kevacoin/src/support/lockedpool.cpp

386 lines
11 KiB
C++
Raw Normal View History

// Copyright (c) 2016 The Bitcoin Core developers
// Distributed under the MIT software license, see the accompanying
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
#include "support/lockedpool.h"
#include "support/cleanse.h"
#if defined(HAVE_CONFIG_H)
#include "config/bitcoin-config.h"
#endif
#ifdef WIN32
#ifdef _WIN32_WINNT
#undef _WIN32_WINNT
#endif
#define _WIN32_WINNT 0x0501
#define WIN32_LEAN_AND_MEAN 1
#ifndef NOMINMAX
#define NOMINMAX
#endif
#include <windows.h>
#else
#include <sys/mman.h> // for mmap
#include <sys/resource.h> // for getrlimit
#include <limits.h> // for PAGESIZE
#include <unistd.h> // for sysconf
#endif
#include <algorithm>
LockedPoolManager* LockedPoolManager::_instance = NULL;
std::once_flag LockedPoolManager::init_flag;
/*******************************************************************************/
// Utilities
//
/** Align up to power of 2 */
static inline size_t align_up(size_t x, size_t align)
{
return (x + align - 1) & ~(align - 1);
}
/*******************************************************************************/
// Implementation: Arena
Arena::Arena(void *base_in, size_t size_in, size_t alignment_in):
base(static_cast<char*>(base_in)), end(static_cast<char*>(base_in) + size_in), alignment(alignment_in)
{
// Start with one free chunk that covers the entire arena
chunks_free.emplace(base, size_in);
}
Arena::~Arena()
{
}
void* Arena::alloc(size_t size)
{
// Round to next multiple of alignment
size = align_up(size, alignment);
// Don't handle zero-sized chunks
if (size == 0)
return nullptr;
// Pick a large enough free-chunk
auto it = std::find_if(chunks_free.begin(), chunks_free.end(),
[=](const std::map<char*, size_t>::value_type& chunk){ return chunk.second >= size; });
if (it == chunks_free.end())
return nullptr;
// Create the used-chunk, taking its space from the end of the free-chunk
auto alloced = chunks_used.emplace(it->first + it->second - size, size).first;
if (!(it->second -= size))
chunks_free.erase(it);
return reinterpret_cast<void*>(alloced->first);
}
/* extend the Iterator if other begins at its end */
template <class Iterator, class Pair> bool extend(Iterator it, const Pair& other) {
if (it->first + it->second == other.first) {
it->second += other.second;
return true;
}
return false;
}
void Arena::free(void *ptr)
{
// Freeing the NULL pointer is OK.
if (ptr == nullptr) {
return;
}
// Remove chunk from used map
auto i = chunks_used.find(static_cast<char*>(ptr));
if (i == chunks_used.end()) {
throw std::runtime_error("Arena: invalid or double free");
}
auto freed = *i;
chunks_used.erase(i);
// Add space to free map, coalescing contiguous chunks
auto next = chunks_free.upper_bound(freed.first);
auto prev = (next == chunks_free.begin()) ? chunks_free.end() : std::prev(next);
if (prev == chunks_free.end() || !extend(prev, freed))
prev = chunks_free.emplace_hint(next, freed);
if (next != chunks_free.end() && extend(prev, *next))
chunks_free.erase(next);
}
Arena::Stats Arena::stats() const
{
Arena::Stats r{ 0, 0, 0, chunks_used.size(), chunks_free.size() };
for (const auto& chunk: chunks_used)
r.used += chunk.second;
for (const auto& chunk: chunks_free)
r.free += chunk.second;
r.total = r.used + r.free;
return r;
}
#ifdef ARENA_DEBUG
void printchunk(char* base, size_t sz, bool used) {
std::cout <<
"0x" << std::hex << std::setw(16) << std::setfill('0') << base <<
" 0x" << std::hex << std::setw(16) << std::setfill('0') << sz <<
" 0x" << used << std::endl;
}
void Arena::walk() const
{
for (const auto& chunk: chunks_used)
printchunk(chunk.first, chunk.second, true);
std::cout << std::endl;
for (const auto& chunk: chunks_free)
printchunk(chunk.first, chunk.second, false);
std::cout << std::endl;
}
#endif
/*******************************************************************************/
// Implementation: Win32LockedPageAllocator
#ifdef WIN32
/** LockedPageAllocator specialized for Windows.
*/
class Win32LockedPageAllocator: public LockedPageAllocator
{
public:
Win32LockedPageAllocator();
void* AllocateLocked(size_t len, bool *lockingSuccess);
void FreeLocked(void* addr, size_t len);
size_t GetLimit();
private:
size_t page_size;
};
Win32LockedPageAllocator::Win32LockedPageAllocator()
{
// Determine system page size in bytes
SYSTEM_INFO sSysInfo;
GetSystemInfo(&sSysInfo);
page_size = sSysInfo.dwPageSize;
}
void *Win32LockedPageAllocator::AllocateLocked(size_t len, bool *lockingSuccess)
{
len = align_up(len, page_size);
void *addr = VirtualAlloc(nullptr, len, MEM_COMMIT | MEM_RESERVE, PAGE_READWRITE);
if (addr) {
// VirtualLock is used to attempt to keep keying material out of swap. Note
// that it does not provide this as a guarantee, but, in practice, memory
// that has been VirtualLock'd almost never gets written to the pagefile
// except in rare circumstances where memory is extremely low.
*lockingSuccess = VirtualLock(const_cast<void*>(addr), len) != 0;
}
return addr;
}
void Win32LockedPageAllocator::FreeLocked(void* addr, size_t len)
{
len = align_up(len, page_size);
memory_cleanse(addr, len);
VirtualUnlock(const_cast<void*>(addr), len);
}
size_t Win32LockedPageAllocator::GetLimit()
{
// TODO is there a limit on windows, how to get it?
return std::numeric_limits<size_t>::max();
}
#endif
/*******************************************************************************/
// Implementation: PosixLockedPageAllocator
#ifndef WIN32
/** LockedPageAllocator specialized for OSes that don't try to be
* special snowflakes.
*/
class PosixLockedPageAllocator: public LockedPageAllocator
{
public:
PosixLockedPageAllocator();
void* AllocateLocked(size_t len, bool *lockingSuccess);
void FreeLocked(void* addr, size_t len);
size_t GetLimit();
private:
size_t page_size;
};
PosixLockedPageAllocator::PosixLockedPageAllocator()
{
// Determine system page size in bytes
#if defined(PAGESIZE) // defined in limits.h
page_size = PAGESIZE;
#else // assume some POSIX OS
page_size = sysconf(_SC_PAGESIZE);
#endif
}
// Some systems (at least OS X) do not define MAP_ANONYMOUS yet and define
// MAP_ANON which is deprecated
#ifndef MAP_ANONYMOUS
#define MAP_ANONYMOUS MAP_ANON
#endif
void *PosixLockedPageAllocator::AllocateLocked(size_t len, bool *lockingSuccess)
{
void *addr;
len = align_up(len, page_size);
addr = mmap(nullptr, len, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
if (addr) {
*lockingSuccess = mlock(addr, len) == 0;
}
return addr;
}
void PosixLockedPageAllocator::FreeLocked(void* addr, size_t len)
{
len = align_up(len, page_size);
memory_cleanse(addr, len);
munlock(addr, len);
munmap(addr, len);
}
size_t PosixLockedPageAllocator::GetLimit()
{
#ifdef RLIMIT_MEMLOCK
struct rlimit rlim;
if (getrlimit(RLIMIT_MEMLOCK, &rlim) == 0) {
if (rlim.rlim_cur != RLIM_INFINITY) {
return rlim.rlim_cur;
}
}
#endif
return std::numeric_limits<size_t>::max();
}
#endif
/*******************************************************************************/
// Implementation: LockedPool
LockedPool::LockedPool(std::unique_ptr<LockedPageAllocator> allocator_in, LockingFailed_Callback lf_cb_in):
allocator(std::move(allocator_in)), lf_cb(lf_cb_in), cumulative_bytes_locked(0)
{
}
LockedPool::~LockedPool()
{
}
void* LockedPool::alloc(size_t size)
{
std::lock_guard<std::mutex> lock(mutex);
// Don't handle impossible sizes
if (size == 0 || size > ARENA_SIZE)
return nullptr;
// Try allocating from each current arena
for (auto &arena: arenas) {
void *addr = arena.alloc(size);
if (addr) {
return addr;
}
}
// If that fails, create a new one
if (new_arena(ARENA_SIZE, ARENA_ALIGN)) {
return arenas.back().alloc(size);
}
return nullptr;
}
void LockedPool::free(void *ptr)
{
std::lock_guard<std::mutex> lock(mutex);
// TODO we can do better than this linear search by keeping a map of arena
// extents to arena, and looking up the address.
for (auto &arena: arenas) {
if (arena.addressInArena(ptr)) {
arena.free(ptr);
return;
}
}
throw std::runtime_error("LockedPool: invalid address not pointing to any arena");
}
LockedPool::Stats LockedPool::stats() const
{
std::lock_guard<std::mutex> lock(mutex);
LockedPool::Stats r{0, 0, 0, cumulative_bytes_locked, 0, 0};
for (const auto &arena: arenas) {
Arena::Stats i = arena.stats();
r.used += i.used;
r.free += i.free;
r.total += i.total;
r.chunks_used += i.chunks_used;
r.chunks_free += i.chunks_free;
}
return r;
}
bool LockedPool::new_arena(size_t size, size_t align)
{
bool locked;
// If this is the first arena, handle this specially: Cap the upper size
// by the process limit. This makes sure that the first arena will at least
// be locked. An exception to this is if the process limit is 0:
// in this case no memory can be locked at all so we'll skip past this logic.
if (arenas.empty()) {
size_t limit = allocator->GetLimit();
if (limit > 0) {
size = std::min(size, limit);
}
}
void *addr = allocator->AllocateLocked(size, &locked);
if (!addr) {
return false;
}
if (locked) {
cumulative_bytes_locked += size;
} else if (lf_cb) { // Call the locking-failed callback if locking failed
if (!lf_cb()) { // If the callback returns false, free the memory and fail, otherwise consider the user warned and proceed.
allocator->FreeLocked(addr, size);
return false;
}
}
arenas.emplace_back(allocator.get(), addr, size, align);
return true;
}
LockedPool::LockedPageArena::LockedPageArena(LockedPageAllocator *allocator_in, void *base_in, size_t size_in, size_t align_in):
Arena(base_in, size_in, align_in), base(base_in), size(size_in), allocator(allocator_in)
{
}
LockedPool::LockedPageArena::~LockedPageArena()
{
allocator->FreeLocked(base, size);
}
/*******************************************************************************/
// Implementation: LockedPoolManager
//
2016-11-10 08:00:05 +01:00
LockedPoolManager::LockedPoolManager(std::unique_ptr<LockedPageAllocator> allocator_in):
LockedPool(std::move(allocator_in), &LockedPoolManager::LockingFailed)
{
}
bool LockedPoolManager::LockingFailed()
{
// TODO: log something but how? without including util.h
return true;
}
void LockedPoolManager::CreateInstance()
{
// Using a local static instance guarantees that the object is initialized
// when it's first needed and also deinitialized after all objects that use
// it are done with it. I can think of one unlikely scenario where we may
// have a static deinitialization order/problem, but the check in
// LockedPoolManagerBase's destructor helps us detect if that ever happens.
#ifdef WIN32
std::unique_ptr<LockedPageAllocator> allocator(new Win32LockedPageAllocator());
#else
std::unique_ptr<LockedPageAllocator> allocator(new PosixLockedPageAllocator());
#endif
static LockedPoolManager instance(std::move(allocator));
LockedPoolManager::_instance = &instance;
}