Kevacoin source tree
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

719 lines
22 KiB

// Copyright (c) 2011 The LevelDB Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file. See the AUTHORS file for names of contributors.
#include <stdio.h>
#include <stdlib.h>
#include <sqlite3.h>
#include "util/histogram.h"
#include "util/random.h"
#include "util/testutil.h"
// Comma-separated list of operations to run in the specified order
// Actual benchmarks:
//
// fillseq -- write N values in sequential key order in async mode
// fillseqsync -- write N/100 values in sequential key order in sync mode
// fillseqbatch -- batch write N values in sequential key order in async mode
// fillrandom -- write N values in random key order in async mode
// fillrandsync -- write N/100 values in random key order in sync mode
// fillrandbatch -- batch write N values in sequential key order in async mode
// overwrite -- overwrite N values in random key order in async mode
// fillrand100K -- write N/1000 100K values in random order in async mode
// fillseq100K -- write N/1000 100K values in sequential order in async mode
// readseq -- read N times sequentially
// readrandom -- read N times in random order
// readrand100K -- read N/1000 100K values in sequential order in async mode
static const char* FLAGS_benchmarks =
"fillseq,"
"fillseqsync,"
"fillseqbatch,"
"fillrandom,"
"fillrandsync,"
"fillrandbatch,"
"overwrite,"
"overwritebatch,"
"readrandom,"
"readseq,"
"fillrand100K,"
"fillseq100K,"
"readseq,"
"readrand100K,"
;
// Number of key/values to place in database
static int FLAGS_num = 1000000;
// Number of read operations to do. If negative, do FLAGS_num reads.
static int FLAGS_reads = -1;
// Size of each value
static int FLAGS_value_size = 100;
// Print histogram of operation timings
static bool FLAGS_histogram = false;
// Arrange to generate values that shrink to this fraction of
// their original size after compression
static double FLAGS_compression_ratio = 0.5;
// Page size. Default 1 KB.
static int FLAGS_page_size = 1024;
// Number of pages.
// Default cache size = FLAGS_page_size * FLAGS_num_pages = 4 MB.
static int FLAGS_num_pages = 4096;
// If true, do not destroy the existing database. If you set this
// flag and also specify a benchmark that wants a fresh database, that
// benchmark will fail.
static bool FLAGS_use_existing_db = false;
// If true, we allow batch writes to occur
static bool FLAGS_transaction = true;
// If true, we enable Write-Ahead Logging
static bool FLAGS_WAL_enabled = true;
// Use the db with the following name.
static const char* FLAGS_db = NULL;
inline
static void ExecErrorCheck(int status, char *err_msg) {
if (status != SQLITE_OK) {
fprintf(stderr, "SQL error: %s\n", err_msg);
sqlite3_free(err_msg);
exit(1);
}
}
inline
static void StepErrorCheck(int status) {
if (status != SQLITE_DONE) {
fprintf(stderr, "SQL step error: status = %d\n", status);
exit(1);
}
}
inline
static void ErrorCheck(int status) {
if (status != SQLITE_OK) {
fprintf(stderr, "sqlite3 error: status = %d\n", status);
exit(1);
}
}
inline
static void WalCheckpoint(sqlite3* db_) {
// Flush all writes to disk
if (FLAGS_WAL_enabled) {
sqlite3_wal_checkpoint_v2(db_, NULL, SQLITE_CHECKPOINT_FULL, NULL, NULL);
}
}
namespace leveldb {
// Helper for quickly generating random data.
namespace {
class RandomGenerator {
private:
std::string data_;
int pos_;
public:
RandomGenerator() {
// We use a limited amount of data over and over again and ensure
// that it is larger than the compression window (32KB), and also
// large enough to serve all typical value sizes we want to write.
Random rnd(301);
std::string piece;
while (data_.size() < 1048576) {
// Add a short fragment that is as compressible as specified
// by FLAGS_compression_ratio.
test::CompressibleString(&rnd, FLAGS_compression_ratio, 100, &piece);
data_.append(piece);
}
pos_ = 0;
}
Slice Generate(int len) {
if (pos_ + len > data_.size()) {
pos_ = 0;
assert(len < data_.size());
}
pos_ += len;
return Slice(data_.data() + pos_ - len, len);
}
};
static Slice TrimSpace(Slice s) {
int start = 0;
while (start < s.size() && isspace(s[start])) {
start++;
}
int limit = s.size();
while (limit > start && isspace(s[limit-1])) {
limit--;
}
return Slice(s.data() + start, limit - start);
}
} // namespace
class Benchmark {
private:
sqlite3* db_;
int db_num_;
int num_;
int reads_;
double start_;
double last_op_finish_;
int64_t bytes_;
std::string message_;
Histogram hist_;
RandomGenerator gen_;
Random rand_;
// State kept for progress messages
int done_;
int next_report_; // When to report next
void PrintHeader() {
const int kKeySize = 16;
PrintEnvironment();
fprintf(stdout, "Keys: %d bytes each\n", kKeySize);
fprintf(stdout, "Values: %d bytes each\n", FLAGS_value_size);
fprintf(stdout, "Entries: %d\n", num_);
fprintf(stdout, "RawSize: %.1f MB (estimated)\n",
((static_cast<int64_t>(kKeySize + FLAGS_value_size) * num_)
/ 1048576.0));
PrintWarnings();
fprintf(stdout, "------------------------------------------------\n");
}
void PrintWarnings() {
#if defined(__GNUC__) && !defined(__OPTIMIZE__)
fprintf(stdout,
"WARNING: Optimization is disabled: benchmarks unnecessarily slow\n"
);
#endif
#ifndef NDEBUG
fprintf(stdout,
"WARNING: Assertions are enabled; benchmarks unnecessarily slow\n");
#endif
}
void PrintEnvironment() {
fprintf(stderr, "SQLite: version %s\n", SQLITE_VERSION);
#if defined(__linux)
time_t now = time(NULL);
fprintf(stderr, "Date: %s", ctime(&now)); // ctime() adds newline
FILE* cpuinfo = fopen("/proc/cpuinfo", "r");
if (cpuinfo != NULL) {
char line[1000];
int num_cpus = 0;
std::string cpu_type;
std::string cache_size;
while (fgets(line, sizeof(line), cpuinfo) != NULL) {
const char* sep = strchr(line, ':');
if (sep == NULL) {
continue;
}
Slice key = TrimSpace(Slice(line, sep - 1 - line));
Slice val = TrimSpace(Slice(sep + 1));
if (key == "model name") {
++num_cpus;
cpu_type = val.ToString();
} else if (key == "cache size") {
cache_size = val.ToString();
}
}
fclose(cpuinfo);
fprintf(stderr, "CPU: %d * %s\n", num_cpus, cpu_type.c_str());
fprintf(stderr, "CPUCache: %s\n", cache_size.c_str());
}
#endif
}
void Start() {
start_ = Env::Default()->NowMicros() * 1e-6;
bytes_ = 0;
message_.clear();
last_op_finish_ = start_;
hist_.Clear();
done_ = 0;
next_report_ = 100;
}
void FinishedSingleOp() {
if (FLAGS_histogram) {
double now = Env::Default()->NowMicros() * 1e-6;
double micros = (now - last_op_finish_) * 1e6;
hist_.Add(micros);
if (micros > 20000) {
fprintf(stderr, "long op: %.1f micros%30s\r", micros, "");
fflush(stderr);
}
last_op_finish_ = now;
}
done_++;
if (done_ >= next_report_) {
if (next_report_ < 1000) next_report_ += 100;
else if (next_report_ < 5000) next_report_ += 500;
else if (next_report_ < 10000) next_report_ += 1000;
else if (next_report_ < 50000) next_report_ += 5000;
else if (next_report_ < 100000) next_report_ += 10000;
else if (next_report_ < 500000) next_report_ += 50000;
else next_report_ += 100000;
fprintf(stderr, "... finished %d ops%30s\r", done_, "");
fflush(stderr);
}
}
void Stop(const Slice& name) {
double finish = Env::Default()->NowMicros() * 1e-6;
// Pretend at least one op was done in case we are running a benchmark
// that does not call FinishedSingleOp().
if (done_ < 1) done_ = 1;
if (bytes_ > 0) {
char rate[100];
snprintf(rate, sizeof(rate), "%6.1f MB/s",
(bytes_ / 1048576.0) / (finish - start_));
if (!message_.empty()) {
message_ = std::string(rate) + " " + message_;
} else {
message_ = rate;
}
}
fprintf(stdout, "%-12s : %11.3f micros/op;%s%s\n",
name.ToString().c_str(),
(finish - start_) * 1e6 / done_,
(message_.empty() ? "" : " "),
message_.c_str());
if (FLAGS_histogram) {
fprintf(stdout, "Microseconds per op:\n%s\n", hist_.ToString().c_str());
}
fflush(stdout);
}
public:
enum Order {
SEQUENTIAL,
RANDOM
};
enum DBState {
FRESH,
EXISTING
};
Benchmark()
: db_(NULL),
db_num_(0),
num_(FLAGS_num),
reads_(FLAGS_reads < 0 ? FLAGS_num : FLAGS_reads),
bytes_(0),
rand_(301) {
std::vector<std::string> files;
std::string test_dir;
Env::Default()->GetTestDirectory(&test_dir);
Env::Default()->GetChildren(test_dir, &files);
if (!FLAGS_use_existing_db) {
for (int i = 0; i < files.size(); i++) {
if (Slice(files[i]).starts_with("dbbench_sqlite3")) {
std::string file_name(test_dir);
file_name += "/";
file_name += files[i];
Env::Default()->DeleteFile(file_name.c_str());
}
}
}
}
~Benchmark() {
int status = sqlite3_close(db_);
ErrorCheck(status);
}
void Run() {
PrintHeader();
Open();
const char* benchmarks = FLAGS_benchmarks;
while (benchmarks != NULL) {
const char* sep = strchr(benchmarks, ',');
Slice name;
if (sep == NULL) {
name = benchmarks;
benchmarks = NULL;
} else {
name = Slice(benchmarks, sep - benchmarks);
benchmarks = sep + 1;
}
bytes_ = 0;
Start();
bool known = true;
bool write_sync = false;
if (name == Slice("fillseq")) {
Write(write_sync, SEQUENTIAL, FRESH, num_, FLAGS_value_size, 1);
WalCheckpoint(db_);
} else if (name == Slice("fillseqbatch")) {
Write(write_sync, SEQUENTIAL, FRESH, num_, FLAGS_value_size, 1000);
WalCheckpoint(db_);
} else if (name == Slice("fillrandom")) {
Write(write_sync, RANDOM, FRESH, num_, FLAGS_value_size, 1);
WalCheckpoint(db_);
} else if (name == Slice("fillrandbatch")) {
Write(write_sync, RANDOM, FRESH, num_, FLAGS_value_size, 1000);
WalCheckpoint(db_);
} else if (name == Slice("overwrite")) {
Write(write_sync, RANDOM, EXISTING, num_, FLAGS_value_size, 1);
WalCheckpoint(db_);
} else if (name == Slice("overwritebatch")) {
Write(write_sync, RANDOM, EXISTING, num_, FLAGS_value_size, 1000);
WalCheckpoint(db_);
} else if (name == Slice("fillrandsync")) {
write_sync = true;
Write(write_sync, RANDOM, FRESH, num_ / 100, FLAGS_value_size, 1);
WalCheckpoint(db_);
} else if (name == Slice("fillseqsync")) {
write_sync = true;
Write(write_sync, SEQUENTIAL, FRESH, num_ / 100, FLAGS_value_size, 1);
WalCheckpoint(db_);
} else if (name == Slice("fillrand100K")) {
Write(write_sync, RANDOM, FRESH, num_ / 1000, 100 * 1000, 1);
WalCheckpoint(db_);
} else if (name == Slice("fillseq100K")) {
Write(write_sync, SEQUENTIAL, FRESH, num_ / 1000, 100 * 1000, 1);
WalCheckpoint(db_);
} else if (name == Slice("readseq")) {
ReadSequential();
} else if (name == Slice("readrandom")) {
Read(RANDOM, 1);
} else if (name == Slice("readrand100K")) {
int n = reads_;
reads_ /= 1000;
Read(RANDOM, 1);
reads_ = n;
} else {
known = false;
if (name != Slice()) { // No error message for empty name
fprintf(stderr, "unknown benchmark '%s'\n", name.ToString().c_str());
}
}
if (known) {
Stop(name);
}
}
}
void Open() {
assert(db_ == NULL);
int status;
char file_name[100];
char* err_msg = NULL;
db_num_++;
// Open database
std::string tmp_dir;
Env::Default()->GetTestDirectory(&tmp_dir);
snprintf(file_name, sizeof(file_name),
"%s/dbbench_sqlite3-%d.db",
tmp_dir.c_str(),
db_num_);
status = sqlite3_open(file_name, &db_);
if (status) {
fprintf(stderr, "open error: %s\n", sqlite3_errmsg(db_));
exit(1);
}
// Change SQLite cache size
char cache_size[100];
snprintf(cache_size, sizeof(cache_size), "PRAGMA cache_size = %d",
FLAGS_num_pages);
status = sqlite3_exec(db_, cache_size, NULL, NULL, &err_msg);
ExecErrorCheck(status, err_msg);
// FLAGS_page_size is defaulted to 1024
if (FLAGS_page_size != 1024) {
char page_size[100];
snprintf(page_size, sizeof(page_size), "PRAGMA page_size = %d",
FLAGS_page_size);
status = sqlite3_exec(db_, page_size, NULL, NULL, &err_msg);
ExecErrorCheck(status, err_msg);
}
// Change journal mode to WAL if WAL enabled flag is on
if (FLAGS_WAL_enabled) {
std::string WAL_stmt = "PRAGMA journal_mode = WAL";
// LevelDB's default cache size is a combined 4 MB
std::string WAL_checkpoint = "PRAGMA wal_autocheckpoint = 4096";
status = sqlite3_exec(db_, WAL_stmt.c_str(), NULL, NULL, &err_msg);
ExecErrorCheck(status, err_msg);
status = sqlite3_exec(db_, WAL_checkpoint.c_str(), NULL, NULL, &err_msg);
ExecErrorCheck(status, err_msg);
}
// Change locking mode to exclusive and create tables/index for database
std::string locking_stmt = "PRAGMA locking_mode = EXCLUSIVE";
std::string create_stmt =
"CREATE TABLE test (key blob, value blob, PRIMARY KEY(key))";
std::string stmt_array[] = { locking_stmt, create_stmt };
int stmt_array_length = sizeof(stmt_array) / sizeof(std::string);
for (int i = 0; i < stmt_array_length; i++) {
status = sqlite3_exec(db_, stmt_array[i].c_str(), NULL, NULL, &err_msg);
ExecErrorCheck(status, err_msg);
}
}
void Write(bool write_sync, Order order, DBState state,
int num_entries, int value_size, int entries_per_batch) {
// Create new database if state == FRESH
if (state == FRESH) {
if (FLAGS_use_existing_db) {
message_ = "skipping (--use_existing_db is true)";
return;
}
sqlite3_close(db_);
db_ = NULL;
Open();
Start();
}
if (num_entries != num_) {
char msg[100];
snprintf(msg, sizeof(msg), "(%d ops)", num_entries);
message_ = msg;
}
char* err_msg = NULL;
int status;
sqlite3_stmt *replace_stmt, *begin_trans_stmt, *end_trans_stmt;
std::string replace_str = "REPLACE INTO test (key, value) VALUES (?, ?)";
std::string begin_trans_str = "BEGIN TRANSACTION;";
std::string end_trans_str = "END TRANSACTION;";
// Check for synchronous flag in options
std::string sync_stmt = (write_sync) ? "PRAGMA synchronous = FULL" :
"PRAGMA synchronous = OFF";
status = sqlite3_exec(db_, sync_stmt.c_str(), NULL, NULL, &err_msg);
ExecErrorCheck(status, err_msg);
// Preparing sqlite3 statements
status = sqlite3_prepare_v2(db_, replace_str.c_str(), -1,
&replace_stmt, NULL);
ErrorCheck(status);
status = sqlite3_prepare_v2(db_, begin_trans_str.c_str(), -1,
&begin_trans_stmt, NULL);
ErrorCheck(status);
status = sqlite3_prepare_v2(db_, end_trans_str.c_str(), -1,
&end_trans_stmt, NULL);
ErrorCheck(status);
bool transaction = (entries_per_batch > 1);
for (int i = 0; i < num_entries; i += entries_per_batch) {
// Begin write transaction
if (FLAGS_transaction && transaction) {
status = sqlite3_step(begin_trans_stmt);
StepErrorCheck(status);
status = sqlite3_reset(begin_trans_stmt);
ErrorCheck(status);
}
// Create and execute SQL statements
for (int j = 0; j < entries_per_batch; j++) {
const char* value = gen_.Generate(value_size).data();
// Create values for key-value pair
const int k = (order == SEQUENTIAL) ? i + j :
(rand_.Next() % num_entries);
char key[100];
snprintf(key, sizeof(key), "%016d", k);
// Bind KV values into replace_stmt
status = sqlite3_bind_blob(replace_stmt, 1, key, 16, SQLITE_STATIC);
ErrorCheck(status);
status = sqlite3_bind_blob(replace_stmt, 2, value,
value_size, SQLITE_STATIC);
ErrorCheck(status);
// Execute replace_stmt
bytes_ += value_size + strlen(key);
status = sqlite3_step(replace_stmt);
StepErrorCheck(status);
// Reset SQLite statement for another use
status = sqlite3_clear_bindings(replace_stmt);
ErrorCheck(status);
status = sqlite3_reset(replace_stmt);
ErrorCheck(status);
FinishedSingleOp();
}
// End write transaction
if (FLAGS_transaction && transaction) {
status = sqlite3_step(end_trans_stmt);
StepErrorCheck(status);
status = sqlite3_reset(end_trans_stmt);
ErrorCheck(status);
}
}
status = sqlite3_finalize(replace_stmt);
ErrorCheck(status);
status = sqlite3_finalize(begin_trans_stmt);
ErrorCheck(status);
status = sqlite3_finalize(end_trans_stmt);
ErrorCheck(status);
}
void Read(Order order, int entries_per_batch) {
int status;
sqlite3_stmt *read_stmt, *begin_trans_stmt, *end_trans_stmt;
std::string read_str = "SELECT * FROM test WHERE key = ?";
std::string begin_trans_str = "BEGIN TRANSACTION;";
std::string end_trans_str = "END TRANSACTION;";
// Preparing sqlite3 statements
status = sqlite3_prepare_v2(db_, begin_trans_str.c_str(), -1,
&begin_trans_stmt, NULL);
ErrorCheck(status);
status = sqlite3_prepare_v2(db_, end_trans_str.c_str(), -1,
&end_trans_stmt, NULL);
ErrorCheck(status);
status = sqlite3_prepare_v2(db_, read_str.c_str(), -1, &read_stmt, NULL);
ErrorCheck(status);
bool transaction = (entries_per_batch > 1);
for (int i = 0; i < reads_; i += entries_per_batch) {
// Begin read transaction
if (FLAGS_transaction && transaction) {
status = sqlite3_step(begin_trans_stmt);
StepErrorCheck(status);
status = sqlite3_reset(begin_trans_stmt);
ErrorCheck(status);
}
// Create and execute SQL statements
for (int j = 0; j < entries_per_batch; j++) {
// Create key value
char key[100];
int k = (order == SEQUENTIAL) ? i + j : (rand_.Next() % reads_);
snprintf(key, sizeof(key), "%016d", k);
// Bind key value into read_stmt
status = sqlite3_bind_blob(read_stmt, 1, key, 16, SQLITE_STATIC);
ErrorCheck(status);
// Execute read statement
while ((status = sqlite3_step(read_stmt)) == SQLITE_ROW) {}
StepErrorCheck(status);
// Reset SQLite statement for another use
status = sqlite3_clear_bindings(read_stmt);
ErrorCheck(status);
status = sqlite3_reset(read_stmt);
ErrorCheck(status);
FinishedSingleOp();
}
// End read transaction
if (FLAGS_transaction && transaction) {
status = sqlite3_step(end_trans_stmt);
StepErrorCheck(status);
status = sqlite3_reset(end_trans_stmt);
ErrorCheck(status);
}
}
status = sqlite3_finalize(read_stmt);
ErrorCheck(status);
status = sqlite3_finalize(begin_trans_stmt);
ErrorCheck(status);
status = sqlite3_finalize(end_trans_stmt);
ErrorCheck(status);
}
void ReadSequential() {
int status;
sqlite3_stmt *pStmt;
std::string read_str = "SELECT * FROM test ORDER BY key";
status = sqlite3_prepare_v2(db_, read_str.c_str(), -1, &pStmt, NULL);
ErrorCheck(status);
for (int i = 0; i < reads_ && SQLITE_ROW == sqlite3_step(pStmt); i++) {
bytes_ += sqlite3_column_bytes(pStmt, 1) + sqlite3_column_bytes(pStmt, 2);
FinishedSingleOp();
}
status = sqlite3_finalize(pStmt);
ErrorCheck(status);
}
};
} // namespace leveldb
int main(int argc, char** argv) {
std::string default_db_path;
for (int i = 1; i < argc; i++) {
double d;
int n;
char junk;
if (leveldb::Slice(argv[i]).starts_with("--benchmarks=")) {
FLAGS_benchmarks = argv[i] + strlen("--benchmarks=");
} else if (sscanf(argv[i], "--histogram=%d%c", &n, &junk) == 1 &&
(n == 0 || n == 1)) {
FLAGS_histogram = n;
} else if (sscanf(argv[i], "--compression_ratio=%lf%c", &d, &junk) == 1) {
FLAGS_compression_ratio = d;
} else if (sscanf(argv[i], "--use_existing_db=%d%c", &n, &junk) == 1 &&
(n == 0 || n == 1)) {
FLAGS_use_existing_db = n;
} else if (sscanf(argv[i], "--num=%d%c", &n, &junk) == 1) {
FLAGS_num = n;
} else if (sscanf(argv[i], "--reads=%d%c", &n, &junk) == 1) {
FLAGS_reads = n;
} else if (sscanf(argv[i], "--value_size=%d%c", &n, &junk) == 1) {
FLAGS_value_size = n;
} else if (leveldb::Slice(argv[i]) == leveldb::Slice("--no_transaction")) {
FLAGS_transaction = false;
} else if (sscanf(argv[i], "--page_size=%d%c", &n, &junk) == 1) {
FLAGS_page_size = n;
} else if (sscanf(argv[i], "--num_pages=%d%c", &n, &junk) == 1) {
FLAGS_num_pages = n;
} else if (sscanf(argv[i], "--WAL_enabled=%d%c", &n, &junk) == 1 &&
(n == 0 || n == 1)) {
FLAGS_WAL_enabled = n;
} else if (strncmp(argv[i], "--db=", 5) == 0) {
FLAGS_db = argv[i] + 5;
} else {
fprintf(stderr, "Invalid flag '%s'\n", argv[i]);
exit(1);
}
}
// Choose a location for the test database if none given with --db=<path>
if (FLAGS_db == NULL) {
leveldb::Env::Default()->GetTestDirectory(&default_db_path);
default_db_path += "/dbbench";
FLAGS_db = default_db_path.c_str();
}
leveldb::Benchmark benchmark;
benchmark.Run();
return 0;
}