|
|
|
#!/usr/bin/env python3
|
|
|
|
# Copyright (c) 2014-2016 The Bitcoin Core developers
|
|
|
|
# Distributed under the MIT software license, see the accompanying
|
|
|
|
# file COPYING or http://www.opensource.org/licenses/mit-license.php.
|
|
|
|
"""Test BIP68 implementation."""
|
|
|
|
|
|
|
|
from test_framework.test_framework import BitcoinTestFramework
|
|
|
|
from test_framework.util import *
|
|
|
|
from test_framework.blocktools import *
|
|
|
|
|
|
|
|
SEQUENCE_LOCKTIME_DISABLE_FLAG = (1<<31)
|
|
|
|
SEQUENCE_LOCKTIME_TYPE_FLAG = (1<<22) # this means use time (0 means height)
|
|
|
|
SEQUENCE_LOCKTIME_GRANULARITY = 9 # this is a bit-shift
|
|
|
|
SEQUENCE_LOCKTIME_MASK = 0x0000ffff
|
|
|
|
|
|
|
|
# RPC error for non-BIP68 final transactions
|
|
|
|
NOT_FINAL_ERROR = "64: non-BIP68-final"
|
|
|
|
|
|
|
|
class BIP68Test(BitcoinTestFramework):
|
|
|
|
def set_test_params(self):
|
|
|
|
self.num_nodes = 2
|
|
|
|
self.extra_args = [[], ["-acceptnonstdtxn=0"]]
|
|
|
|
|
|
|
|
def run_test(self):
|
|
|
|
self.relayfee = self.nodes[0].getnetworkinfo()["relayfee"]
|
|
|
|
|
|
|
|
# Generate some coins
|
|
|
|
self.nodes[0].generate(110)
|
|
|
|
|
|
|
|
self.log.info("Running test disable flag")
|
|
|
|
self.test_disable_flag()
|
|
|
|
|
|
|
|
self.log.info("Running test sequence-lock-confirmed-inputs")
|
|
|
|
self.test_sequence_lock_confirmed_inputs()
|
|
|
|
|
|
|
|
self.log.info("Running test sequence-lock-unconfirmed-inputs")
|
|
|
|
self.test_sequence_lock_unconfirmed_inputs()
|
|
|
|
|
|
|
|
self.log.info("Running test BIP68 not consensus before versionbits activation")
|
|
|
|
self.test_bip68_not_consensus()
|
|
|
|
|
|
|
|
self.log.info("Activating BIP68 (and 112/113)")
|
|
|
|
self.activateCSV()
|
|
|
|
|
|
|
|
self.log.info("Verifying nVersion=2 transactions are standard.")
|
|
|
|
self.log.info("Note that nVersion=2 transactions are always standard (independent of BIP68 activation status).")
|
|
|
|
self.test_version2_relay()
|
|
|
|
|
|
|
|
self.log.info("Passed")
|
|
|
|
|
|
|
|
# Test that BIP68 is not in effect if tx version is 1, or if
|
|
|
|
# the first sequence bit is set.
|
|
|
|
def test_disable_flag(self):
|
|
|
|
# Create some unconfirmed inputs
|
|
|
|
new_addr = self.nodes[0].getnewaddress()
|
|
|
|
self.nodes[0].sendtoaddress(new_addr, 2) # send 2 BTC
|
|
|
|
|
|
|
|
utxos = self.nodes[0].listunspent(0, 0)
|
|
|
|
assert(len(utxos) > 0)
|
|
|
|
|
|
|
|
utxo = utxos[0]
|
|
|
|
|
|
|
|
tx1 = CTransaction()
|
|
|
|
value = int(satoshi_round(utxo["amount"] - self.relayfee)*COIN)
|
|
|
|
|
|
|
|
# Check that the disable flag disables relative locktime.
|
|
|
|
# If sequence locks were used, this would require 1 block for the
|
|
|
|
# input to mature.
|
|
|
|
sequence_value = SEQUENCE_LOCKTIME_DISABLE_FLAG | 1
|
|
|
|
tx1.vin = [CTxIn(COutPoint(int(utxo["txid"], 16), utxo["vout"]), nSequence=sequence_value)]
|
|
|
|
tx1.vout = [CTxOut(value, CScript([b'a']))]
|
|
|
|
|
|
|
|
tx1_signed = self.nodes[0].signrawtransaction(ToHex(tx1))["hex"]
|
|
|
|
tx1_id = self.nodes[0].sendrawtransaction(tx1_signed)
|
|
|
|
tx1_id = int(tx1_id, 16)
|
|
|
|
|
|
|
|
# This transaction will enable sequence-locks, so this transaction should
|
|
|
|
# fail
|
|
|
|
tx2 = CTransaction()
|
|
|
|
tx2.nVersion = 2
|
|
|
|
sequence_value = sequence_value & 0x7fffffff
|
|
|
|
tx2.vin = [CTxIn(COutPoint(tx1_id, 0), nSequence=sequence_value)]
|
|
|
|
tx2.vout = [CTxOut(int(value-self.relayfee*COIN), CScript([b'a']))]
|
|
|
|
tx2.rehash()
|
|
|
|
|
|
|
|
assert_raises_rpc_error(-26, NOT_FINAL_ERROR, self.nodes[0].sendrawtransaction, ToHex(tx2))
|
|
|
|
|
|
|
|
# Setting the version back down to 1 should disable the sequence lock,
|
|
|
|
# so this should be accepted.
|
|
|
|
tx2.nVersion = 1
|
|
|
|
|
|
|
|
self.nodes[0].sendrawtransaction(ToHex(tx2))
|
|
|
|
|
|
|
|
# Calculate the median time past of a prior block ("confirmations" before
|
|
|
|
# the current tip).
|
|
|
|
def get_median_time_past(self, confirmations):
|
|
|
|
block_hash = self.nodes[0].getblockhash(self.nodes[0].getblockcount()-confirmations)
|
|
|
|
return self.nodes[0].getblockheader(block_hash)["mediantime"]
|
|
|
|
|
|
|
|
# Test that sequence locks are respected for transactions spending confirmed inputs.
|
|
|
|
def test_sequence_lock_confirmed_inputs(self):
|
|
|
|
# Create lots of confirmed utxos, and use them to generate lots of random
|
|
|
|
# transactions.
|
|
|
|
max_outputs = 50
|
|
|
|
addresses = []
|
|
|
|
while len(addresses) < max_outputs:
|
|
|
|
addresses.append(self.nodes[0].getnewaddress())
|
|
|
|
while len(self.nodes[0].listunspent()) < 200:
|
|
|
|
import random
|
|
|
|
random.shuffle(addresses)
|
|
|
|
num_outputs = random.randint(1, max_outputs)
|
|
|
|
outputs = {}
|
|
|
|
for i in range(num_outputs):
|
|
|
|
outputs[addresses[i]] = random.randint(1, 20)*0.01
|
|
|
|
self.nodes[0].sendmany("", outputs)
|
|
|
|
self.nodes[0].generate(1)
|
|
|
|
|
|
|
|
utxos = self.nodes[0].listunspent()
|
|
|
|
|
|
|
|
# Try creating a lot of random transactions.
|
|
|
|
# Each time, choose a random number of inputs, and randomly set
|
|
|
|
# some of those inputs to be sequence locked (and randomly choose
|
|
|
|
# between height/time locking). Small random chance of making the locks
|
|
|
|
# all pass.
|
|
|
|
for i in range(400):
|
|
|
|
# Randomly choose up to 10 inputs
|
|
|
|
num_inputs = random.randint(1, 10)
|
|
|
|
random.shuffle(utxos)
|
|
|
|
|
|
|
|
# Track whether any sequence locks used should fail
|
|
|
|
should_pass = True
|
|
|
|
|
|
|
|
# Track whether this transaction was built with sequence locks
|
|
|
|
using_sequence_locks = False
|
|
|
|
|
|
|
|
tx = CTransaction()
|
|
|
|
tx.nVersion = 2
|
|
|
|
value = 0
|
|
|
|
for j in range(num_inputs):
|
|
|
|
sequence_value = 0xfffffffe # this disables sequence locks
|
|
|
|
|
|
|
|
# 50% chance we enable sequence locks
|
|
|
|
if random.randint(0,1):
|
|
|
|
using_sequence_locks = True
|
|
|
|
|
|
|
|
# 10% of the time, make the input sequence value pass
|
|
|
|
input_will_pass = (random.randint(1,10) == 1)
|
|
|
|
sequence_value = utxos[j]["confirmations"]
|
|
|
|
if not input_will_pass:
|
|
|
|
sequence_value += 1
|
|
|
|
should_pass = False
|
|
|
|
|
|
|
|
# Figure out what the median-time-past was for the confirmed input
|
|
|
|
# Note that if an input has N confirmations, we're going back N blocks
|
|
|
|
# from the tip so that we're looking up MTP of the block
|
|
|
|
# PRIOR to the one the input appears in, as per the BIP68 spec.
|
|
|
|
orig_time = self.get_median_time_past(utxos[j]["confirmations"])
|
|
|
|
cur_time = self.get_median_time_past(0) # MTP of the tip
|
|
|
|
|
|
|
|
# can only timelock this input if it's not too old -- otherwise use height
|
|
|
|
can_time_lock = True
|
|
|
|
if ((cur_time - orig_time) >> SEQUENCE_LOCKTIME_GRANULARITY) >= SEQUENCE_LOCKTIME_MASK:
|
|
|
|
can_time_lock = False
|
|
|
|
|
|
|
|
# if time-lockable, then 50% chance we make this a time lock
|
|
|
|
if random.randint(0,1) and can_time_lock:
|
|
|
|
# Find first time-lock value that fails, or latest one that succeeds
|
|
|
|
time_delta = sequence_value << SEQUENCE_LOCKTIME_GRANULARITY
|
|
|
|
if input_will_pass and time_delta > cur_time - orig_time:
|
|
|
|
sequence_value = ((cur_time - orig_time) >> SEQUENCE_LOCKTIME_GRANULARITY)
|
|
|
|
elif (not input_will_pass and time_delta <= cur_time - orig_time):
|
|
|
|
sequence_value = ((cur_time - orig_time) >> SEQUENCE_LOCKTIME_GRANULARITY)+1
|
|
|
|
sequence_value |= SEQUENCE_LOCKTIME_TYPE_FLAG
|
|
|
|
tx.vin.append(CTxIn(COutPoint(int(utxos[j]["txid"], 16), utxos[j]["vout"]), nSequence=sequence_value))
|
|
|
|
value += utxos[j]["amount"]*COIN
|
|
|
|
# Overestimate the size of the tx - signatures should be less than 120 bytes, and leave 50 for the output
|
|
|
|
tx_size = len(ToHex(tx))//2 + 120*num_inputs + 50
|
|
|
|
tx.vout.append(CTxOut(int(value-self.relayfee*tx_size*COIN/1000), CScript([b'a'])))
|
|
|
|
rawtx = self.nodes[0].signrawtransaction(ToHex(tx))["hex"]
|
|
|
|
|
|
|
|
if (using_sequence_locks and not should_pass):
|
|
|
|
# This transaction should be rejected
|
|
|
|
assert_raises_rpc_error(-26, NOT_FINAL_ERROR, self.nodes[0].sendrawtransaction, rawtx)
|
|
|
|
else:
|
|
|
|
# This raw transaction should be accepted
|
|
|
|
self.nodes[0].sendrawtransaction(rawtx)
|
|
|
|
utxos = self.nodes[0].listunspent()
|
|
|
|
|
|
|
|
# Test that sequence locks on unconfirmed inputs must have nSequence
|
|
|
|
# height or time of 0 to be accepted.
|
|
|
|
# Then test that BIP68-invalid transactions are removed from the mempool
|
|
|
|
# after a reorg.
|
|
|
|
def test_sequence_lock_unconfirmed_inputs(self):
|
|
|
|
# Store height so we can easily reset the chain at the end of the test
|
|
|
|
cur_height = self.nodes[0].getblockcount()
|
|
|
|
|
|
|
|
# Create a mempool tx.
|
|
|
|
txid = self.nodes[0].sendtoaddress(self.nodes[0].getnewaddress(), 2)
|
|
|
|
tx1 = FromHex(CTransaction(), self.nodes[0].getrawtransaction(txid))
|
|
|
|
tx1.rehash()
|
|
|
|
|
|
|
|
# Anyone-can-spend mempool tx.
|
|
|
|
# Sequence lock of 0 should pass.
|
|
|
|
tx2 = CTransaction()
|
|
|
|
tx2.nVersion = 2
|
|
|
|
tx2.vin = [CTxIn(COutPoint(tx1.sha256, 0), nSequence=0)]
|
|
|
|
tx2.vout = [CTxOut(int(tx1.vout[0].nValue - self.relayfee*COIN), CScript([b'a']))]
|
|
|
|
tx2_raw = self.nodes[0].signrawtransaction(ToHex(tx2))["hex"]
|
|
|
|
tx2 = FromHex(tx2, tx2_raw)
|
|
|
|
tx2.rehash()
|
|
|
|
|
|
|
|
self.nodes[0].sendrawtransaction(tx2_raw)
|
|
|
|
|
|
|
|
# Create a spend of the 0th output of orig_tx with a sequence lock
|
|
|
|
# of 1, and test what happens when submitting.
|
|
|
|
# orig_tx.vout[0] must be an anyone-can-spend output
|
|
|
|
def test_nonzero_locks(orig_tx, node, relayfee, use_height_lock):
|
|
|
|
sequence_value = 1
|
|
|
|
if not use_height_lock:
|
|
|
|
sequence_value |= SEQUENCE_LOCKTIME_TYPE_FLAG
|
|
|
|
|
|
|
|
tx = CTransaction()
|
|
|
|
tx.nVersion = 2
|
|
|
|
tx.vin = [CTxIn(COutPoint(orig_tx.sha256, 0), nSequence=sequence_value)]
|
|
|
|
tx.vout = [CTxOut(int(orig_tx.vout[0].nValue - relayfee*COIN), CScript([b'a']))]
|
|
|
|
tx.rehash()
|
|
|
|
|
|
|
|
if (orig_tx.hash in node.getrawmempool()):
|
|
|
|
# sendrawtransaction should fail if the tx is in the mempool
|
|
|
|
assert_raises_rpc_error(-26, NOT_FINAL_ERROR, node.sendrawtransaction, ToHex(tx))
|
|
|
|
else:
|
|
|
|
# sendrawtransaction should succeed if the tx is not in the mempool
|
|
|
|
node.sendrawtransaction(ToHex(tx))
|
|
|
|
|
|
|
|
return tx
|
|
|
|
|
|
|
|
test_nonzero_locks(tx2, self.nodes[0], self.relayfee, use_height_lock=True)
|
|
|
|
test_nonzero_locks(tx2, self.nodes[0], self.relayfee, use_height_lock=False)
|
|
|
|
|
|
|
|
# Now mine some blocks, but make sure tx2 doesn't get mined.
|
|
|
|
# Use prioritisetransaction to lower the effective feerate to 0
|
|
|
|
self.nodes[0].prioritisetransaction(txid=tx2.hash, fee_delta=int(-self.relayfee*COIN))
|
|
|
|
cur_time = int(time.time())
|
|
|
|
for i in range(10):
|
|
|
|
self.nodes[0].setmocktime(cur_time + 600)
|
|
|
|
self.nodes[0].generate(1)
|
|
|
|
cur_time += 600
|
|
|
|
|
|
|
|
assert(tx2.hash in self.nodes[0].getrawmempool())
|
|
|
|
|
|
|
|
test_nonzero_locks(tx2, self.nodes[0], self.relayfee, use_height_lock=True)
|
|
|
|
test_nonzero_locks(tx2, self.nodes[0], self.relayfee, use_height_lock=False)
|
|
|
|
|
|
|
|
# Mine tx2, and then try again
|
|
|
|
self.nodes[0].prioritisetransaction(txid=tx2.hash, fee_delta=int(self.relayfee*COIN))
|
|
|
|
|
|
|
|
# Advance the time on the node so that we can test timelocks
|
|
|
|
self.nodes[0].setmocktime(cur_time+600)
|
|
|
|
self.nodes[0].generate(1)
|
|
|
|
assert(tx2.hash not in self.nodes[0].getrawmempool())
|
|
|
|
|
|
|
|
# Now that tx2 is not in the mempool, a sequence locked spend should
|
|
|
|
# succeed
|
|
|
|
tx3 = test_nonzero_locks(tx2, self.nodes[0], self.relayfee, use_height_lock=False)
|
|
|
|
assert(tx3.hash in self.nodes[0].getrawmempool())
|
|
|
|
|
|
|
|
self.nodes[0].generate(1)
|
|
|
|
assert(tx3.hash not in self.nodes[0].getrawmempool())
|
|
|
|
|
|
|
|
# One more test, this time using height locks
|
|
|
|
tx4 = test_nonzero_locks(tx3, self.nodes[0], self.relayfee, use_height_lock=True)
|
|
|
|
assert(tx4.hash in self.nodes[0].getrawmempool())
|
|
|
|
|
|
|
|
# Now try combining confirmed and unconfirmed inputs
|
|
|
|
tx5 = test_nonzero_locks(tx4, self.nodes[0], self.relayfee, use_height_lock=True)
|
|
|
|
assert(tx5.hash not in self.nodes[0].getrawmempool())
|
|
|
|
|
|
|
|
utxos = self.nodes[0].listunspent()
|
|
|
|
tx5.vin.append(CTxIn(COutPoint(int(utxos[0]["txid"], 16), utxos[0]["vout"]), nSequence=1))
|
|
|
|
tx5.vout[0].nValue += int(utxos[0]["amount"]*COIN)
|
|
|
|
raw_tx5 = self.nodes[0].signrawtransaction(ToHex(tx5))["hex"]
|
|
|
|
|
|
|
|
assert_raises_rpc_error(-26, NOT_FINAL_ERROR, self.nodes[0].sendrawtransaction, raw_tx5)
|
|
|
|
|
|
|
|
# Test mempool-BIP68 consistency after reorg
|
|
|
|
#
|
|
|
|
# State of the transactions in the last blocks:
|
|
|
|
# ... -> [ tx2 ] -> [ tx3 ]
|
|
|
|
# tip-1 tip
|
|
|
|
# And currently tx4 is in the mempool.
|
|
|
|
#
|
|
|
|
# If we invalidate the tip, tx3 should get added to the mempool, causing
|
|
|
|
# tx4 to be removed (fails sequence-lock).
|
|
|
|
self.nodes[0].invalidateblock(self.nodes[0].getbestblockhash())
|
|
|
|
assert(tx4.hash not in self.nodes[0].getrawmempool())
|
|
|
|
assert(tx3.hash in self.nodes[0].getrawmempool())
|
|
|
|
|
|
|
|
# Now mine 2 empty blocks to reorg out the current tip (labeled tip-1 in
|
|
|
|
# diagram above).
|
|
|
|
# This would cause tx2 to be added back to the mempool, which in turn causes
|
|
|
|
# tx3 to be removed.
|
|
|
|
tip = int(self.nodes[0].getblockhash(self.nodes[0].getblockcount()-1), 16)
|
|
|
|
height = self.nodes[0].getblockcount()
|
|
|
|
for i in range(2):
|
|
|
|
block = create_block(tip, create_coinbase(height), cur_time)
|
|
|
|
block.nVersion = 3
|
|
|
|
block.rehash()
|
|
|
|
block.solve()
|
|
|
|
tip = block.sha256
|
|
|
|
height += 1
|
|
|
|
self.nodes[0].submitblock(ToHex(block))
|
|
|
|
cur_time += 1
|
|
|
|
|
|
|
|
mempool = self.nodes[0].getrawmempool()
|
|
|
|
assert(tx3.hash not in mempool)
|
|
|
|
assert(tx2.hash in mempool)
|
|
|
|
|
|
|
|
# Reset the chain and get rid of the mocktimed-blocks
|
|
|
|
self.nodes[0].setmocktime(0)
|
|
|
|
self.nodes[0].invalidateblock(self.nodes[0].getblockhash(cur_height+1))
|
|
|
|
self.nodes[0].generate(10)
|
|
|
|
|
|
|
|
# Make sure that BIP68 isn't being used to validate blocks, prior to
|
|
|
|
# versionbits activation. If more blocks are mined prior to this test
|
|
|
|
# being run, then it's possible the test has activated the soft fork, and
|
|
|
|
# this test should be moved to run earlier, or deleted.
|
|
|
|
def test_bip68_not_consensus(self):
|
|
|
|
assert(get_bip9_status(self.nodes[0], 'csv')['status'] != 'active')
|
|
|
|
txid = self.nodes[0].sendtoaddress(self.nodes[0].getnewaddress(), 2)
|
|
|
|
|
|
|
|
tx1 = FromHex(CTransaction(), self.nodes[0].getrawtransaction(txid))
|
|
|
|
tx1.rehash()
|
|
|
|
|
|
|
|
# Make an anyone-can-spend transaction
|
|
|
|
tx2 = CTransaction()
|
|
|
|
tx2.nVersion = 1
|
|
|
|
tx2.vin = [CTxIn(COutPoint(tx1.sha256, 0), nSequence=0)]
|
|
|
|
tx2.vout = [CTxOut(int(tx1.vout[0].nValue - self.relayfee*COIN), CScript([b'a']))]
|
|
|
|
|
|
|
|
# sign tx2
|
|
|
|
tx2_raw = self.nodes[0].signrawtransaction(ToHex(tx2))["hex"]
|
|
|
|
tx2 = FromHex(tx2, tx2_raw)
|
|
|
|
tx2.rehash()
|
|
|
|
|
|
|
|
self.nodes[0].sendrawtransaction(ToHex(tx2))
|
|
|
|
|
|
|
|
# Now make an invalid spend of tx2 according to BIP68
|
|
|
|
sequence_value = 100 # 100 block relative locktime
|
|
|
|
|
|
|
|
tx3 = CTransaction()
|
|
|
|
tx3.nVersion = 2
|
|
|
|
tx3.vin = [CTxIn(COutPoint(tx2.sha256, 0), nSequence=sequence_value)]
|
|
|
|
tx3.vout = [CTxOut(int(tx2.vout[0].nValue - self.relayfee*COIN), CScript([b'a']))]
|
|
|
|
tx3.rehash()
|
|
|
|
|
|
|
|
assert_raises_rpc_error(-26, NOT_FINAL_ERROR, self.nodes[0].sendrawtransaction, ToHex(tx3))
|
|
|
|
|
|
|
|
# make a block that violates bip68; ensure that the tip updates
|
|
|
|
tip = int(self.nodes[0].getbestblockhash(), 16)
|
|
|
|
block = create_block(tip, create_coinbase(self.nodes[0].getblockcount()+1))
|
|
|
|
block.nVersion = 3
|
|
|
|
block.vtx.extend([tx1, tx2, tx3])
|
|
|
|
block.hashMerkleRoot = block.calc_merkle_root()
|
|
|
|
block.rehash()
|
|
|
|
block.solve()
|
|
|
|
|
|
|
|
self.nodes[0].submitblock(ToHex(block))
|
|
|
|
assert_equal(self.nodes[0].getbestblockhash(), block.hash)
|
|
|
|
|
|
|
|
def activateCSV(self):
|
|
|
|
# activation should happen at block height 432 (3 periods)
|
|
|
|
# getblockchaininfo will show CSV as active at block 431 (144 * 3 -1) since it's returning whether CSV is active for the next block.
|
|
|
|
min_activation_height = 432
|
|
|
|
height = self.nodes[0].getblockcount()
|
|
|
|
assert_greater_than(min_activation_height - height, 2)
|
|
|
|
self.nodes[0].generate(min_activation_height - height - 2)
|
|
|
|
assert_equal(get_bip9_status(self.nodes[0], 'csv')['status'], "locked_in")
|
|
|
|
self.nodes[0].generate(1)
|
|
|
|
assert_equal(get_bip9_status(self.nodes[0], 'csv')['status'], "active")
|
|
|
|
sync_blocks(self.nodes)
|
|
|
|
|
|
|
|
# Use self.nodes[1] to test that version 2 transactions are standard.
|
|
|
|
def test_version2_relay(self):
|
|
|
|
inputs = [ ]
|
|
|
|
outputs = { self.nodes[1].getnewaddress() : 1.0 }
|
|
|
|
rawtx = self.nodes[1].createrawtransaction(inputs, outputs)
|
|
|
|
rawtxfund = self.nodes[1].fundrawtransaction(rawtx)['hex']
|
|
|
|
tx = FromHex(CTransaction(), rawtxfund)
|
|
|
|
tx.nVersion = 2
|
|
|
|
tx_signed = self.nodes[1].signrawtransaction(ToHex(tx))["hex"]
|
|
|
|
self.nodes[1].sendrawtransaction(tx_signed)
|
|
|
|
|
|
|
|
if __name__ == '__main__':
|
|
|
|
BIP68Test().main()
|