|
|
|
|
|
|
|
CWallet class
* A new class CKeyStore manages private keys, and script.cpp depends on access to CKeyStore.
* A new class CWallet extends CKeyStore, and contains all former wallet-specific globals; CWallet depends on script.cpp, not the other way around.
* Wallet-specific functions in CTransaction/CTxIn/CTxOut (GetDebit, GetCredit, GetChange, IsMine, IsFromMe), are moved to CWallet, taking their former 'this' argument as an explicit parameter
* CWalletTx objects know which CWallet they belong to, for convenience, so they have their own direct (and caching) GetDebit/... functions.
* Some code was moved from CWalletDB to CWallet, such as handling of reserve keys.
* Main.cpp keeps a set of all 'registered' wallets, which should be informed about updates to the block chain, and does not have any notion about any 'main' wallet. Function in main.cpp that require a wallet (such as GenerateCoins), take an explicit CWallet* argument.
* The actual CWallet instance used by the application is defined in init.cpp as "CWallet* pwalletMain". rpc.cpp and ui.cpp use this variable.
* Functions in main.cpp and db.cpp that are not used by other modules are marked static.
* The code for handling the 'submitorder' message is removed, as it not really compatible with the idea that a node is independent from the wallet(s) connected to it, and obsolete anyway.
14 years ago
|
|
|
bool SignSignature(const CKeyStore &keystore, const CTransaction& txFrom, CTransaction& txTo, unsigned int nIn, int nHashType, CScript scriptPrereq)
|
|
|
|
{
|
|
|
|
assert(nIn < txTo.vin.size());
|
|
|
|
CTxIn& txin = txTo.vin[nIn];
|
|
|
|
assert(txin.prevout.n < txFrom.vout.size());
|
|
|
|
const CTxOut& txout = txFrom.vout[txin.prevout.n];
|
|
|
|
|
|
|
|
// Leave out the signature from the hash, since a signature can't sign itself.
|
|
|
|
// The checksig op will also drop the signatures from its hash.
|
|
|
|
uint256 hash = SignatureHash(scriptPrereq + txout.scriptPubKey, txTo, nIn, nHashType);
|
|
|
|
|
CWallet class
* A new class CKeyStore manages private keys, and script.cpp depends on access to CKeyStore.
* A new class CWallet extends CKeyStore, and contains all former wallet-specific globals; CWallet depends on script.cpp, not the other way around.
* Wallet-specific functions in CTransaction/CTxIn/CTxOut (GetDebit, GetCredit, GetChange, IsMine, IsFromMe), are moved to CWallet, taking their former 'this' argument as an explicit parameter
* CWalletTx objects know which CWallet they belong to, for convenience, so they have their own direct (and caching) GetDebit/... functions.
* Some code was moved from CWalletDB to CWallet, such as handling of reserve keys.
* Main.cpp keeps a set of all 'registered' wallets, which should be informed about updates to the block chain, and does not have any notion about any 'main' wallet. Function in main.cpp that require a wallet (such as GenerateCoins), take an explicit CWallet* argument.
* The actual CWallet instance used by the application is defined in init.cpp as "CWallet* pwalletMain". rpc.cpp and ui.cpp use this variable.
* Functions in main.cpp and db.cpp that are not used by other modules are marked static.
* The code for handling the 'submitorder' message is removed, as it not really compatible with the idea that a node is independent from the wallet(s) connected to it, and obsolete anyway.
14 years ago
|
|
|
if (!Solver(keystore, txout.scriptPubKey, hash, nHashType, txin.scriptSig))
|
|
|
|
return false;
|
|
|
|
|
|
|
|
txin.scriptSig = scriptPrereq + txin.scriptSig;
|
|
|
|
|
|
|
|
// Test solution
|
|
|
|
if (scriptPrereq.empty())
|
|
|
|
if (!VerifyScript(txin.scriptSig, txout.scriptPubKey, txTo, nIn, 0))
|
|
|
|
return false;
|
|
|
|
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
bool VerifySignature(const CTransaction& txFrom, const CTransaction& txTo, unsigned int nIn, int nHashType)
|
|
|
|
{
|
|
|
|
assert(nIn < txTo.vin.size());
|
|
|
|
const CTxIn& txin = txTo.vin[nIn];
|
|
|
|
if (txin.prevout.n >= txFrom.vout.size())
|
|
|
|
return false;
|
|
|
|
const CTxOut& txout = txFrom.vout[txin.prevout.n];
|
|
|
|
|
|
|
|
if (txin.prevout.hash != txFrom.GetHash())
|
|
|
|
return false;
|
|
|
|
|
|
|
|
if (!VerifyScript(txin.scriptSig, txout.scriptPubKey, txTo, nIn, nHashType))
|
|
|
|
return false;
|
|
|
|
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
|
|
|
void CScript::SetMultisigAnd(const std::vector<CKey>& keys)
|
|
|
|
{
|
|
|
|
assert(keys.size() >= 2);
|
|
|
|
this->clear();
|
|
|
|
*this << OP_2 << keys[0].GetPubKey() << keys[1].GetPubKey() << OP_2 << OP_CHECKMULTISIG;
|
|
|
|
}
|
|
|
|
void CScript::SetMultisigOr(const std::vector<CKey>& keys)
|
|
|
|
{
|
|
|
|
assert(keys.size() >= 2);
|
|
|
|
this->clear();
|
|
|
|
*this << OP_1 << keys[0].GetPubKey() << keys[1].GetPubKey() << OP_2 << OP_CHECKMULTISIG;
|
|
|
|
}
|
|
|
|
void CScript::SetMultisigEscrow(const std::vector<CKey>& keys)
|
|
|
|
{
|
|
|
|
assert(keys.size() >= 3);
|
|
|
|
this->clear();
|
|
|
|
*this << OP_2 << keys[0].GetPubKey() << keys[1].GetPubKey() << keys[1].GetPubKey() << OP_3 << OP_CHECKMULTISIG;
|
|
|
|
}
|