Kevacoin source tree
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

666 lines
23 KiB

// Copyright (c) 2009-2010 Satoshi Nakamoto
// Copyright (c) 2009-2012 The Bitcoin developers
// Distributed under the MIT/X11 software license, see the accompanying
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
#include "miner.h"
#include "main.h"
double dHashesPerSec = 0.0;
int64 nHPSTimerStart = 0;
//////////////////////////////////////////////////////////////////////////////
//
// BitcoinMiner
//
int static FormatHashBlocks(void* pbuffer, unsigned int len)
{
unsigned char* pdata = (unsigned char*)pbuffer;
unsigned int blocks = 1 + ((len + 8) / 64);
unsigned char* pend = pdata + 64 * blocks;
memset(pdata + len, 0, 64 * blocks - len);
pdata[len] = 0x80;
unsigned int bits = len * 8;
pend[-1] = (bits >> 0) & 0xff;
pend[-2] = (bits >> 8) & 0xff;
pend[-3] = (bits >> 16) & 0xff;
pend[-4] = (bits >> 24) & 0xff;
return blocks;
}
static const unsigned int pSHA256InitState[8] =
{0x6a09e667, 0xbb67ae85, 0x3c6ef372, 0xa54ff53a, 0x510e527f, 0x9b05688c, 0x1f83d9ab, 0x5be0cd19};
void SHA256Transform(void* pstate, void* pinput, const void* pinit)
{
SHA256_CTX ctx;
unsigned char data[64];
SHA256_Init(&ctx);
for (int i = 0; i < 16; i++)
((uint32_t*)data)[i] = ByteReverse(((uint32_t*)pinput)[i]);
for (int i = 0; i < 8; i++)
ctx.h[i] = ((uint32_t*)pinit)[i];
SHA256_Update(&ctx, data, sizeof(data));
for (int i = 0; i < 8; i++)
((uint32_t*)pstate)[i] = ctx.h[i];
}
//
// ScanHash scans nonces looking for a hash with at least some zero bits.
// It operates on big endian data. Caller does the byte reversing.
// All input buffers are 16-byte aligned. nNonce is usually preserved
// between calls, but periodically or if nNonce is 0xffff0000 or above,
// the block is rebuilt and nNonce starts over at zero.
//
unsigned int static ScanHash_CryptoPP(char* pmidstate, char* pdata, char* phash1, char* phash, unsigned int& nHashesDone)
{
unsigned int& nNonce = *(unsigned int*)(pdata + 12);
for (;;)
{
// Crypto++ SHA256
// Hash pdata using pmidstate as the starting state into
// pre-formatted buffer phash1, then hash phash1 into phash
nNonce++;
SHA256Transform(phash1, pdata, pmidstate);
SHA256Transform(phash, phash1, pSHA256InitState);
// Return the nonce if the hash has at least some zero bits,
// caller will check if it has enough to reach the target
if (((unsigned short*)phash)[14] == 0)
return nNonce;
// If nothing found after trying for a while, return -1
if ((nNonce & 0xffff) == 0)
{
nHashesDone = 0xffff+1;
return (unsigned int) -1;
}
if ((nNonce & 0xfff) == 0)
boost::this_thread::interruption_point();
}
}
// Some explaining would be appreciated
class COrphan
{
public:
CTransaction* ptx;
set<uint256> setDependsOn;
double dPriority;
double dFeePerKb;
COrphan(CTransaction* ptxIn)
{
ptx = ptxIn;
dPriority = dFeePerKb = 0;
}
void print() const
{
LogPrintf("COrphan(hash=%s, dPriority=%.1f, dFeePerKb=%.1f)\n",
ptx->GetHash().ToString().c_str(), dPriority, dFeePerKb);
BOOST_FOREACH(uint256 hash, setDependsOn)
LogPrintf(" setDependsOn %s\n", hash.ToString().c_str());
}
};
uint64 nLastBlockTx = 0;
uint64 nLastBlockSize = 0;
// We want to sort transactions by priority and fee, so:
typedef boost::tuple<double, double, CTransaction*> TxPriority;
class TxPriorityCompare
{
bool byFee;
public:
TxPriorityCompare(bool _byFee) : byFee(_byFee) { }
bool operator()(const TxPriority& a, const TxPriority& b)
{
if (byFee)
{
if (a.get<1>() == b.get<1>())
return a.get<0>() < b.get<0>();
return a.get<1>() < b.get<1>();
}
else
{
if (a.get<0>() == b.get<0>())
return a.get<1>() < b.get<1>();
return a.get<0>() < b.get<0>();
}
}
};
CBlockTemplate* CreateNewBlock(const CScript& scriptPubKeyIn)
{
// Create new block
auto_ptr<CBlockTemplate> pblocktemplate(new CBlockTemplate());
if(!pblocktemplate.get())
return NULL;
CBlock *pblock = &pblocktemplate->block; // pointer for convenience
// Create coinbase tx
CTransaction txNew;
txNew.vin.resize(1);
txNew.vin[0].prevout.SetNull();
txNew.vout.resize(1);
txNew.vout[0].scriptPubKey = scriptPubKeyIn;
// Add our coinbase tx as first transaction
pblock->vtx.push_back(txNew);
pblocktemplate->vTxFees.push_back(-1); // updated at end
pblocktemplate->vTxSigOps.push_back(-1); // updated at end
// Largest block you're willing to create:
unsigned int nBlockMaxSize = GetArg("-blockmaxsize", MAX_BLOCK_SIZE_GEN/2);
// Limit to betweeen 1K and MAX_BLOCK_SIZE-1K for sanity:
nBlockMaxSize = std::max((unsigned int)1000, std::min((unsigned int)(MAX_BLOCK_SIZE-1000), nBlockMaxSize));
// How much of the block should be dedicated to high-priority transactions,
// included regardless of the fees they pay
unsigned int nBlockPrioritySize = GetArg("-blockprioritysize", DEFAULT_BLOCK_PRIORITY_SIZE);
nBlockPrioritySize = std::min(nBlockMaxSize, nBlockPrioritySize);
// Minimum block size you want to create; block will be filled with free transactions
// until there are no more or the block reaches this size:
unsigned int nBlockMinSize = GetArg("-blockminsize", 0);
nBlockMinSize = std::min(nBlockMaxSize, nBlockMinSize);
// Collect memory pool transactions into the block
int64 nFees = 0;
{
LOCK2(cs_main, mempool.cs);
CBlockIndex* pindexPrev = pindexBest;
CCoinsViewCache view(*pcoinsTip, true);
// Priority order to process transactions
list<COrphan> vOrphan; // list memory doesn't move
map<uint256, vector<COrphan*> > mapDependers;
bool fPrintPriority = GetBoolArg("-printpriority", false);
// This vector will be sorted into a priority queue:
vector<TxPriority> vecPriority;
vecPriority.reserve(mempool.mapTx.size());
for (map<uint256, CTransaction>::iterator mi = mempool.mapTx.begin(); mi != mempool.mapTx.end(); ++mi)
{
CTransaction& tx = (*mi).second;
if (tx.IsCoinBase() || !IsFinalTx(tx))
continue;
COrphan* porphan = NULL;
double dPriority = 0;
int64 nTotalIn = 0;
bool fMissingInputs = false;
BOOST_FOREACH(const CTxIn& txin, tx.vin)
{
// Read prev transaction
if (!view.HaveCoins(txin.prevout.hash))
{
// This should never happen; all transactions in the memory
// pool should connect to either transactions in the chain
// or other transactions in the memory pool.
if (!mempool.mapTx.count(txin.prevout.hash))
{
LogPrintf("ERROR: mempool transaction missing input\n");
if (fDebug) assert("mempool transaction missing input" == 0);
fMissingInputs = true;
if (porphan)
vOrphan.pop_back();
break;
}
// Has to wait for dependencies
if (!porphan)
{
// Use list for automatic deletion
vOrphan.push_back(COrphan(&tx));
porphan = &vOrphan.back();
}
mapDependers[txin.prevout.hash].push_back(porphan);
porphan->setDependsOn.insert(txin.prevout.hash);
nTotalIn += mempool.mapTx[txin.prevout.hash].vout[txin.prevout.n].nValue;
continue;
}
const CCoins &coins = view.GetCoins(txin.prevout.hash);
int64 nValueIn = coins.vout[txin.prevout.n].nValue;
nTotalIn += nValueIn;
int nConf = pindexPrev->nHeight - coins.nHeight + 1;
dPriority += (double)nValueIn * nConf;
}
if (fMissingInputs) continue;
// Priority is sum(valuein * age) / txsize
unsigned int nTxSize = ::GetSerializeSize(tx, SER_NETWORK, PROTOCOL_VERSION);
dPriority /= nTxSize;
// This is a more accurate fee-per-kilobyte than is used by the client code, because the
// client code rounds up the size to the nearest 1K. That's good, because it gives an
// incentive to create smaller transactions.
double dFeePerKb = double(nTotalIn-GetValueOut(tx)) / (double(nTxSize)/1000.0);
if (porphan)
{
porphan->dPriority = dPriority;
porphan->dFeePerKb = dFeePerKb;
}
else
vecPriority.push_back(TxPriority(dPriority, dFeePerKb, &(*mi).second));
}
// Collect transactions into block
uint64 nBlockSize = 1000;
uint64 nBlockTx = 0;
int nBlockSigOps = 100;
bool fSortedByFee = (nBlockPrioritySize <= 0);
TxPriorityCompare comparer(fSortedByFee);
std::make_heap(vecPriority.begin(), vecPriority.end(), comparer);
while (!vecPriority.empty())
{
// Take highest priority transaction off the priority queue:
double dPriority = vecPriority.front().get<0>();
double dFeePerKb = vecPriority.front().get<1>();
CTransaction& tx = *(vecPriority.front().get<2>());
std::pop_heap(vecPriority.begin(), vecPriority.end(), comparer);
vecPriority.pop_back();
// Size limits
unsigned int nTxSize = ::GetSerializeSize(tx, SER_NETWORK, PROTOCOL_VERSION);
if (nBlockSize + nTxSize >= nBlockMaxSize)
continue;
// Legacy limits on sigOps:
unsigned int nTxSigOps = GetLegacySigOpCount(tx);
if (nBlockSigOps + nTxSigOps >= MAX_BLOCK_SIGOPS)
continue;
// Skip free transactions if we're past the minimum block size:
if (fSortedByFee && (dFeePerKb < CTransaction::nMinTxFee) && (nBlockSize + nTxSize >= nBlockMinSize))
continue;
// Prioritize by fee once past the priority size or we run out of high-priority
// transactions:
if (!fSortedByFee &&
((nBlockSize + nTxSize >= nBlockPrioritySize) || !AllowFree(dPriority)))
{
fSortedByFee = true;
comparer = TxPriorityCompare(fSortedByFee);
std::make_heap(vecPriority.begin(), vecPriority.end(), comparer);
}
if (!view.HaveInputs(tx))
continue;
int64 nTxFees = view.GetValueIn(tx)-GetValueOut(tx);
nTxSigOps += GetP2SHSigOpCount(tx, view);
if (nBlockSigOps + nTxSigOps >= MAX_BLOCK_SIGOPS)
continue;
CValidationState state;
if (!CheckInputs(tx, state, view, true, SCRIPT_VERIFY_P2SH))
continue;
CTxUndo txundo;
uint256 hash = tx.GetHash();
UpdateCoins(tx, state, view, txundo, pindexPrev->nHeight+1, hash);
// Added
pblock->vtx.push_back(tx);
pblocktemplate->vTxFees.push_back(nTxFees);
pblocktemplate->vTxSigOps.push_back(nTxSigOps);
nBlockSize += nTxSize;
++nBlockTx;
nBlockSigOps += nTxSigOps;
nFees += nTxFees;
if (fPrintPriority)
{
LogPrintf("priority %.1f feeperkb %.1f txid %s\n",
dPriority, dFeePerKb, tx.GetHash().ToString().c_str());
}
// Add transactions that depend on this one to the priority queue
if (mapDependers.count(hash))
{
BOOST_FOREACH(COrphan* porphan, mapDependers[hash])
{
if (!porphan->setDependsOn.empty())
{
porphan->setDependsOn.erase(hash);
if (porphan->setDependsOn.empty())
{
vecPriority.push_back(TxPriority(porphan->dPriority, porphan->dFeePerKb, porphan->ptx));
std::push_heap(vecPriority.begin(), vecPriority.end(), comparer);
}
}
}
}
}
nLastBlockTx = nBlockTx;
nLastBlockSize = nBlockSize;
LogPrintf("CreateNewBlock(): total size %"PRI64u"\n", nBlockSize);
pblock->vtx[0].vout[0].nValue = GetBlockValue(pindexPrev->nHeight+1, nFees);
pblocktemplate->vTxFees[0] = -nFees;
// Fill in header
pblock->hashPrevBlock = pindexPrev->GetBlockHash();
UpdateTime(*pblock, pindexPrev);
pblock->nBits = GetNextWorkRequired(pindexPrev, pblock);
pblock->nNonce = 0;
pblock->vtx[0].vin[0].scriptSig = CScript() << OP_0 << OP_0;
pblocktemplate->vTxSigOps[0] = GetLegacySigOpCount(pblock->vtx[0]);
CBlockIndex indexDummy(*pblock);
indexDummy.pprev = pindexPrev;
indexDummy.nHeight = pindexPrev->nHeight + 1;
CCoinsViewCache viewNew(*pcoinsTip, true);
CValidationState state;
if (!ConnectBlock(*pblock, state, &indexDummy, viewNew, true))
throw std::runtime_error("CreateNewBlock() : ConnectBlock failed");
}
return pblocktemplate.release();
}
CBlockTemplate* CreateNewBlockWithKey(CReserveKey& reservekey)
{
CPubKey pubkey;
if (!reservekey.GetReservedKey(pubkey))
return NULL;
CScript scriptPubKey = CScript() << pubkey << OP_CHECKSIG;
return CreateNewBlock(scriptPubKey);
}
void IncrementExtraNonce(CBlock* pblock, CBlockIndex* pindexPrev, unsigned int& nExtraNonce)
{
// Update nExtraNonce
static uint256 hashPrevBlock;
if (hashPrevBlock != pblock->hashPrevBlock)
{
nExtraNonce = 0;
hashPrevBlock = pblock->hashPrevBlock;
}
++nExtraNonce;
unsigned int nHeight = pindexPrev->nHeight+1; // Height first in coinbase required for block.version=2
pblock->vtx[0].vin[0].scriptSig = (CScript() << nHeight << CBigNum(nExtraNonce)) + COINBASE_FLAGS;
assert(pblock->vtx[0].vin[0].scriptSig.size() <= 100);
pblock->hashMerkleRoot = pblock->BuildMerkleTree();
}
void FormatHashBuffers(CBlock* pblock, char* pmidstate, char* pdata, char* phash1)
{
//
// Pre-build hash buffers
//
struct
{
struct unnamed2
{
int nVersion;
uint256 hashPrevBlock;
uint256 hashMerkleRoot;
unsigned int nTime;
unsigned int nBits;
unsigned int nNonce;
}
block;
unsigned char pchPadding0[64];
uint256 hash1;
unsigned char pchPadding1[64];
}
tmp;
memset(&tmp, 0, sizeof(tmp));
tmp.block.nVersion = pblock->nVersion;
tmp.block.hashPrevBlock = pblock->hashPrevBlock;
tmp.block.hashMerkleRoot = pblock->hashMerkleRoot;
tmp.block.nTime = pblock->nTime;
tmp.block.nBits = pblock->nBits;
tmp.block.nNonce = pblock->nNonce;
FormatHashBlocks(&tmp.block, sizeof(tmp.block));
FormatHashBlocks(&tmp.hash1, sizeof(tmp.hash1));
// Byte swap all the input buffer
for (unsigned int i = 0; i < sizeof(tmp)/4; i++)
((unsigned int*)&tmp)[i] = ByteReverse(((unsigned int*)&tmp)[i]);
// Precalc the first half of the first hash, which stays constant
SHA256Transform(pmidstate, &tmp.block, pSHA256InitState);
memcpy(pdata, &tmp.block, 128);
memcpy(phash1, &tmp.hash1, 64);
}
bool CheckWork(CBlock* pblock, CWallet& wallet, CReserveKey& reservekey)
{
uint256 hash = pblock->GetHash();
uint256 hashTarget = CBigNum().SetCompact(pblock->nBits).getuint256();
if (hash > hashTarget)
return false;
//// debug print
LogPrintf("BitcoinMiner:\n");
LogPrintf("proof-of-work found \n hash: %s \ntarget: %s\n", hash.GetHex().c_str(), hashTarget.GetHex().c_str());
pblock->print();
LogPrintf("generated %s\n", FormatMoney(pblock->vtx[0].vout[0].nValue).c_str());
// Found a solution
{
LOCK(cs_main);
if (pblock->hashPrevBlock != hashBestChain)
return error("BitcoinMiner : generated block is stale");
// Remove key from key pool
reservekey.KeepKey();
// Track how many getdata requests this block gets
{
LOCK(wallet.cs_wallet);
wallet.mapRequestCount[pblock->GetHash()] = 0;
}
// Process this block the same as if we had received it from another node
CValidationState state;
if (!ProcessBlock(state, NULL, pblock))
return error("BitcoinMiner : ProcessBlock, block not accepted");
}
return true;
}
void static BitcoinMiner(CWallet *pwallet)
{
LogPrintf("BitcoinMiner started\n");
SetThreadPriority(THREAD_PRIORITY_LOWEST);
RenameThread("bitcoin-miner");
// Each thread has its own key and counter
CReserveKey reservekey(pwallet);
unsigned int nExtraNonce = 0;
try { while (true) {
if (Params().NetworkID() != CChainParams::REGTEST) {
// Busy-wait for the network to come online so we don't waste time mining
// on an obsolete chain. In regtest mode we expect to fly solo.
while (vNodes.empty())
MilliSleep(1000);
}
//
// Create new block
//
unsigned int nTransactionsUpdatedLast = nTransactionsUpdated;
CBlockIndex* pindexPrev = pindexBest;
auto_ptr<CBlockTemplate> pblocktemplate(CreateNewBlockWithKey(reservekey));
if (!pblocktemplate.get())
return;
CBlock *pblock = &pblocktemplate->block;
IncrementExtraNonce(pblock, pindexPrev, nExtraNonce);
LogPrintf("Running BitcoinMiner with %"PRIszu" transactions in block (%u bytes)\n", pblock->vtx.size(),
::GetSerializeSize(*pblock, SER_NETWORK, PROTOCOL_VERSION));
//
// Pre-build hash buffers
//
char pmidstatebuf[32+16]; char* pmidstate = alignup<16>(pmidstatebuf);
char pdatabuf[128+16]; char* pdata = alignup<16>(pdatabuf);
char phash1buf[64+16]; char* phash1 = alignup<16>(phash1buf);
FormatHashBuffers(pblock, pmidstate, pdata, phash1);
unsigned int& nBlockTime = *(unsigned int*)(pdata + 64 + 4);
unsigned int& nBlockBits = *(unsigned int*)(pdata + 64 + 8);
unsigned int& nBlockNonce = *(unsigned int*)(pdata + 64 + 12);
//
// Search
//
int64 nStart = GetTime();
uint256 hashTarget = CBigNum().SetCompact(pblock->nBits).getuint256();
uint256 hashbuf[2];
uint256& hash = *alignup<16>(hashbuf);
while (true)
{
unsigned int nHashesDone = 0;
unsigned int nNonceFound;
// Crypto++ SHA256
nNonceFound = ScanHash_CryptoPP(pmidstate, pdata + 64, phash1,
(char*)&hash, nHashesDone);
// Check if something found
if (nNonceFound != (unsigned int) -1)
{
for (unsigned int i = 0; i < sizeof(hash)/4; i++)
((unsigned int*)&hash)[i] = ByteReverse(((unsigned int*)&hash)[i]);
if (hash <= hashTarget)
{
// Found a solution
pblock->nNonce = ByteReverse(nNonceFound);
assert(hash == pblock->GetHash());
SetThreadPriority(THREAD_PRIORITY_NORMAL);
CheckWork(pblock, *pwallet, reservekey);
SetThreadPriority(THREAD_PRIORITY_LOWEST);
// In regression test mode, stop mining after a block is found. This
// allows developers to controllably generate a block on demand.
if (Params().NetworkID() == CChainParams::REGTEST)
throw boost::thread_interrupted();
break;
}
}
// Meter hashes/sec
static int64 nHashCounter;
if (nHPSTimerStart == 0)
{
nHPSTimerStart = GetTimeMillis();
nHashCounter = 0;
}
else
nHashCounter += nHashesDone;
if (GetTimeMillis() - nHPSTimerStart > 4000)
{
static CCriticalSection cs;
{
LOCK(cs);
if (GetTimeMillis() - nHPSTimerStart > 4000)
{
dHashesPerSec = 1000.0 * nHashCounter / (GetTimeMillis() - nHPSTimerStart);
nHPSTimerStart = GetTimeMillis();
nHashCounter = 0;
static int64 nLogTime;
if (GetTime() - nLogTime > 30 * 60)
{
nLogTime = GetTime();
LogPrintf("hashmeter %6.0f khash/s\n", dHashesPerSec/1000.0);
}
}
}
}
// Check for stop or if block needs to be rebuilt
boost::this_thread::interruption_point();
if (vNodes.empty() && Params().NetworkID() != CChainParams::REGTEST)
break;
if (nBlockNonce >= 0xffff0000)
break;
if (nTransactionsUpdated != nTransactionsUpdatedLast && GetTime() - nStart > 60)
break;
if (pindexPrev != pindexBest)
break;
// Update nTime every few seconds
UpdateTime(*pblock, pindexPrev);
nBlockTime = ByteReverse(pblock->nTime);
if (TestNet())
{
// Changing pblock->nTime can change work required on testnet:
nBlockBits = ByteReverse(pblock->nBits);
hashTarget = CBigNum().SetCompact(pblock->nBits).getuint256();
}
}
} }
catch (boost::thread_interrupted)
{
LogPrintf("BitcoinMiner terminated\n");
throw;
}
}
void GenerateBitcoins(bool fGenerate, CWallet* pwallet)
{
static boost::thread_group* minerThreads = NULL;
int nThreads = GetArg("-genproclimit", -1);
if (nThreads < 0) {
if (Params().NetworkID() == CChainParams::REGTEST)
nThreads = 1;
else
nThreads = boost::thread::hardware_concurrency();
}
if (minerThreads != NULL)
{
minerThreads->interrupt_all();
delete minerThreads;
minerThreads = NULL;
}
if (nThreads == 0 || !fGenerate)
return;
minerThreads = new boost::thread_group();
for (int i = 0; i < nThreads; i++)
minerThreads->create_thread(boost::bind(&BitcoinMiner, pwallet));
}