mirror of
https://github.com/nillerusr/source-engine.git
synced 2025-01-12 08:08:06 +00:00
698 lines
20 KiB
C++
698 lines
20 KiB
C++
//===== Copyright (c) 1996-2005, Valve Corporation, All rights reserved. ======//
|
|
//
|
|
// Purpose:
|
|
//
|
|
// $NoKeywords: $
|
|
//=============================================================================//
|
|
#include "pch_tier0.h"
|
|
|
|
#if defined(_WIN32) && !defined(_X360)
|
|
#define WINDOWS_LEAN_AND_MEAN
|
|
#include <windows.h>
|
|
#include "cputopology.h"
|
|
#elif defined( PLATFORM_OSX )
|
|
#include <sys/sysctl.h>
|
|
#endif
|
|
|
|
#ifndef _PS3
|
|
#include "tier0_strtools.h"
|
|
#endif
|
|
|
|
//#include "tier1/strtools.h" // this is included for the definition of V_isspace()
|
|
#ifdef PLATFORM_WINDOWS_PC
|
|
#include <intrin.h>
|
|
#endif
|
|
|
|
// NOTE: This has to be the last file included!
|
|
#include "tier0/memdbgon.h"
|
|
|
|
const tchar* GetProcessorVendorId();
|
|
|
|
static bool cpuid(uint32 function, uint32& out_eax, uint32& out_ebx, uint32& out_ecx, uint32& out_edx)
|
|
{
|
|
#if defined( _X360 ) || defined( _PS3 )
|
|
return false;
|
|
#elif defined(GNUC)
|
|
asm("mov %%ebx, %%esi\n\t"
|
|
"cpuid\n\t"
|
|
"xchg %%esi, %%ebx"
|
|
: "=a" (out_eax),
|
|
"=S" (out_ebx),
|
|
"=c" (out_ecx),
|
|
"=d" (out_edx)
|
|
: "a" (function)
|
|
);
|
|
return true;
|
|
#elif defined(_WIN64)
|
|
int pCPUInfo[4];
|
|
__cpuid( pCPUInfo, (int)function );
|
|
out_eax = pCPUInfo[0];
|
|
out_ebx = pCPUInfo[1];
|
|
out_ecx = pCPUInfo[2];
|
|
out_edx = pCPUInfo[3];
|
|
return false;
|
|
#else
|
|
bool retval = true;
|
|
uint32 local_eax, local_ebx, local_ecx, local_edx;
|
|
_asm pushad;
|
|
|
|
__try
|
|
{
|
|
_asm
|
|
{
|
|
xor edx, edx // Clue the compiler that EDX & others is about to be used.
|
|
xor ecx, ecx
|
|
xor ebx, ebx // <Sergiy> Note: if I don't zero these out, cpuid sometimes won't work, I didn't find out why yet
|
|
mov eax, function // set up CPUID to return processor version and features
|
|
// 0 = vendor string, 1 = version info, 2 = cache info
|
|
cpuid // code bytes = 0fh, 0a2h
|
|
mov local_eax, eax // features returned in eax
|
|
mov local_ebx, ebx // features returned in ebx
|
|
mov local_ecx, ecx // features returned in ecx
|
|
mov local_edx, edx // features returned in edx
|
|
}
|
|
}
|
|
__except(EXCEPTION_EXECUTE_HANDLER)
|
|
{
|
|
retval = false;
|
|
}
|
|
|
|
out_eax = local_eax;
|
|
out_ebx = local_ebx;
|
|
out_ecx = local_ecx;
|
|
out_edx = local_edx;
|
|
|
|
_asm popad
|
|
|
|
return retval;
|
|
#endif
|
|
}
|
|
|
|
static bool CheckMMXTechnology(void)
|
|
{
|
|
#if defined( _X360 ) || defined( _PS3 )
|
|
return true;
|
|
#else
|
|
uint32 eax,ebx,edx,unused;
|
|
if ( !cpuid(1,eax,ebx,unused,edx) )
|
|
return false;
|
|
|
|
return ( edx & 0x800000 ) != 0;
|
|
#endif
|
|
}
|
|
|
|
//-----------------------------------------------------------------------------
|
|
// Purpose: This is a bit of a hack because it appears
|
|
// Output : Returns true on success, false on failure.
|
|
//-----------------------------------------------------------------------------
|
|
static bool IsWin98OrOlder()
|
|
{
|
|
#if defined( _X360 ) || defined( _PS3 ) || defined( POSIX )
|
|
return false;
|
|
#else
|
|
bool retval = false;
|
|
|
|
OSVERSIONINFOEX osvi;
|
|
ZeroMemory(&osvi, sizeof(OSVERSIONINFOEX));
|
|
osvi.dwOSVersionInfoSize = sizeof(OSVERSIONINFOEX);
|
|
|
|
BOOL bOsVersionInfoEx = GetVersionEx ((OSVERSIONINFO *) &osvi);
|
|
if( !bOsVersionInfoEx )
|
|
{
|
|
// If OSVERSIONINFOEX doesn't work, try OSVERSIONINFO.
|
|
|
|
osvi.dwOSVersionInfoSize = sizeof (OSVERSIONINFO);
|
|
if ( !GetVersionEx ( (OSVERSIONINFO *) &osvi) )
|
|
{
|
|
Error( _T("IsWin98OrOlder: Unable to get OS version information") );
|
|
}
|
|
}
|
|
|
|
switch (osvi.dwPlatformId)
|
|
{
|
|
case VER_PLATFORM_WIN32_NT:
|
|
// NT, XP, Win2K, etc. all OK for SSE
|
|
break;
|
|
case VER_PLATFORM_WIN32_WINDOWS:
|
|
// Win95, 98, Me can't do SSE
|
|
retval = true;
|
|
break;
|
|
case VER_PLATFORM_WIN32s:
|
|
// Can't really run this way I don't think...
|
|
retval = true;
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
return retval;
|
|
#endif
|
|
}
|
|
|
|
|
|
static bool CheckSSETechnology(void)
|
|
{
|
|
#if defined( _X360 ) || defined( _PS3 )
|
|
return true;
|
|
#else
|
|
if ( IsWin98OrOlder() )
|
|
{
|
|
return false;
|
|
}
|
|
|
|
uint32 eax,ebx,edx,unused;
|
|
if ( !cpuid(1,eax,ebx,unused,edx) )
|
|
{
|
|
return false;
|
|
}
|
|
|
|
return ( edx & 0x2000000L ) != 0;
|
|
#endif
|
|
}
|
|
|
|
static bool CheckSSE2Technology(void)
|
|
{
|
|
#if defined( _X360 ) || defined( _PS3 )
|
|
return false;
|
|
#else
|
|
uint32 eax,ebx,edx,unused;
|
|
if ( !cpuid(1,eax,ebx,unused,edx) )
|
|
return false;
|
|
|
|
return ( edx & 0x04000000 ) != 0;
|
|
#endif
|
|
}
|
|
|
|
bool CheckSSE3Technology(void)
|
|
{
|
|
#if defined( _X360 ) || defined( _PS3 )
|
|
return false;
|
|
#else
|
|
uint32 eax,ebx,edx,ecx;
|
|
if( !cpuid(1,eax,ebx,ecx,edx) )
|
|
return false;
|
|
|
|
return ( ecx & 0x00000001 ) != 0; // bit 1 of ECX
|
|
#endif
|
|
}
|
|
|
|
bool CheckSSSE3Technology(void)
|
|
{
|
|
#if defined( _X360 ) || defined( _PS3 )
|
|
return false;
|
|
#else
|
|
// SSSE 3 is implemented by both Intel and AMD
|
|
// detection is done the same way for both vendors
|
|
uint32 eax,ebx,edx,ecx;
|
|
if( !cpuid(1,eax,ebx,ecx,edx) )
|
|
return false;
|
|
|
|
return ( ecx & ( 1 << 9 ) ) != 0; // bit 9 of ECX
|
|
#endif
|
|
}
|
|
|
|
bool CheckSSE41Technology(void)
|
|
{
|
|
#if defined( _X360 ) || defined( _PS3 )
|
|
return false;
|
|
#else
|
|
// SSE 4.1 is implemented by both Intel and AMD
|
|
// detection is done the same way for both vendors
|
|
|
|
uint32 eax,ebx,edx,ecx;
|
|
if( !cpuid(1,eax,ebx,ecx,edx) )
|
|
return false;
|
|
|
|
return ( ecx & ( 1 << 19 ) ) != 0; // bit 19 of ECX
|
|
#endif
|
|
}
|
|
|
|
bool CheckSSE42Technology(void)
|
|
{
|
|
#if defined( _X360 ) || defined( _PS3 )
|
|
return false;
|
|
#else
|
|
// SSE4.2 is an Intel-only feature
|
|
|
|
const char *pchVendor = GetProcessorVendorId();
|
|
if ( 0 != V_tier0_stricmp( pchVendor, "GenuineIntel" ) )
|
|
return false;
|
|
|
|
uint32 eax,ebx,edx,ecx;
|
|
if( !cpuid(1,eax,ebx,ecx,edx) )
|
|
return false;
|
|
|
|
return ( ecx & ( 1 << 20 ) ) != 0; // bit 20 of ECX
|
|
#endif
|
|
}
|
|
|
|
|
|
bool CheckSSE4aTechnology( void )
|
|
{
|
|
#if defined( _X360 ) || defined( _PS3 )
|
|
return false;
|
|
#else
|
|
// SSE 4a is an AMD-only feature
|
|
|
|
const char *pchVendor = GetProcessorVendorId();
|
|
if ( 0 != V_tier0_stricmp( pchVendor, "AuthenticAMD" ) )
|
|
return false;
|
|
|
|
uint32 eax,ebx,edx,ecx;
|
|
if( !cpuid( 0x80000001,eax,ebx,ecx,edx) )
|
|
return false;
|
|
|
|
return ( ecx & ( 1 << 6 ) ) != 0; // bit 6 of ECX
|
|
#endif
|
|
}
|
|
|
|
|
|
static bool Check3DNowTechnology(void)
|
|
{
|
|
#if defined( _X360 ) || defined( _PS3 )
|
|
return false;
|
|
#else
|
|
uint32 eax, unused;
|
|
if ( !cpuid(0x80000000,eax,unused,unused,unused) )
|
|
return false;
|
|
|
|
if ( eax > 0x80000000L )
|
|
{
|
|
if ( !cpuid(0x80000001,unused,unused,unused,eax) )
|
|
return false;
|
|
|
|
return ( eax & 1<<31 ) != 0;
|
|
}
|
|
return false;
|
|
#endif
|
|
}
|
|
|
|
static bool CheckCMOVTechnology()
|
|
{
|
|
#if defined( _X360 ) || defined( _PS3 )
|
|
return false;
|
|
#else
|
|
uint32 eax,ebx,edx,unused;
|
|
if ( !cpuid(1,eax,ebx,unused,edx) )
|
|
return false;
|
|
|
|
return ( edx & (1<<15) ) != 0;
|
|
#endif
|
|
}
|
|
|
|
static bool CheckFCMOVTechnology(void)
|
|
{
|
|
#if defined( _X360 ) || defined( _PS3 )
|
|
return false;
|
|
#else
|
|
uint32 eax,ebx,edx,unused;
|
|
if ( !cpuid(1,eax,ebx,unused,edx) )
|
|
return false;
|
|
|
|
return ( edx & (1<<16) ) != 0;
|
|
#endif
|
|
}
|
|
|
|
static bool CheckRDTSCTechnology(void)
|
|
{
|
|
#if defined( _X360 ) || defined( _PS3 )
|
|
return false;
|
|
#else
|
|
uint32 eax,ebx,edx,unused;
|
|
if ( !cpuid(1,eax,ebx,unused,edx) )
|
|
return false;
|
|
|
|
return ( edx & 0x10 ) != 0;
|
|
#endif
|
|
}
|
|
|
|
// Return the Processor's vendor identification string, or "Generic_x86" if it doesn't exist on this CPU
|
|
const tchar* GetProcessorVendorId()
|
|
{
|
|
#if defined( _X360 ) || defined( _PS3 )
|
|
return "PPC";
|
|
#else
|
|
uint32 unused, VendorIDRegisters[3];
|
|
|
|
static tchar VendorID[13];
|
|
|
|
memset( VendorID, 0, sizeof(VendorID) );
|
|
if ( !cpuid(0,unused, VendorIDRegisters[0], VendorIDRegisters[2], VendorIDRegisters[1] ) )
|
|
{
|
|
if ( IsPC() )
|
|
{
|
|
_tcscpy( VendorID, _T( "Generic_x86" ) );
|
|
}
|
|
else if ( IsX360() )
|
|
{
|
|
_tcscpy( VendorID, _T( "PowerPC" ) );
|
|
}
|
|
}
|
|
else
|
|
{
|
|
memcpy( VendorID+0, &(VendorIDRegisters[0]), sizeof( VendorIDRegisters[0] ) );
|
|
memcpy( VendorID+4, &(VendorIDRegisters[1]), sizeof( VendorIDRegisters[1] ) );
|
|
memcpy( VendorID+8, &(VendorIDRegisters[2]), sizeof( VendorIDRegisters[2] ) );
|
|
}
|
|
|
|
return VendorID;
|
|
#endif
|
|
}
|
|
|
|
// Returns non-zero if Hyper-Threading Technology is supported on the processors and zero if not.
|
|
// If it's supported, it does not mean that it's been enabled. So we test another flag to see if it's enabled
|
|
// See Intel Processor Identification and the CPUID instruction Application Note 485
|
|
// http://www.intel.com/Assets/PDF/appnote/241618.pdf
|
|
static bool HTSupported(void)
|
|
{
|
|
#if ( defined( _X360 ) || defined( _PS3 ) )
|
|
// not entirtely sure about the semantic of HT support, it being an intel name
|
|
// are we asking about HW threads or HT?
|
|
return true;
|
|
#else
|
|
enum {
|
|
HT_BIT = 0x10000000, // EDX[28] - Bit 28 set indicates Hyper-Threading Technology is supported in hardware.
|
|
FAMILY_ID = 0x0f00, // EAX[11:8] - Bit 11 thru 8 contains family processor id
|
|
EXT_FAMILY_ID = 0x0f00000, // EAX[23:20] - Bit 23 thru 20 contains extended family processor id
|
|
FAMILY_ID_386 = 0x0300,
|
|
FAMILY_ID_486 = 0x0400, // EAX[8:12] - 486, 487 and overdrive
|
|
FAMILY_ID_PENTIUM = 0x0500, // Pentium, Pentium OverDrive 60 - 200
|
|
FAMILY_ID_PENTIUM_PRO = 0x0600,// P Pro, P II, P III, P M, Celeron M, Core Duo, Core Solo, Core2 Duo, Core2 Extreme, P D, Xeon model F,
|
|
// also 45-nm : Intel Atom, Core i7, Xeon MP ; see Intel Processor Identification and the CPUID instruction pg 20,21
|
|
|
|
FAMILY_ID_EXTENDED = 0x0F00 // P IV, Xeon, Celeron D, P D,
|
|
};
|
|
|
|
uint32 unused,
|
|
reg_eax = 0,
|
|
reg_ebx = 0,
|
|
reg_edx = 0,
|
|
vendor_id[3] = {0, 0, 0};
|
|
|
|
// verify cpuid instruction is supported
|
|
if( !cpuid(0,unused, vendor_id[0],vendor_id[2],vendor_id[1])
|
|
|| !cpuid(1,reg_eax,reg_ebx,unused,reg_edx) )
|
|
return false;
|
|
|
|
// <Sergiy> Previously, we detected P4 specifically; now, we detect GenuineIntel with HT enabled in general
|
|
// if (((reg_eax & FAMILY_ID) == FAMILY_ID_EXTENDED) || (reg_eax & EXT_FAMILY_ID))
|
|
|
|
// Check to see if this is an Intel Processor with HT or CMT capability , and if HT/CMT is enabled
|
|
if (vendor_id[0] == 'uneG' && vendor_id[1] == 'Ieni' && vendor_id[2] == 'letn')
|
|
return (reg_edx & HT_BIT) != 0 && // Genuine Intel Processor with Hyper-Threading Technology implemented
|
|
((reg_ebx >> 16) & 0xFF) > 1 ; // Hyper-Threading OR Core Multi-Processing has been enabled
|
|
|
|
return false; // This is not a genuine Intel processor.
|
|
#endif
|
|
}
|
|
|
|
// See Intel Processor Identification and the CPUID instruction Application Note 485
|
|
// http://www.intel.com/Assets/PDF/appnote/241618.pdf
|
|
int LogicalProcessorsPerCore()
|
|
{
|
|
#if defined( _X360 ) || defined( _PS3 ) || defined( LINUX )
|
|
return 2; //
|
|
#elif defined(_WIN32)
|
|
uint32 nMaxStandardFnSupported, nVendorId[3];
|
|
if( !cpuid( 0, nMaxStandardFnSupported,nVendorId[0],nVendorId[2],nVendorId[1] ) )
|
|
{
|
|
return 1;
|
|
}
|
|
|
|
uint32 nFn1_Eax, nFn1_Ebx, nFn1_Ecx, nFn1_Edx;
|
|
if( !cpuid( 1, nFn1_Eax, nFn1_Ebx, nFn1_Ecx, nFn1_Edx) )
|
|
{
|
|
return 1;
|
|
}
|
|
|
|
enum CpuidFnMasks
|
|
{
|
|
HTT = 0x10000000, // Fn0000_0001 EDX[28]
|
|
LogicalProcessorCount = 0x00FF0000, // Fn0000_0001 EBX[23:16]
|
|
ApicId = 0xFF000000, // Fn0000_0001 EBX[31:24]
|
|
NC_Intel = 0xFC000000, // Fn0000_0004 EAX[31:26]
|
|
NC_Amd = 0x000000FF, // Fn8000_0008 ECX[7:0]
|
|
CmpLegacy_Amd = 0x00000002, // Fn8000_0001 ECX[1]
|
|
ApicIdCoreIdSize_Amd = 0x0000F000 // Fn8000_0008 ECX[15:12]
|
|
};
|
|
|
|
// Determine if hardware threading is enabled.
|
|
if( nFn1_Edx & HTT )
|
|
{
|
|
// Determine the total number of logical processors per package.
|
|
int nLogProcsPerPkg = ( nFn1_Ebx & LogicalProcessorCount ) >> 16;
|
|
int nCoresPerPkg = 1;
|
|
|
|
if( ( ( nFn1_Ebx >> 16 ) & 0xFF ) <= 1 ) // Has Hyper-Threading OR Core Multi-Processing not been enabled ?
|
|
{
|
|
// NOTE: This is only tested on Intel CPUs; I don't know if it's true on AMD, as I have no HT AMD to test on
|
|
return 1; // HT was turned off, for all intents and purposes in our engine it means one logical CPU per core
|
|
}
|
|
|
|
// Determine the total number of cores per package. This info
|
|
// is extracted differently dependending on the cpu vendor.
|
|
if( nVendorId[0] == 'uneG' && nVendorId[1] == 'Ieni' && nVendorId[2] == 'letn' ) // GenuineIntel
|
|
{
|
|
if( nMaxStandardFnSupported >= 4 )
|
|
{
|
|
uint32 nFn4_Eax, nFn4_Ebx, nFn4_Ecx, nFn4_Edx ;
|
|
if( cpuid( 4, nFn4_Eax, nFn4_Ebx, nFn4_Ecx, nFn4_Edx ) )
|
|
{
|
|
nCoresPerPkg = ( ( nFn4_Eax & NC_Intel ) >> 26 ) + 1;
|
|
|
|
}
|
|
}
|
|
// <Sergiy> as the DirectX CoreDetection sample goes, the logic is that on old processors where
|
|
// the functions aren't supported, we assume one core per package, multiple logical processors per package
|
|
// I suspect this may be wrong, especially for AMD processors.
|
|
return nLogProcsPerPkg / nCoresPerPkg;
|
|
}
|
|
#if 0 // <Sergiy> To make as concervative change as possible now, I'll skip AMD hyperthread detection
|
|
else
|
|
{
|
|
if( nVendorId[0] == 'htuA' && nVendorId[1] == 'itne' && nVendorId[2] == 'DMAc' ) // AuthenticAMD
|
|
{
|
|
uint32 nFnx8_Eax, nFnx8_Ebx, nFnx8_Ecx, nFnx8_Edx ;
|
|
if( cpuid( 0x80000008, nFnx8_Eax, nFnx8_Ebx, nFnx8_Ecx, nFnx8_Edx ) )
|
|
{
|
|
// AMD reports the msb width of the CORE_ID bit field of the APIC ID
|
|
// in ApicIdCoreIdSize_Amd. The maximum value represented by the msb
|
|
// width is the theoretical number of cores the processor can support
|
|
// and not the actual number of current cores, which is how the msb width
|
|
// of the CORE_ID bit field has been traditionally determined. If the
|
|
// ApicIdCoreIdSize_Amd value is zero, then you use the traditional method
|
|
// to determine the CORE_ID msb width.
|
|
DWORD msbWidth = nFnx8_Ecx & ApicIdCoreIdSize_Amd;
|
|
if( msbWidth )
|
|
{
|
|
// Set nCoresPerPkg to the maximum theortical number of cores
|
|
// the processor package can support (2 ^ width) so the APIC
|
|
// extractor object can be configured to extract the proper
|
|
// values from an APIC.
|
|
nCoresPerPkg = 1 << ( msbWidth >> 12 );
|
|
}
|
|
else
|
|
{
|
|
// Set nCoresPerPkg to the actual number of cores being reported
|
|
// by the CPUID instruction.
|
|
nCoresPerPkg = ( nFnx8_Ecx & NC_Amd ) + 1;
|
|
}
|
|
}
|
|
}
|
|
// <Sergiy> as the DirectX CoreDetection sample goes, the logic is that on old processors where
|
|
// the functions aren't supported, we assume one core per package, multiple logical processors per package
|
|
// I suspect this may be wrong, especially for AMD processors.
|
|
return nLogProcsPerPkg / nCoresPerPkg;
|
|
}
|
|
#endif
|
|
}
|
|
return 1;
|
|
#endif
|
|
}
|
|
|
|
|
|
|
|
// Measure the processor clock speed by sampling the cycle count, waiting
|
|
// for some fraction of a second, then measuring the elapsed number of cycles.
|
|
static int64 CalculateClockSpeed()
|
|
{
|
|
#if defined( _X360 ) || defined(_PS3)
|
|
// Xbox360 and PS3 have the same clock speed and share a lot of characteristics on PPU
|
|
return 3200000000LL;
|
|
#else
|
|
#if defined( _WIN32 )
|
|
LARGE_INTEGER waitTime, startCount, curCount;
|
|
CCycleCount start, end;
|
|
|
|
// Take 1/32 of a second for the measurement.
|
|
QueryPerformanceFrequency( &waitTime );
|
|
int scale = 5;
|
|
waitTime.QuadPart >>= scale;
|
|
|
|
QueryPerformanceCounter( &startCount );
|
|
start.Sample();
|
|
do
|
|
{
|
|
QueryPerformanceCounter( &curCount );
|
|
}
|
|
while ( curCount.QuadPart - startCount.QuadPart < waitTime.QuadPart );
|
|
end.Sample();
|
|
|
|
return (end.m_Int64 - start.m_Int64) << scale;
|
|
#elif defined(POSIX)
|
|
uint64 CalculateCPUFreq(); // from cpu_linux.cpp
|
|
int64 freq =(int64)CalculateCPUFreq();
|
|
if ( freq == 0 ) // couldn't calculate clock speed
|
|
{
|
|
Error( "Unable to determine CPU Frequency\n" );
|
|
}
|
|
return freq;
|
|
#else
|
|
#error "Please implement Clock Speed function for this platform"
|
|
#endif
|
|
#endif
|
|
}
|
|
|
|
static CPUInformation s_cpuInformation;
|
|
|
|
const CPUInformation& GetCPUInformation()
|
|
{
|
|
CPUInformation &pi = s_cpuInformation;
|
|
// Has the structure already been initialized and filled out?
|
|
if ( pi.m_Size == sizeof(pi) )
|
|
return pi;
|
|
|
|
// Redundant, but just in case the user somehow messes with the size.
|
|
memset(&pi, 0x0, sizeof(pi));
|
|
|
|
// Fill out the structure, and return it:
|
|
pi.m_Size = sizeof(pi);
|
|
|
|
// Grab the processor frequency:
|
|
pi.m_Speed = CalculateClockSpeed();
|
|
|
|
// Get the logical and physical processor counts:
|
|
|
|
#if defined( _X360 )
|
|
pi.m_nPhysicalProcessors = 3;
|
|
pi.m_nLogicalProcessors = 6;
|
|
#elif defined( _PS3 )
|
|
pi.m_nPhysicalProcessors = 1;
|
|
pi.m_nLogicalProcessors = 2;
|
|
#elif defined(_WIN32) && !defined( _X360 )
|
|
SYSTEM_INFO si;
|
|
ZeroMemory( &si, sizeof(si) );
|
|
|
|
GetSystemInfo( &si );
|
|
|
|
// Sergiy: fixing: si.dwNumberOfProcessors is the number of logical processors according to experiments on i7, P4 and a DirectX sample (Aug'09)
|
|
// this is contrary to MSDN documentation on GetSystemInfo()
|
|
//
|
|
pi.m_nLogicalProcessors = si.dwNumberOfProcessors;
|
|
if ( 0 == V_tier0_stricmp( GetProcessorVendorId(), "AuthenticAMD" ) )
|
|
{
|
|
// quick fix for AMD Phenom: it reports 3 logical cores and 4 physical cores;
|
|
// no AMD CPUs by the end of 2009 have HT, so we'll override HT detection here
|
|
pi.m_nPhysicalProcessors = pi.m_nLogicalProcessors;
|
|
}
|
|
else
|
|
{
|
|
CpuTopology topo;
|
|
pi.m_nPhysicalProcessors = topo.NumberOfSystemCores();
|
|
}
|
|
|
|
// Make sure I always report at least one, when running WinXP with the /ONECPU switch,
|
|
// it likes to report 0 processors for some reason.
|
|
if ( pi.m_nPhysicalProcessors == 0 && pi.m_nLogicalProcessors == 0 )
|
|
{
|
|
Assert( !"Sergiy: apparently I didn't fix some CPU detection code completely. Let me know and I'll do my best to fix it soon." );
|
|
pi.m_nPhysicalProcessors = 1;
|
|
pi.m_nLogicalProcessors = 1;
|
|
}
|
|
#elif defined(LINUX)
|
|
pi.m_nLogicalProcessors = 0;
|
|
pi.m_nPhysicalProcessors = 0;
|
|
const int k_cMaxProcessors = 256;
|
|
bool rgbProcessors[k_cMaxProcessors];
|
|
memset( rgbProcessors, 0, sizeof( rgbProcessors ) );
|
|
int cMaxCoreId = 0;
|
|
|
|
FILE *fpCpuInfo = fopen( "/proc/cpuinfo", "r" );
|
|
if ( fpCpuInfo )
|
|
{
|
|
char rgchLine[256];
|
|
while ( fgets( rgchLine, sizeof( rgchLine ), fpCpuInfo ) )
|
|
{
|
|
if ( !strncasecmp( rgchLine, "processor", strlen( "processor" ) ) )
|
|
{
|
|
pi.m_nLogicalProcessors++;
|
|
}
|
|
if ( !strncasecmp( rgchLine, "core id", strlen( "core id" ) ) )
|
|
{
|
|
char *pchValue = strchr( rgchLine, ':' );
|
|
cMaxCoreId = MAX( cMaxCoreId, atoi( pchValue + 1 ) );
|
|
}
|
|
if ( !strncasecmp( rgchLine, "physical id", strlen( "physical id" ) ) )
|
|
{
|
|
// it seems (based on survey data) that we can see
|
|
// processor N (N > 0) when it's the only processor in
|
|
// the system. so keep track of each processor
|
|
char *pchValue = strchr( rgchLine, ':' );
|
|
int cPhysicalId = atoi( pchValue + 1 );
|
|
if ( cPhysicalId < k_cMaxProcessors )
|
|
rgbProcessors[cPhysicalId] = true;
|
|
}
|
|
/* this code will tell us how many physical chips are in the machine, but we want
|
|
core count, so for the moment, each processor counts as both logical and physical.
|
|
if ( !strncasecmp( rgchLine, "physical id ", strlen( "physical id " ) ) )
|
|
{
|
|
char *pchValue = strchr( rgchLine, ':' );
|
|
pi.m_nPhysicalProcessors = MAX( pi.m_nPhysicalProcessors, atol( pchValue ) );
|
|
}
|
|
*/
|
|
}
|
|
fclose( fpCpuInfo );
|
|
for ( int i = 0; i < k_cMaxProcessors; i++ )
|
|
if ( rgbProcessors[i] )
|
|
pi.m_nPhysicalProcessors++;
|
|
pi.m_nPhysicalProcessors *= ( cMaxCoreId + 1 );
|
|
}
|
|
else
|
|
{
|
|
pi.m_nLogicalProcessors = 1;
|
|
pi.m_nPhysicalProcessors = 1;
|
|
Assert( !"couldn't read cpu information from /proc/cpuinfo" );
|
|
}
|
|
|
|
#elif defined(OSX)
|
|
int mib[2], num_cpu = 1;
|
|
size_t len;
|
|
mib[0] = CTL_HW;
|
|
mib[1] = HW_NCPU;
|
|
len = sizeof(num_cpu);
|
|
sysctl(mib, 2, &num_cpu, &len, NULL, 0);
|
|
pi.m_nPhysicalProcessors = num_cpu;
|
|
pi.m_nLogicalProcessors = num_cpu;
|
|
|
|
#endif
|
|
|
|
// Determine Processor Features:
|
|
pi.m_bRDTSC = CheckRDTSCTechnology();
|
|
pi.m_bCMOV = CheckCMOVTechnology();
|
|
pi.m_bFCMOV = CheckFCMOVTechnology();
|
|
pi.m_bMMX = CheckMMXTechnology();
|
|
pi.m_bSSE = CheckSSETechnology();
|
|
pi.m_bSSE2 = CheckSSE2Technology();
|
|
pi.m_bSSE3 = CheckSSE3Technology();
|
|
pi.m_bSSSE3 = CheckSSSE3Technology();
|
|
pi.m_bSSE4a = CheckSSE4aTechnology();
|
|
pi.m_bSSE41 = CheckSSE41Technology();
|
|
pi.m_bSSE42 = CheckSSE42Technology();
|
|
pi.m_b3DNow = Check3DNowTechnology();
|
|
pi.m_szProcessorID = (tchar*)GetProcessorVendorId();
|
|
pi.m_bHT = pi.m_nPhysicalProcessors < pi.m_nLogicalProcessors; //HTSupported();
|
|
|
|
return pi;
|
|
}
|
|
|