Kevacoin source tree
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

117 lines
5.8 KiB

#!/usr/bin/env python2
# Copyright (c) 2015 The Bitcoin Core developers
# Distributed under the MIT software license, see the accompanying
# file COPYING or http://www.opensource.org/licenses/mit-license.php.
from test_framework.test_framework import BitcoinTestFramework
from test_framework.util import *
class DecodeScriptTest(BitcoinTestFramework):
"""Tests decoding scripts via RPC command "decodescript"."""
def setup_chain(self):
print('Initializing test directory ' + self.options.tmpdir)
initialize_chain_clean(self.options.tmpdir, 1)
def setup_network(self, split=False):
self.nodes = start_nodes(1, self.options.tmpdir)
self.is_network_split = False
def decodescript_script_sig(self):
signature = '304502207fa7a6d1e0ee81132a269ad84e68d695483745cde8b541e3bf630749894e342a022100c1f7ab20e13e22fb95281a870f3dcf38d782e53023ee313d741ad0cfbc0c509001'
push_signature = '48' + signature
public_key = '03b0da749730dc9b4b1f4a14d6902877a92541f5368778853d9c4a0cb7802dcfb2'
push_public_key = '21' + public_key
# below are test cases for all of the standard transaction types
# 1) P2PK scriptSig
# the scriptSig of a public key scriptPubKey simply pushes a signature onto the stack
rpc_result = self.nodes[0].decodescript(push_signature)
assert_equal(signature, rpc_result['asm'])
# 2) P2PKH scriptSig
rpc_result = self.nodes[0].decodescript(push_signature + push_public_key)
assert_equal(signature + ' ' + public_key, rpc_result['asm'])
# 3) multisig scriptSig
# this also tests the leading portion of a P2SH multisig scriptSig
# OP_0 <A sig> <B sig>
rpc_result = self.nodes[0].decodescript('00' + push_signature + push_signature)
assert_equal('0 ' + signature + ' ' + signature, rpc_result['asm'])
# 4) P2SH scriptSig
# an empty P2SH redeemScript is valid and makes for a very simple test case.
# thus, such a spending scriptSig would just need to pass the outer redeemScript
# hash test and leave true on the top of the stack.
rpc_result = self.nodes[0].decodescript('5100')
assert_equal('1 0', rpc_result['asm'])
# 5) null data scriptSig - no such thing because null data scripts can not be spent.
# thus, no test case for that standard transaction type is here.
def decodescript_script_pub_key(self):
public_key = '03b0da749730dc9b4b1f4a14d6902877a92541f5368778853d9c4a0cb7802dcfb2'
push_public_key = '21' + public_key
public_key_hash = '11695b6cd891484c2d49ec5aa738ec2b2f897777'
push_public_key_hash = '14' + public_key_hash
# below are test cases for all of the standard transaction types
# 1) P2PK scriptPubKey
# <pubkey> OP_CHECKSIG
rpc_result = self.nodes[0].decodescript(push_public_key + 'ac')
assert_equal(public_key + ' OP_CHECKSIG', rpc_result['asm'])
# 2) P2PKH scriptPubKey
# OP_DUP OP_HASH160 <PubKeyHash> OP_EQUALVERIFY OP_CHECKSIG
rpc_result = self.nodes[0].decodescript('76a9' + push_public_key_hash + '88ac')
assert_equal('OP_DUP OP_HASH160 ' + public_key_hash + ' OP_EQUALVERIFY OP_CHECKSIG', rpc_result['asm'])
# 3) multisig scriptPubKey
# <m> <A pubkey> <B pubkey> <C pubkey> <n> OP_CHECKMULTISIG
# just imagine that the pub keys used below are different.
# for our purposes here it does not matter that they are the same even though it is unrealistic.
rpc_result = self.nodes[0].decodescript('52' + push_public_key + push_public_key + push_public_key + '53ae')
assert_equal('2 ' + public_key + ' ' + public_key + ' ' + public_key + ' 3 OP_CHECKMULTISIG', rpc_result['asm'])
# 4) P2SH scriptPubKey
# OP_HASH160 <Hash160(redeemScript)> OP_EQUAL.
# push_public_key_hash here should actually be the hash of a redeem script.
# but this works the same for purposes of this test.
rpc_result = self.nodes[0].decodescript('a9' + push_public_key_hash + '87')
assert_equal('OP_HASH160 ' + public_key_hash + ' OP_EQUAL', rpc_result['asm'])
# 5) null data scriptPubKey
# use a signature look-alike here to make sure that we do not decode random data as a signature.
# this matters if/when signature sighash decoding comes along.
# would want to make sure that no such decoding takes place in this case.
signature_imposter = '48304502207fa7a6d1e0ee81132a269ad84e68d695483745cde8b541e3bf630749894e342a022100c1f7ab20e13e22fb95281a870f3dcf38d782e53023ee313d741ad0cfbc0c509001'
# OP_RETURN <data>
rpc_result = self.nodes[0].decodescript('6a' + signature_imposter)
assert_equal('OP_RETURN ' + signature_imposter[2:], rpc_result['asm'])
# 6) a CLTV redeem script. redeem scripts are in-effect scriptPubKey scripts, so adding a test here.
# OP_NOP2 is also known as OP_CHECKLOCKTIMEVERIFY.
# just imagine that the pub keys used below are different.
# for our purposes here it does not matter that they are the same even though it is unrealistic.
#
# OP_IF
# <receiver-pubkey> OP_CHECKSIGVERIFY
# OP_ELSE
# <lock-until> OP_NOP2 OP_DROP
# OP_ENDIF
# <sender-pubkey> OP_CHECKSIG
#
# lock until block 500,000
rpc_result = self.nodes[0].decodescript('63' + push_public_key + 'ad670320a107b17568' + push_public_key + 'ac')
assert_equal('OP_IF ' + public_key + ' OP_CHECKSIGVERIFY OP_ELSE 500000 OP_NOP2 OP_DROP OP_ENDIF ' + public_key + ' OP_CHECKSIG', rpc_result['asm'])
def run_test(self):
self.decodescript_script_sig()
self.decodescript_script_pub_key()
if __name__ == '__main__':
DecodeScriptTest().main()