|
|
|
// Copyright (c) 2009-2010 Satoshi Nakamoto
|
|
|
|
// Copyright (c) 2009-2014 The Bitcoin Core developers
|
|
|
|
// Distributed under the MIT software license, see the accompanying
|
|
|
|
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
|
|
|
|
|
|
|
|
#include "random.h"
|
|
|
|
|
|
|
|
#include "support/cleanse.h"
|
|
|
|
#ifdef WIN32
|
|
|
|
#include "compat.h" // for Windows API
|
|
|
|
#endif
|
|
|
|
#include "serialize.h" // for begin_ptr(vec)
|
|
|
|
#include "util.h" // for LogPrint()
|
Split up util.cpp/h
Split up util.cpp/h into:
- string utilities (hex, base32, base64): no internal dependencies, no dependency on boost (apart from foreach)
- money utilities (parsesmoney, formatmoney)
- time utilities (gettime*, sleep, format date):
- and the rest (logging, argument parsing, config file parsing)
The latter is basically the environment and OS handling,
and is stripped of all utility functions, so we may want to
rename it to something else than util.cpp/h for clarity (Matt suggested
osinterface).
Breaks dependency of sha256.cpp on all the things pulled in by util.
10 years ago
|
|
|
#include "utilstrencodings.h" // for GetTime()
|
|
|
|
|
|
|
|
#include <limits>
|
|
|
|
|
|
|
|
#ifndef WIN32
|
|
|
|
#include <sys/time.h>
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#include <openssl/err.h>
|
|
|
|
#include <openssl/rand.h>
|
|
|
|
|
|
|
|
static inline int64_t GetPerformanceCounter()
|
|
|
|
{
|
|
|
|
int64_t nCounter = 0;
|
|
|
|
#ifdef WIN32
|
|
|
|
QueryPerformanceCounter((LARGE_INTEGER*)&nCounter);
|
|
|
|
#else
|
|
|
|
timeval t;
|
|
|
|
gettimeofday(&t, NULL);
|
|
|
|
nCounter = (int64_t)(t.tv_sec * 1000000 + t.tv_usec);
|
|
|
|
#endif
|
|
|
|
return nCounter;
|
|
|
|
}
|
|
|
|
|
|
|
|
void RandAddSeed()
|
|
|
|
{
|
|
|
|
// Seed with CPU performance counter
|
|
|
|
int64_t nCounter = GetPerformanceCounter();
|
|
|
|
RAND_add(&nCounter, sizeof(nCounter), 1.5);
|
|
|
|
memory_cleanse((void*)&nCounter, sizeof(nCounter));
|
|
|
|
}
|
|
|
|
|
|
|
|
void RandAddSeedPerfmon()
|
|
|
|
{
|
|
|
|
RandAddSeed();
|
|
|
|
|
|
|
|
#ifdef WIN32
|
|
|
|
// Don't need this on Linux, OpenSSL automatically uses /dev/urandom
|
|
|
|
// Seed with the entire set of perfmon data
|
|
|
|
|
|
|
|
// This can take up to 2 seconds, so only do it every 10 minutes
|
|
|
|
static int64_t nLastPerfmon;
|
|
|
|
if (GetTime() < nLastPerfmon + 10 * 60)
|
|
|
|
return;
|
|
|
|
nLastPerfmon = GetTime();
|
|
|
|
|
|
|
|
std::vector<unsigned char> vData(250000, 0);
|
|
|
|
long ret = 0;
|
|
|
|
unsigned long nSize = 0;
|
|
|
|
const size_t nMaxSize = 10000000; // Bail out at more than 10MB of performance data
|
|
|
|
while (true) {
|
|
|
|
nSize = vData.size();
|
|
|
|
ret = RegQueryValueExA(HKEY_PERFORMANCE_DATA, "Global", NULL, NULL, begin_ptr(vData), &nSize);
|
|
|
|
if (ret != ERROR_MORE_DATA || vData.size() >= nMaxSize)
|
|
|
|
break;
|
|
|
|
vData.resize(std::max((vData.size() * 3) / 2, nMaxSize)); // Grow size of buffer exponentially
|
|
|
|
}
|
|
|
|
RegCloseKey(HKEY_PERFORMANCE_DATA);
|
|
|
|
if (ret == ERROR_SUCCESS) {
|
|
|
|
RAND_add(begin_ptr(vData), nSize, nSize / 100.0);
|
|
|
|
memory_cleanse(begin_ptr(vData), nSize);
|
|
|
|
LogPrint("rand", "%s: %lu bytes\n", __func__, nSize);
|
|
|
|
} else {
|
|
|
|
static bool warned = false; // Warn only once
|
|
|
|
if (!warned) {
|
|
|
|
LogPrintf("%s: Warning: RegQueryValueExA(HKEY_PERFORMANCE_DATA) failed with code %i\n", __func__, ret);
|
|
|
|
warned = true;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
|
|
|
|
void GetRandBytes(unsigned char* buf, int num)
|
|
|
|
{
|
|
|
|
if (RAND_bytes(buf, num) != 1) {
|
|
|
|
LogPrintf("%s: OpenSSL RAND_bytes() failed with error: %s\n", __func__, ERR_error_string(ERR_get_error(), NULL));
|
|
|
|
assert(false);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
uint64_t GetRand(uint64_t nMax)
|
|
|
|
{
|
|
|
|
if (nMax == 0)
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
// The range of the random source must be a multiple of the modulus
|
|
|
|
// to give every possible output value an equal possibility
|
|
|
|
uint64_t nRange = (std::numeric_limits<uint64_t>::max() / nMax) * nMax;
|
|
|
|
uint64_t nRand = 0;
|
|
|
|
do {
|
|
|
|
GetRandBytes((unsigned char*)&nRand, sizeof(nRand));
|
|
|
|
} while (nRand >= nRange);
|
|
|
|
return (nRand % nMax);
|
|
|
|
}
|
|
|
|
|
|
|
|
int GetRandInt(int nMax)
|
|
|
|
{
|
|
|
|
return GetRand(nMax);
|
|
|
|
}
|
|
|
|
|
|
|
|
uint256 GetRandHash()
|
|
|
|
{
|
|
|
|
uint256 hash;
|
|
|
|
GetRandBytes((unsigned char*)&hash, sizeof(hash));
|
|
|
|
return hash;
|
|
|
|
}
|
|
|
|
|
|
|
|
uint32_t insecure_rand_Rz = 11;
|
|
|
|
uint32_t insecure_rand_Rw = 11;
|
|
|
|
void seed_insecure_rand(bool fDeterministic)
|
|
|
|
{
|
|
|
|
// The seed values have some unlikely fixed points which we avoid.
|
|
|
|
if (fDeterministic) {
|
|
|
|
insecure_rand_Rz = insecure_rand_Rw = 11;
|
|
|
|
} else {
|
|
|
|
uint32_t tmp;
|
|
|
|
do {
|
|
|
|
GetRandBytes((unsigned char*)&tmp, 4);
|
|
|
|
} while (tmp == 0 || tmp == 0x9068ffffU);
|
|
|
|
insecure_rand_Rz = tmp;
|
|
|
|
do {
|
|
|
|
GetRandBytes((unsigned char*)&tmp, 4);
|
|
|
|
} while (tmp == 0 || tmp == 0x464fffffU);
|
|
|
|
insecure_rand_Rw = tmp;
|
|
|
|
}
|
|
|
|
}
|