You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
3803 lines
157 KiB
3803 lines
157 KiB
// stb_voxel_render.h - v0.85 - Sean Barrett, 2015 - public domain |
|
// |
|
// This library helps render large-scale "voxel" worlds for games, |
|
// in this case, one with blocks that can have textures and that |
|
// can also be a few shapes other than cubes. |
|
// |
|
// Video introduction: |
|
// http://www.youtube.com/watch?v=2vnTtiLrV1w |
|
// |
|
// Minecraft-viewer sample app (not very simple though): |
|
// http://github.com/nothings/stb/tree/master/tests/caveview |
|
// |
|
// It works by creating triangle meshes. The library includes |
|
// |
|
// - converter from dense 3D arrays of block info to vertex mesh |
|
// - vertex & fragment shaders for the vertex mesh |
|
// - assistance in setting up shader state |
|
// |
|
// For portability, none of the library code actually accesses |
|
// the 3D graphics API. (At the moment, it's not actually portable |
|
// since the shaders are GLSL only, but patches are welcome.) |
|
// |
|
// You have to do all the caching and tracking of vertex buffers |
|
// yourself. However, you could also try making a game with |
|
// a small enough world that it's fully loaded rather than |
|
// streaming. Currently the preferred vertex format is 20 bytes |
|
// per quad. There are designs to allow much more compact formats |
|
// with a slight reduction in shader features, but no roadmap |
|
// for actually implementing them. |
|
// |
|
// |
|
// USAGE |
|
// |
|
// #define the symbol STB_VOXEL_RENDER_IMPLEMENTATION in *one* |
|
// C/C++ file before the #include of this file; the implementation |
|
// will be generated in that file. |
|
// |
|
// If you define the symbols STB_VOXEL_RENDER_STATIC, then the |
|
// implementation will be private to that file. |
|
// |
|
// |
|
// FEATURES |
|
// |
|
// - you can choose textured blocks with the features below, |
|
// or colored voxels with 2^24 colors and no textures. |
|
// |
|
// - voxels are mostly just cubes, but there's support for |
|
// half-height cubes and diagonal slopes, half-height |
|
// diagonals, and even odder shapes especially for doing |
|
// more-continuous "ground". |
|
// |
|
// - texture coordinates are projections along one of the major |
|
// axes, with the per-texture scaling. |
|
// |
|
// - a number of aspects of the shader and the vertex format |
|
// are configurable; the library generally takes care of |
|
// coordinating the vertex format with the mesh for you. |
|
// |
|
// |
|
// FEATURES (SHADER PERSPECTIVE) |
|
// |
|
// - vertices aligned on integer lattice, z on multiples of 0.5 |
|
// - per-vertex "lighting" or "ambient occlusion" value (6 bits) |
|
// - per-vertex texture crossfade (3 bits) |
|
// |
|
// - per-face texture #1 id (8-bit index into array texture) |
|
// - per-face texture #2 id (8-bit index into second array texture) |
|
// - per-face color (6-bit palette index, 2 bits of per-texture boolean enable) |
|
// - per-face 5-bit normal for lighting calculations & texture coord computation |
|
// - per-face 2-bit texture matrix rotation to rotate faces |
|
// |
|
// - indexed-by-texture-id scale factor (separate for texture #1 and texture #2) |
|
// - indexed-by-texture-#2-id blend mode (alpha composite or modulate/multiply); |
|
// the first is good for decals, the second for detail textures, "light maps", |
|
// etc; both modes are controlled by texture #2's alpha, scaled by the |
|
// per-vertex texture crossfade and the per-face color (if enabled on texture #2); |
|
// modulate/multiply multiplies by an extra factor of 2.0 so that if you |
|
// make detail maps whose average brightness is 0.5 everything works nicely. |
|
// |
|
// - ambient lighting: half-lambert directional plus constant, all scaled by vertex ao |
|
// - face can be fullbright (emissive), controlled by per-face color |
|
// - installable lighting, with default single-point-light |
|
// - installable fog, with default hacked smoothstep |
|
// |
|
// Note that all the variations of lighting selection and texture |
|
// blending are run-time conditions in the shader, so they can be |
|
// intermixed in a single mesh. |
|
// |
|
// |
|
// INTEGRATION ARC |
|
// |
|
// The way to get this library to work from scratch is to do the following: |
|
// |
|
// Step 1. define STBVOX_CONFIG_MODE to 0 |
|
// |
|
// This mode uses only vertex attributes and uniforms, and is easiest |
|
// to get working. It requires 32 bytes per quad and limits the |
|
// size of some tables to avoid hitting uniform limits. |
|
// |
|
// Step 2. define STBVOX_CONFIG_MODE to 1 |
|
// |
|
// This requires using a texture buffer to store the quad data, |
|
// reducing the size to 20 bytes per quad. |
|
// |
|
// Step 3: define STBVOX_CONFIG_PREFER_TEXBUFFER |
|
// |
|
// This causes some uniforms to be stored as texture buffers |
|
// instead. This increases the size of some of those tables, |
|
// and avoids a potential slow path (gathering non-uniform |
|
// data from uniforms) on some hardware. |
|
// |
|
// In the future I might add additional modes that have significantly |
|
// smaller meshes but reduce features, down as small as 6 bytes per quad. |
|
// See elsewhere in this file for a table of candidate modes. Switching |
|
// to a mode will require changing some of your mesh creation code, but |
|
// everything else should be seamless. (And I'd like to change the API |
|
// so that mesh creation is data-driven the way the uniforms are, and |
|
// then you wouldn't even have to change anything but the mode number.) |
|
// |
|
// |
|
// IMPROVEMENTS FOR SHIP-WORTHY PROGRAMS USING THIS LIBRARY |
|
// |
|
// I currently tolerate a certain level of "bugginess" in this library. |
|
// |
|
// I'm referring to things which look a little wrong (as long as they |
|
// don't cause holes or cracks in the output meshes), or things which |
|
// do not produce as optimal a mesh as possible. Notable examples: |
|
// |
|
// - incorrect lighting on slopes |
|
// - inefficient meshes for vheight blocks |
|
// |
|
// I am willing to do the work to improve these things if someone is |
|
// going to ship a substantial program that would be improved by them. |
|
// (It need not be commercial, nor need it be a game.) I just didn't |
|
// want to do the work up front if it might never be leveraged. So just |
|
// submit a bug report as usual (github is preferred), but add a note |
|
// that this is for a thing that is really going to ship. (That means |
|
// you need to be far enough into the project that it's clear you're |
|
// committed to it; not during early exploratory development.) |
|
// |
|
// |
|
// VOXEL MESH API |
|
// |
|
// Context |
|
// |
|
// To understand the API, make sure you first understand the feature set |
|
// listed above. |
|
// |
|
// Because the vertices are compact, they have very limited spatial |
|
// precision. Thus a single mesh can only contain the data for a limited |
|
// area. To make very large voxel maps, you'll need to build multiple |
|
// vertex buffers. (But you want this anyway for frustum culling.) |
|
// |
|
// Each generated mesh has three components: |
|
// - vertex data (vertex buffer) |
|
// - face data (optional, stored in texture buffer) |
|
// - mesh transform (uniforms) |
|
// |
|
// Once you've generated the mesh with this library, it's up to you |
|
// to upload it to the GPU, to keep track of the state, and to render |
|
// it. |
|
// |
|
// Concept |
|
// |
|
// The basic design is that you pass in one or more 3D arrays; each array |
|
// is (typically) one-byte-per-voxel and contains information about one |
|
// or more properties of some particular voxel property. |
|
// |
|
// Because there is so much per-vertex and per-face data possible |
|
// in the output, and each voxel can have 6 faces and 8 vertices, it |
|
// would require an very large data structure to describe all |
|
// of the possibilities, and this would cause the mesh-creation |
|
// process to be slow. Instead, the API provides multiple ways |
|
// to express each property, some more compact, others less so; |
|
// each such way has some limitations on what it can express. |
|
// |
|
// Note that there are so many paths and combinations, not all of them |
|
// have been tested. Just report bugs and I'll fix 'em. |
|
// |
|
// Details |
|
// |
|
// See the API documentation in the header-file section. |
|
// |
|
// |
|
// CONTRIBUTORS |
|
// |
|
// Features Porting Bugfixes & Warnings |
|
// Sean Barrett github:r-leyh Jesus Fernandez |
|
// Miguel Lechon github:Arbeiterunfallversicherungsgesetz |
|
// Thomas Frase James Hofmann |
|
// Stephen Olsen github:guitarfreak |
|
// |
|
// VERSION HISTORY |
|
// |
|
// 0.85 (2017-03-03) add block_selector (by guitarfreak) |
|
// 0.84 (2016-04-02) fix GLSL syntax error on glModelView path |
|
// 0.83 (2015-09-13) remove non-constant struct initializers to support more compilers |
|
// 0.82 (2015-08-01) added input.packed_compact to store rot, vheight & texlerp efficiently |
|
// fix broken tex_overlay2 |
|
// 0.81 (2015-05-28) fix broken STBVOX_CONFIG_OPTIMIZED_VHEIGHT |
|
// 0.80 (2015-04-11) fix broken STBVOX_CONFIG_ROTATION_IN_LIGHTING refactoring |
|
// change STBVOX_MAKE_LIGHTING to STBVOX_MAKE_LIGHTING_EXT so |
|
// that header defs don't need to see config vars |
|
// add STBVOX_CONFIG_VHEIGHT_IN_LIGHTING and other vheight fixes |
|
// added documentation for vheight ("weird slopes") |
|
// 0.79 (2015-04-01) fix the missing types from 0.78; fix string constants being const |
|
// 0.78 (2015-04-02) bad "#else", compile as C++ |
|
// 0.77 (2015-04-01) documentation tweaks, rename config var to STB_VOXEL_RENDER_STATIC |
|
// 0.76 (2015-04-01) typos, signed/unsigned shader issue, more documentation |
|
// 0.75 (2015-04-01) initial release |
|
// |
|
// |
|
// HISTORICAL FOUNDATION |
|
// |
|
// stb_voxel_render 20-byte quads 2015/01 |
|
// zmc engine 32-byte quads 2013/12 |
|
// zmc engine 96-byte quads 2011/10 |
|
// |
|
// |
|
// LICENSE |
|
// |
|
// See end of file for license information. |
|
|
|
#ifndef INCLUDE_STB_VOXEL_RENDER_H |
|
#define INCLUDE_STB_VOXEL_RENDER_H |
|
|
|
#include <stdlib.h> |
|
|
|
typedef struct stbvox_mesh_maker stbvox_mesh_maker; |
|
typedef struct stbvox_input_description stbvox_input_description; |
|
|
|
#ifdef STB_VOXEL_RENDER_STATIC |
|
#define STBVXDEC static |
|
#else |
|
#define STBVXDEC extern |
|
#endif |
|
|
|
#ifdef __cplusplus |
|
extern "C" { |
|
#endif |
|
|
|
////////////////////////////////////////////////////////////////////////////// |
|
// |
|
// CONFIGURATION MACROS |
|
// |
|
// #define STBVOX_CONFIG_MODE <integer> // REQUIRED |
|
// Configures the overall behavior of stb_voxel_render. This |
|
// can affect the shaders, the uniform info, and other things. |
|
// (If you need more than one mode in the same app, you can |
|
// use STB_VOXEL_RENDER_STATIC to create multiple versions |
|
// in separate files, and then wrap them.) |
|
// |
|
// Mode value Meaning |
|
// 0 Textured blocks, 32-byte quads |
|
// 1 Textured blocks, 20-byte quads |
|
// 20 Untextured blocks, 32-byte quads |
|
// 21 Untextured blocks, 20-byte quads |
|
// |
|
// |
|
// #define STBVOX_CONFIG_PRECISION_Z <integer> // OPTIONAL |
|
// Defines the number of bits of fractional position for Z. |
|
// Only 0 or 1 are valid. 1 is the default. If 0, then a |
|
// single mesh has twice the legal Z range; e.g. in |
|
// modes 0,1,20,21, Z in the mesh can extend to 511 instead |
|
// of 255. However, half-height blocks cannot be used. |
|
// |
|
// All of the following are just #ifdef tested so need no values, and are optional. |
|
// |
|
// STBVOX_CONFIG_BLOCKTYPE_SHORT |
|
// use unsigned 16-bit values for 'blocktype' in the input instead of 8-bit values |
|
// |
|
// STBVOX_CONFIG_OPENGL_MODELVIEW |
|
// use the gl_ModelView matrix rather than the explicit uniform |
|
// |
|
// STBVOX_CONFIG_HLSL |
|
// NOT IMPLEMENTED! Define HLSL shaders instead of GLSL shaders |
|
// |
|
// STBVOX_CONFIG_PREFER_TEXBUFFER |
|
// Stores many of the uniform arrays in texture buffers intead, |
|
// so they can be larger and may be more efficient on some hardware. |
|
// |
|
// STBVOX_CONFIG_LIGHTING_SIMPLE |
|
// Creates a simple lighting engine with a single point light source |
|
// in addition to the default half-lambert ambient light. |
|
// |
|
// STBVOX_CONFIG_LIGHTING |
|
// Declares a lighting function hook; you must append a lighting function |
|
// to the shader before compiling it: |
|
// vec3 compute_lighting(vec3 pos, vec3 norm, vec3 albedo, vec3 ambient); |
|
// 'ambient' is the half-lambert ambient light with vertex ambient-occlusion applied |
|
// |
|
// STBVOX_CONFIG_FOG_SMOOTHSTEP |
|
// Defines a simple unrealistic fog system designed to maximize |
|
// unobscured view distance while not looking too weird when things |
|
// emerge from the fog. Configured using an extra array element |
|
// in the STBVOX_UNIFORM_ambient uniform. |
|
// |
|
// STBVOX_CONFIG_FOG |
|
// Defines a fog function hook; you must append a fog function to |
|
// the shader before compiling it: |
|
// vec3 compute_fog(vec3 color, vec3 relative_pos, float fragment_alpha); |
|
// "color" is the incoming pre-fogged color, fragment_alpha is the alpha value, |
|
// and relative_pos is the vector from the point to the camera in worldspace |
|
// |
|
// STBVOX_CONFIG_DISABLE_TEX2 |
|
// This disables all processing of texture 2 in the shader in case |
|
// you don't use it. Eventually this could be replaced with a mode |
|
// that omits the unused data entirely. |
|
// |
|
// STBVOX_CONFIG_TEX1_EDGE_CLAMP |
|
// STBVOX_CONFIG_TEX2_EDGE_CLAMP |
|
// If you want to edge clamp the textures, instead of letting them wrap, |
|
// set this flag. By default stb_voxel_render relies on texture wrapping |
|
// to simplify texture coordinate generation. This flag forces it to do |
|
// it correctly, although there can still be minor artifacts. |
|
// |
|
// STBVOX_CONFIG_ROTATION_IN_LIGHTING |
|
// Changes the meaning of the 'lighting' mesher input variable to also |
|
// store the rotation; see later discussion. |
|
// |
|
// STBVOX_CONFIG_VHEIGHT_IN_LIGHTING |
|
// Changes the meaning of the 'lighting' mesher input variable to also |
|
// store the vheight; see later discussion. Cannot use both this and |
|
// the previous variable. |
|
// |
|
// STBVOX_CONFIG_PREMULTIPLIED_ALPHA |
|
// Adjusts the shader calculations on the assumption that tex1.rgba, |
|
// tex2.rgba, and color.rgba all use premultiplied values, and that |
|
// the output of the fragment shader should be premultiplied. |
|
// |
|
// STBVOX_CONFIG_UNPREMULTIPLY |
|
// Only meaningful if STBVOX_CONFIG_PREMULTIPLIED_ALPHA is defined. |
|
// Changes the behavior described above so that the inputs are |
|
// still premultiplied alpha, but the output of the fragment |
|
// shader is not premultiplied alpha. This is needed when allowing |
|
// non-unit alpha values but not doing alpha-blending (for example |
|
// when alpha testing). |
|
// |
|
|
|
////////////////////////////////////////////////////////////////////////////// |
|
// |
|
// MESHING |
|
// |
|
// A mesh represents a (typically) small chunk of a larger world. |
|
// Meshes encode coordinates using small integers, so those |
|
// coordinates must be relative to some base location. |
|
// All of the coordinates in the functions below use |
|
// these relative coordinates unless explicitly stated |
|
// otherwise. |
|
// |
|
// Input to the meshing step is documented further down |
|
|
|
STBVXDEC void stbvox_init_mesh_maker(stbvox_mesh_maker *mm); |
|
// Call this function to initialize a mesh-maker context structure |
|
// used to build meshes. You should have one context per thread |
|
// that's building meshes. |
|
|
|
STBVXDEC void stbvox_set_buffer(stbvox_mesh_maker *mm, int mesh, int slot, void *buffer, size_t len); |
|
// Call this to set the buffer into which stbvox will write the mesh |
|
// it creates. It can build more than one mesh in parallel (distinguished |
|
// by the 'mesh' parameter), and each mesh can be made up of more than |
|
// one buffer (distinguished by the 'slot' parameter). |
|
// |
|
// Multiple meshes are under your control; use the 'selector' input |
|
// variable to choose which mesh each voxel's vertices are written to. |
|
// For example, you can use this to generate separate meshes for opaque |
|
// and transparent data. |
|
// |
|
// You can query the number of slots by calling stbvox_get_buffer_count |
|
// described below. The meaning of the buffer for each slot depends |
|
// on STBVOX_CONFIG_MODE. |
|
// |
|
// In mode 0 & mode 20, there is only one slot. The mesh data for that |
|
// slot is two interleaved vertex attributes: attr_vertex, a single |
|
// 32-bit uint, and attr_face, a single 32-bit uint. |
|
// |
|
// In mode 1 & mode 21, there are two slots. The first buffer should |
|
// be four times as large as the second buffer. The first buffer |
|
// contains a single vertex attribute: 'attr_vertex', a single 32-bit uint. |
|
// The second buffer contains texture buffer data (an array of 32-bit uints) |
|
// that will be accessed through the sampler identified by STBVOX_UNIFORM_face_data. |
|
|
|
STBVXDEC int stbvox_get_buffer_count(stbvox_mesh_maker *mm); |
|
// Returns the number of buffers needed per mesh as described above. |
|
|
|
STBVXDEC int stbvox_get_buffer_size_per_quad(stbvox_mesh_maker *mm, int slot); |
|
// Returns how much of a given buffer will get used per quad. This |
|
// allows you to choose correct relative sizes for each buffer, although |
|
// the values are fixed based on the configuration you've selected at |
|
// compile time, and the details are described in stbvox_set_buffer. |
|
|
|
STBVXDEC void stbvox_set_default_mesh(stbvox_mesh_maker *mm, int mesh); |
|
// Selects which mesh the mesher will output to (see previous function) |
|
// if the input doesn't specify a per-voxel selector. (I doubt this is |
|
// useful, but it's here just in case.) |
|
|
|
STBVXDEC stbvox_input_description *stbvox_get_input_description(stbvox_mesh_maker *mm); |
|
// This function call returns a pointer to the stbvox_input_description part |
|
// of stbvox_mesh_maker (which you should otherwise treat as opaque). You |
|
// zero this structure, then fill out the relevant pointers to the data |
|
// describing your voxel object/world. |
|
// |
|
// See further documentation at the description of stbvox_input_description below. |
|
|
|
STBVXDEC void stbvox_set_input_stride(stbvox_mesh_maker *mm, int x_stride_in_elements, int y_stride_in_elements); |
|
// This sets the stride between successive elements of the 3D arrays |
|
// in the stbvox_input_description. Z values are always stored consecutively. |
|
// (The preferred coordinate system for stbvox is X right, Y forwards, Z up.) |
|
|
|
STBVXDEC void stbvox_set_input_range(stbvox_mesh_maker *mm, int x0, int y0, int z0, int x1, int y1, int z1); |
|
// This sets the range of values in the 3D array for the voxels that |
|
// the mesh generator will convert. The lower values are inclusive, |
|
// the higher values are exclusive, so (0,0,0) to (16,16,16) generates |
|
// mesh data associated with voxels up to (15,15,15) but no higher. |
|
// |
|
// The mesh generate generates faces at the boundary between open space |
|
// and solid space but associates them with the solid space, so if (15,0,0) |
|
// is open and (16,0,0) is solid, then the mesh will contain the boundary |
|
// between them if x0 <= 16 and x1 > 16. |
|
// |
|
// Note that the mesh generator will access array elements 1 beyond the |
|
// limits set in these parameters. For example, if you set the limits |
|
// to be (0,0,0) and (16,16,16), then the generator will access all of |
|
// the voxels between (-1,-1,-1) and (16,16,16), including (16,16,16). |
|
// You may have to do pointer arithmetic to make it work. |
|
// |
|
// For example, caveview processes mesh chunks that are 32x32x16, but it |
|
// does this using input buffers that are 34x34x18. |
|
// |
|
// The lower limits are x0 >= 0, y0 >= 0, and z0 >= 0. |
|
// |
|
// The upper limits are mode dependent, but all the current methods are |
|
// limited to x1 < 127, y1 < 127, z1 < 255. Note that these are not |
|
// powers of two; if you want to use power-of-two chunks (to make |
|
// it efficient to decide which chunk a coordinate falls in), you're |
|
// limited to at most x1=64, y1=64, z1=128. For classic Minecraft-style |
|
// worlds with limited vertical extent, I recommend using a single |
|
// chunk for the entire height, which limits the height to 255 blocks |
|
// (one less than Minecraft), and only chunk the map in X & Y. |
|
|
|
STBVXDEC int stbvox_make_mesh(stbvox_mesh_maker *mm); |
|
// Call this function to create mesh data for the currently configured |
|
// set of input data. This appends to the currently configured mesh output |
|
// buffer. Returns 1 on success. If there is not enough room in the buffer, |
|
// it outputs as much as it can, and returns 0; you need to switch output |
|
// buffers (either by calling stbvox_set_buffer to set new buffers, or |
|
// by copying the data out and calling stbvox_reset_buffers), and then |
|
// call this function again without changing any of the input parameters. |
|
// |
|
// Note that this function appends; you can call it multiple times to |
|
// build a single mesh. For example, caveview uses chunks that are |
|
// 32x32x255, but builds the mesh for it by processing 32x32x16 at atime |
|
// (this is faster as it is reuses the same 34x34x18 input buffers rather |
|
// than needing 34x34x257 input buffers). |
|
|
|
// Once you're done creating a mesh into a given buffer, |
|
// consider the following functions: |
|
|
|
STBVXDEC int stbvox_get_quad_count(stbvox_mesh_maker *mm, int mesh); |
|
// Returns the number of quads in the mesh currently generated by mm. |
|
// This is the sum of all consecutive stbvox_make_mesh runs appending |
|
// to the same buffer. 'mesh' distinguishes between the multiple user |
|
// meshes available via 'selector' or stbvox_set_default_mesh. |
|
// |
|
// Typically you use this function when you're done building the mesh |
|
// and want to record how to draw it. |
|
// |
|
// Note that there are no index buffers; the data stored in the buffers |
|
// should be drawn as quads (e.g. with GL_QUAD); if your API does not |
|
// support quads, you can create a single index buffer large enough to |
|
// draw your largest vertex buffer, and reuse it for every rendering. |
|
// (Note that if you use 32-bit indices, you'll use 24 bytes of bandwidth |
|
// per quad, more than the 20 bytes for the vertex/face mesh data.) |
|
|
|
STBVXDEC void stbvox_set_mesh_coordinates(stbvox_mesh_maker *mm, int x, int y, int z); |
|
// Sets the global coordinates for this chunk, such that (0,0,0) relative |
|
// coordinates will be at (x,y,z) in global coordinates. |
|
|
|
STBVXDEC void stbvox_get_bounds(stbvox_mesh_maker *mm, float bounds[2][3]); |
|
// Returns the bounds for the mesh in global coordinates. Use this |
|
// for e.g. frustum culling the mesh. @BUG: this just uses the |
|
// values from stbvox_set_input_range(), so if you build by |
|
// appending multiple values, this will be wrong, and you need to |
|
// set stbvox_set_input_range() to the full size. Someday this |
|
// will switch to tracking the actual bounds of the *mesh*, though. |
|
|
|
STBVXDEC void stbvox_get_transform(stbvox_mesh_maker *mm, float transform[3][3]); |
|
// Returns the 'transform' data for the shader uniforms. It is your |
|
// job to set this to the shader before drawing the mesh. It is the |
|
// only uniform that needs to change per-mesh. Note that it is not |
|
// a 3x3 matrix, but rather a scale to decode fixed point numbers as |
|
// floats, a translate from relative to global space, and a special |
|
// translation for texture coordinate generation that avoids |
|
// floating-point precision issues. @TODO: currently we add the |
|
// global translation to the vertex, than multiply by modelview, |
|
// but this means if camera location and vertex are far from the |
|
// origin, we lose precision. Need to make a special modelview with |
|
// the translation (or some of it) factored out to avoid this. |
|
|
|
STBVXDEC void stbvox_reset_buffers(stbvox_mesh_maker *mm); |
|
// Call this function if you're done with the current output buffer |
|
// but want to reuse it (e.g. you're done appending with |
|
// stbvox_make_mesh and you've copied the data out to your graphics API |
|
// so can reuse the buffer). |
|
|
|
////////////////////////////////////////////////////////////////////////////// |
|
// |
|
// RENDERING |
|
// |
|
|
|
STBVXDEC char *stbvox_get_vertex_shader(void); |
|
// Returns the (currently GLSL-only) vertex shader. |
|
|
|
STBVXDEC char *stbvox_get_fragment_shader(void); |
|
// Returns the (currently GLSL-only) fragment shader. |
|
// You can override the lighting and fogging calculations |
|
// by appending data to the end of these; see the #define |
|
// documentation for more information. |
|
|
|
STBVXDEC char *stbvox_get_fragment_shader_alpha_only(void); |
|
// Returns a slightly cheaper fragment shader that computes |
|
// alpha but not color. This is useful for e.g. a depth-only |
|
// pass when using alpha test. |
|
|
|
typedef struct stbvox_uniform_info stbvox_uniform_info; |
|
|
|
STBVXDEC int stbvox_get_uniform_info(stbvox_uniform_info *info, int uniform); |
|
// Gets the information about a uniform necessary for you to |
|
// set up each uniform with a minimal amount of explicit code. |
|
// See the sample code after the structure definition for stbvox_uniform_info, |
|
// further down in this header section. |
|
// |
|
// "uniform" is from the list immediately following. For many |
|
// of these, default values are provided which you can set. |
|
// Most values are shared for most draw calls; e.g. for stateful |
|
// APIs you can set most of the state only once. Only |
|
// STBVOX_UNIFORM_transform needs to change per draw call. |
|
// |
|
// STBVOX_UNIFORM_texscale |
|
// 64- or 128-long vec4 array. (128 only if STBVOX_CONFIG_PREFER_TEXBUFFER) |
|
// x: scale factor to apply to texture #1. must be a power of two. 1.0 means 'face-sized' |
|
// y: scale factor to apply to texture #2. must be a power of two. 1.0 means 'face-sized' |
|
// z: blend mode indexed by texture #2. 0.0 is alpha compositing; 1.0 is multiplication. |
|
// w: unused currently. @TODO use to support texture animation? |
|
// |
|
// Texscale is indexed by the bottom 6 or 7 bits of the texture id; thus for |
|
// example the texture at index 0 in the array and the texture in index 128 of |
|
// the array must be scaled the same. This means that if you only have 64 or 128 |
|
// unique textures, they all get distinct values anyway; otherwise you have |
|
// to group them in pairs or sets of four. |
|
// |
|
// STBVOX_UNIFORM_ambient |
|
// 4-long vec4 array: |
|
// ambient[0].xyz - negative of direction of a directional light for half-lambert |
|
// ambient[1].rgb - color of light scaled by NdotL (can be negative) |
|
// ambient[2].rgb - constant light added to above calculation; |
|
// effectively light ranges from ambient[2]-ambient[1] to ambient[2]+ambient[1] |
|
// ambient[3].rgb - fog color for STBVOX_CONFIG_FOG_SMOOTHSTEP |
|
// ambient[3].a - reciprocal of squared distance of farthest fog point (viewing distance) |
|
|
|
|
|
// +----- has a default value |
|
// | +-- you should always use the default value |
|
enum // V V |
|
{ // ------------------------------------------------ |
|
STBVOX_UNIFORM_face_data, // n the sampler with the face texture buffer |
|
STBVOX_UNIFORM_transform, // n the transform data from stbvox_get_transform |
|
STBVOX_UNIFORM_tex_array, // n an array of two texture samplers containing the two texture arrays |
|
STBVOX_UNIFORM_texscale, // Y a table of texture properties, see above |
|
STBVOX_UNIFORM_color_table, // Y 64 vec4 RGBA values; a default palette is provided; if A > 1.0, fullbright |
|
STBVOX_UNIFORM_normals, // Y Y table of normals, internal-only |
|
STBVOX_UNIFORM_texgen, // Y Y table of texgen vectors, internal-only |
|
STBVOX_UNIFORM_ambient, // n lighting & fog info, see above |
|
STBVOX_UNIFORM_camera_pos, // Y camera position in global voxel space (for lighting & fog) |
|
|
|
STBVOX_UNIFORM_count, |
|
}; |
|
|
|
enum |
|
{ |
|
STBVOX_UNIFORM_TYPE_none, |
|
STBVOX_UNIFORM_TYPE_sampler, |
|
STBVOX_UNIFORM_TYPE_vec2, |
|
STBVOX_UNIFORM_TYPE_vec3, |
|
STBVOX_UNIFORM_TYPE_vec4, |
|
}; |
|
|
|
struct stbvox_uniform_info |
|
{ |
|
int type; // which type of uniform |
|
int bytes_per_element; // the size of each uniform array element (e.g. vec3 = 12 bytes) |
|
int array_length; // length of the uniform array |
|
char *name; // name in the shader @TODO use numeric binding |
|
float *default_value; // if not NULL, you can use this as the uniform pointer |
|
int use_tex_buffer; // if true, then the uniform is a sampler but the data can come from default_value |
|
}; |
|
|
|
////////////////////////////////////////////////////////////////////////////// |
|
// |
|
// Uniform sample code |
|
// |
|
|
|
#if 0 |
|
// Run this once per frame before drawing all the meshes. |
|
// You still need to separately set the 'transform' uniform for every mesh. |
|
void setup_uniforms(GLuint shader, float camera_pos[4], GLuint tex1, GLuint tex2) |
|
{ |
|
int i; |
|
glUseProgram(shader); // so uniform binding works |
|
for (i=0; i < STBVOX_UNIFORM_count; ++i) { |
|
stbvox_uniform_info sui; |
|
if (stbvox_get_uniform_info(&sui, i)) { |
|
GLint loc = glGetUniformLocation(shader, sui.name); |
|
if (loc != 0) { |
|
switch (i) { |
|
case STBVOX_UNIFORM_camera_pos: // only needed for fog |
|
glUniform4fv(loc, sui.array_length, camera_pos); |
|
break; |
|
|
|
case STBVOX_UNIFORM_tex_array: { |
|
GLuint tex_unit[2] = { 0, 1 }; // your choice of samplers |
|
glUniform1iv(loc, 2, tex_unit); |
|
|
|
glActiveTexture(GL_TEXTURE0 + tex_unit[0]); glBindTexture(GL_TEXTURE_2D_ARRAY, tex1); |
|
glActiveTexture(GL_TEXTURE0 + tex_unit[1]); glBindTexture(GL_TEXTURE_2D_ARRAY, tex2); |
|
glActiveTexture(GL_TEXTURE0); // reset to default |
|
break; |
|
} |
|
|
|
case STBVOX_UNIFORM_face_data: |
|
glUniform1i(loc, SAMPLER_YOU_WILL_BIND_PER_MESH_FACE_DATA_TO); |
|
break; |
|
|
|
case STBVOX_UNIFORM_ambient: // you definitely want to override this |
|
case STBVOX_UNIFORM_color_table: // you might want to override this |
|
case STBVOX_UNIFORM_texscale: // you may want to override this |
|
glUniform4fv(loc, sui.array_length, sui.default_value); |
|
break; |
|
|
|
case STBVOX_UNIFORM_normals: // you never want to override this |
|
case STBVOX_UNIFORM_texgen: // you never want to override this |
|
glUniform3fv(loc, sui.array_length, sui.default_value); |
|
break; |
|
} |
|
} |
|
} |
|
} |
|
} |
|
#endif |
|
|
|
#ifdef __cplusplus |
|
} |
|
#endif |
|
|
|
////////////////////////////////////////////////////////////////////////////// |
|
// |
|
// INPUT TO MESHING |
|
// |
|
|
|
// Shapes of blocks that aren't always cubes |
|
enum |
|
{ |
|
STBVOX_GEOM_empty, |
|
STBVOX_GEOM_knockout, // creates a hole in the mesh |
|
STBVOX_GEOM_solid, |
|
STBVOX_GEOM_transp, // solid geometry, but transparent contents so neighbors generate normally, unless same blocktype |
|
|
|
// following 4 can be represented by vheight as well |
|
STBVOX_GEOM_slab_upper, |
|
STBVOX_GEOM_slab_lower, |
|
STBVOX_GEOM_floor_slope_north_is_top, |
|
STBVOX_GEOM_ceil_slope_north_is_bottom, |
|
|
|
STBVOX_GEOM_floor_slope_north_is_top_as_wall_UNIMPLEMENTED, // same as floor_slope above, but uses wall's texture & texture projection |
|
STBVOX_GEOM_ceil_slope_north_is_bottom_as_wall_UNIMPLEMENTED, |
|
STBVOX_GEOM_crossed_pair, // corner-to-corner pairs, with normal vector bumped upwards |
|
STBVOX_GEOM_force, // like GEOM_transp, but faces visible even if neighbor is same type, e.g. minecraft fancy leaves |
|
|
|
// these access vheight input |
|
STBVOX_GEOM_floor_vheight_03 = 12, // diagonal is SW-NE |
|
STBVOX_GEOM_floor_vheight_12, // diagonal is SE-NW |
|
STBVOX_GEOM_ceil_vheight_03, |
|
STBVOX_GEOM_ceil_vheight_12, |
|
|
|
STBVOX_GEOM_count, // number of geom cases |
|
}; |
|
|
|
enum |
|
{ |
|
STBVOX_FACE_east, |
|
STBVOX_FACE_north, |
|
STBVOX_FACE_west, |
|
STBVOX_FACE_south, |
|
STBVOX_FACE_up, |
|
STBVOX_FACE_down, |
|
|
|
STBVOX_FACE_count, |
|
}; |
|
|
|
#ifdef STBVOX_CONFIG_BLOCKTYPE_SHORT |
|
typedef unsigned short stbvox_block_type; |
|
#else |
|
typedef unsigned char stbvox_block_type; |
|
#endif |
|
|
|
// 24-bit color |
|
typedef struct |
|
{ |
|
unsigned char r,g,b; |
|
} stbvox_rgb; |
|
|
|
#define STBVOX_COLOR_TEX1_ENABLE 64 |
|
#define STBVOX_COLOR_TEX2_ENABLE 128 |
|
|
|
// This is the data structure you fill out. Most of the arrays can be |
|
// NULL, except when one is required to get the value to index another. |
|
// |
|
// The compass system used in the following descriptions is: |
|
// east means increasing x |
|
// north means increasing y |
|
// up means increasing z |
|
struct stbvox_input_description |
|
{ |
|
unsigned char lighting_at_vertices; |
|
// The default is lighting values (i.e. ambient occlusion) are at block |
|
// center, and the vertex light is gathered from those adjacent block |
|
// centers that the vertex is facing. This makes smooth lighting |
|
// consistent across adjacent faces with the same orientation. |
|
// |
|
// Setting this flag to non-zero gives you explicit control |
|
// of light at each vertex, but now the lighting/ao will be |
|
// shared by all vertices at the same point, even if they |
|
// have different normals. |
|
|
|
// these are mostly 3D maps you use to define your voxel world, using x_stride and y_stride |
|
// note that for cache efficiency, you want to use the block_foo palettes as much as possible instead |
|
|
|
stbvox_rgb *rgb; |
|
// Indexed by 3D coordinate. |
|
// 24-bit voxel color for STBVOX_CONFIG_MODE = 20 or 21 only |
|
|
|
unsigned char *lighting; |
|
// Indexed by 3D coordinate. The lighting value / ambient occlusion |
|
// value that is used to define the vertex lighting values. |
|
// The raw lighting values are defined at the center of blocks |
|
// (or at vertex if 'lighting_at_vertices' is true). |
|
// |
|
// If the macro STBVOX_CONFIG_ROTATION_IN_LIGHTING is defined, |
|
// then an additional 2-bit block rotation value is stored |
|
// in this field as well. |
|
// |
|
// Encode with STBVOX_MAKE_LIGHTING_EXT(lighting,rot)--here |
|
// 'lighting' should still be 8 bits, as the macro will |
|
// discard the bottom bits automatically. Similarly, if |
|
// using STBVOX_CONFIG_VHEIGHT_IN_LIGHTING, encode with |
|
// STBVOX_MAKE_LIGHTING_EXT(lighting,vheight). |
|
// |
|
// (Rationale: rotation needs to be independent of blocktype, |
|
// but is only 2 bits so doesn't want to be its own array. |
|
// Lighting is the one thing that was likely to already be |
|
// in use and that I could easily steal 2 bits from.) |
|
|
|
stbvox_block_type *blocktype; |
|
// Indexed by 3D coordinate. This is a core "block type" value, which is used |
|
// to index into other arrays; essentially a "palette". This is much more |
|
// memory-efficient and performance-friendly than storing the values explicitly, |
|
// but only makes sense if the values are always synchronized. |
|
// |
|
// If a voxel's blocktype is 0, it is assumed to be empty (STBVOX_GEOM_empty), |
|
// and no other blocktypes should be STBVOX_GEOM_empty. (Only if you do not |
|
// have blocktypes should STBVOX_GEOM_empty ever used.) |
|
// |
|
// Normally it is an unsigned byte, but you can override it to be |
|
// a short if you have too many blocktypes. |
|
|
|
unsigned char *geometry; |
|
// Indexed by 3D coordinate. Contains the geometry type for the block. |
|
// Also contains a 2-bit rotation for how the whole block is rotated. |
|
// Also includes a 2-bit vheight value when using shared vheight values. |
|
// See the separate vheight documentation. |
|
// Encode with STBVOX_MAKE_GEOMETRY(geom, rot, vheight) |
|
|
|
unsigned char *block_geometry; |
|
// Array indexed by blocktype containing the geometry for this block, plus |
|
// a 2-bit "simple rotation". Note rotation has limited use since it's not |
|
// independent of blocktype. |
|
// |
|
// Encode with STBVOX_MAKE_GEOMETRY(geom,simple_rot,0) |
|
|
|
unsigned char *block_tex1; |
|
// Array indexed by blocktype containing the texture id for texture #1. |
|
|
|
unsigned char (*block_tex1_face)[6]; |
|
// Array indexed by blocktype and face containing the texture id for texture #1. |
|
// The N/E/S/W face choices can be rotated by one of the rotation selectors; |
|
// The top & bottom face textures will rotate to match. |
|
// Note that it only makes sense to use one of block_tex1 or block_tex1_face; |
|
// this pattern repeats throughout and this notice is not repeated. |
|
|
|
unsigned char *tex2; |
|
// Indexed by 3D coordinate. Contains the texture id for texture #2 |
|
// to use on all faces of the block. |
|
|
|
unsigned char *block_tex2; |
|
// Array indexed by blocktype containing the texture id for texture #2. |
|
|
|
unsigned char (*block_tex2_face)[6]; |
|
// Array indexed by blocktype and face containing the texture id for texture #2. |
|
// The N/E/S/W face choices can be rotated by one of the rotation selectors; |
|
// The top & bottom face textures will rotate to match. |
|
|
|
unsigned char *color; |
|
// Indexed by 3D coordinate. Contains the color for all faces of the block. |
|
// The core color value is 0..63. |
|
// Encode with STBVOX_MAKE_COLOR(color_number, tex1_enable, tex2_enable) |
|
|
|
unsigned char *block_color; |
|
// Array indexed by blocktype containing the color value to apply to the faces. |
|
// The core color value is 0..63. |
|
// Encode with STBVOX_MAKE_COLOR(color_number, tex1_enable, tex2_enable) |
|
|
|
unsigned char (*block_color_face)[6]; |
|
// Array indexed by blocktype and face containing the color value to apply to that face. |
|
// The core color value is 0..63. |
|
// Encode with STBVOX_MAKE_COLOR(color_number, tex1_enable, tex2_enable) |
|
|
|
unsigned char *block_texlerp; |
|
// Array indexed by blocktype containing 3-bit scalar for texture #2 alpha |
|
// (known throughout as 'texlerp'). This is constant over every face even |
|
// though the property is potentially per-vertex. |
|
|
|
unsigned char (*block_texlerp_face)[6]; |
|
// Array indexed by blocktype and face containing 3-bit scalar for texture #2 alpha. |
|
// This is constant over the face even though the property is potentially per-vertex. |
|
|
|
unsigned char *block_vheight; |
|
// Array indexed by blocktype containing the vheight values for the |
|
// top or bottom face of this block. These will rotate properly if the |
|
// block is rotated. See discussion of vheight. |
|
// Encode with STBVOX_MAKE_VHEIGHT(sw_height, se_height, nw_height, ne_height) |
|
|
|
unsigned char *selector; |
|
// Array indexed by 3D coordinates indicating which output mesh to select. |
|
|
|
unsigned char *block_selector; |
|
// Array indexed by blocktype indicating which output mesh to select. |
|
|
|
unsigned char *side_texrot; |
|
// Array indexed by 3D coordinates encoding 2-bit texture rotations for the |
|
// faces on the E/N/W/S sides of the block. |
|
// Encode with STBVOX_MAKE_SIDE_TEXROT(rot_e, rot_n, rot_w, rot_s) |
|
|
|
unsigned char *block_side_texrot; |
|
// Array indexed by blocktype encoding 2-bit texture rotations for the faces |
|
// on the E/N/W/S sides of the block. |
|
// Encode with STBVOX_MAKE_SIDE_TEXROT(rot_e, rot_n, rot_w, rot_s) |
|
|
|
unsigned char *overlay; // index into palettes listed below |
|
// Indexed by 3D coordinate. If 0, there is no overlay. If non-zero, |
|
// it indexes into to the below arrays and overrides the values |
|
// defined by the blocktype. |
|
|
|
unsigned char (*overlay_tex1)[6]; |
|
// Array indexed by overlay value and face, containing an override value |
|
// for the texture id for texture #1. If 0, the value defined by blocktype |
|
// is used. |
|
|
|
unsigned char (*overlay_tex2)[6]; |
|
// Array indexed by overlay value and face, containing an override value |
|
// for the texture id for texture #2. If 0, the value defined by blocktype |
|
// is used. |
|
|
|
unsigned char (*overlay_color)[6]; |
|
// Array indexed by overlay value and face, containing an override value |
|
// for the face color. If 0, the value defined by blocktype is used. |
|
|
|
unsigned char *overlay_side_texrot; |
|
// Array indexed by overlay value, encoding 2-bit texture rotations for the faces |
|
// on the E/N/W/S sides of the block. |
|
// Encode with STBVOX_MAKE_SIDE_TEXROT(rot_e, rot_n, rot_w, rot_s) |
|
|
|
unsigned char *rotate; |
|
// Indexed by 3D coordinate. Allows independent rotation of several |
|
// parts of the voxel, where by rotation I mean swapping textures |
|
// and colors between E/N/S/W faces. |
|
// Block: rotates anything indexed by blocktype |
|
// Overlay: rotates anything indexed by overlay |
|
// EColor: rotates faces defined in ecolor_facemask |
|
// Encode with STBVOX_MAKE_MATROT(block,overlay,ecolor) |
|
|
|
unsigned char *tex2_for_tex1; |
|
// Array indexed by tex1 containing the texture id for texture #2. |
|
// You can use this if the two are always/almost-always strictly |
|
// correlated (e.g. if tex2 is a detail texture for tex1), as it |
|
// will be more efficient (touching fewer cache lines) than using |
|
// e.g. block_tex2_face. |
|
|
|
unsigned char *tex2_replace; |
|
// Indexed by 3D coordinate. Specifies the texture id for texture #2 |
|
// to use on a single face of the voxel, which must be E/N/W/S (not U/D). |
|
// The texture id is limited to 6 bits unless tex2_facemask is also |
|
// defined (see below). |
|
// Encode with STBVOX_MAKE_TEX2_REPLACE(tex2, face) |
|
|
|
unsigned char *tex2_facemask; |
|
// Indexed by 3D coordinate. Specifies which of the six faces should |
|
// have their tex2 replaced by the value of tex2_replace. In this |
|
// case, all 8 bits of tex2_replace are used as the texture id. |
|
// Encode with STBVOX_MAKE_FACE_MASK(east,north,west,south,up,down) |
|
|
|
unsigned char *extended_color; |
|
// Indexed by 3D coordinate. Specifies a value that indexes into |
|
// the ecolor arrays below (both of which must be defined). |
|
|
|
unsigned char *ecolor_color; |
|
// Indexed by extended_color value, specifies an optional override |
|
// for the color value on some faces. |
|
// Encode with STBVOX_MAKE_COLOR(color_number, tex1_enable, tex2_enable) |
|
|
|
unsigned char *ecolor_facemask; |
|
// Indexed by extended_color value, this specifies which faces the |
|
// color in ecolor_color should be applied to. The faces can be |
|
// independently rotated by the ecolor value of 'rotate', if it exists. |
|
// Encode with STBVOX_MAKE_FACE_MASK(e,n,w,s,u,d) |
|
|
|
unsigned char *color2; |
|
// Indexed by 3D coordinates, specifies an alternative color to apply |
|
// to some of the faces of the block. |
|
// Encode with STBVOX_MAKE_COLOR(color_number, tex1_enable, tex2_enable) |
|
|
|
unsigned char *color2_facemask; |
|
// Indexed by 3D coordinates, specifies which faces should use the |
|
// color defined in color2. No rotation value is applied. |
|
// Encode with STBVOX_MAKE_FACE_MASK(e,n,w,s,u,d) |
|
|
|
unsigned char *color3; |
|
// Indexed by 3D coordinates, specifies an alternative color to apply |
|
// to some of the faces of the block. |
|
// Encode with STBVOX_MAKE_COLOR(color_number, tex1_enable, tex2_enable) |
|
|
|
unsigned char *color3_facemask; |
|
// Indexed by 3D coordinates, specifies which faces should use the |
|
// color defined in color3. No rotation value is applied. |
|
// Encode with STBVOX_MAKE_FACE_MASK(e,n,w,s,u,d) |
|
|
|
unsigned char *texlerp_simple; |
|
// Indexed by 3D coordinates, this is the smallest texlerp encoding |
|
// that can do useful work. It consits of three values: baselerp, |
|
// vertlerp, and face_vertlerp. Baselerp defines the value |
|
// to use on all of the faces but one, from the STBVOX_TEXLERP_BASE |
|
// values. face_vertlerp is one of the 6 face values (or STBVOX_FACE_NONE) |
|
// which specifies the face should use the vertlerp values. |
|
// Vertlerp defines a lerp value at every vertex of the mesh. |
|
// Thus, one face can have per-vertex texlerp values, and those |
|
// values are encoded in the space so that they will be shared |
|
// by adjacent faces that also use vertlerp, allowing continuity |
|
// (this is used for the "texture crossfade" bit of the release video). |
|
// Encode with STBVOX_MAKE_TEXLERP_SIMPLE(baselerp, vertlerp, face_vertlerp) |
|
|
|
// The following texlerp encodings are experimental and maybe not |
|
// that useful. |
|
|
|
unsigned char *texlerp; |
|
// Indexed by 3D coordinates, this defines four values: |
|
// vertlerp is a lerp value at every vertex of the mesh (using STBVOX_TEXLERP_BASE values). |
|
// ud is the value to use on up and down faces, from STBVOX_TEXLERP_FACE values |
|
// ew is the value to use on east and west faces, from STBVOX_TEXLERP_FACE values |
|
// ns is the value to use on north and south faces, from STBVOX_TEXLERP_FACE values |
|
// If any of ud, ew, or ns is STBVOX_TEXLERP_FACE_use_vert, then the |
|
// vertlerp values for the vertices are gathered and used for those faces. |
|
// Encode with STBVOX_MAKE_TEXLERP(vertlerp,ud,ew,sw) |
|
|
|
unsigned short *texlerp_vert3; |
|
// Indexed by 3D coordinates, this works with texlerp and |
|
// provides a unique texlerp value for every direction at |
|
// every vertex. The same rules of whether faces share values |
|
// applies. The STBVOX_TEXLERP_FACE vertlerp value defined in |
|
// texlerp is only used for the down direction. The values at |
|
// each vertex in other directions are defined in this array, |
|
// and each uses the STBVOX_TEXLERP3 values (i.e. full precision |
|
// 3-bit texlerp values). |
|
// Encode with STBVOX_MAKE_VERT3(vertlerp_e,vertlerp_n,vertlerp_w,vertlerp_s,vertlerp_u) |
|
|
|
unsigned short *texlerp_face3; // e:3,n:3,w:3,s:3,u:2,d:2 |
|
// Indexed by 3D coordinates, this provides a compact way to |
|
// fully specify the texlerp value indepenendly for every face, |
|
// but doesn't allow per-vertex variation. E/N/W/S values are |
|
// encoded using STBVOX_TEXLERP3 values, whereas up and down |
|
// use STBVOX_TEXLERP_SIMPLE values. |
|
// Encode with STBVOX_MAKE_FACE3(face_e,face_n,face_w,face_s,face_u,face_d) |
|
|
|
unsigned char *vheight; // STBVOX_MAKE_VHEIGHT -- sw:2, se:2, nw:2, ne:2, doesn't rotate |
|
// Indexed by 3D coordinates, this defines the four |
|
// vheight values to use if the geometry is STBVOX_GEOM_vheight*. |
|
// See the vheight discussion. |
|
|
|
unsigned char *packed_compact; |
|
// Stores block rotation, vheight, and texlerp values: |
|
// block rotation: 2 bits |
|
// vertex vheight: 2 bits |
|
// use_texlerp : 1 bit |
|
// vertex texlerp: 3 bits |
|
// If STBVOX_CONFIG_UP_TEXLERP_PACKED is defined, then 'vertex texlerp' is |
|
// used for up faces if use_texlerp is 1. If STBVOX_CONFIG_DOWN_TEXLERP_PACKED |
|
// is defined, then 'vertex texlerp' is used for down faces if use_texlerp is 1. |
|
// Note if those symbols are defined but packed_compact is NULL, the normal |
|
// texlerp default will be used. |
|
// Encode with STBVOX_MAKE_PACKED_COMPACT(rot, vheight, texlerp, use_texlerp) |
|
}; |
|
// @OPTIMIZE allow specializing; build a single struct with all of the |
|
// 3D-indexed arrays combined so it's AoS instead of SoA for better |
|
// cache efficiency |
|
|
|
|
|
////////////////////////////////////////////////////////////////////////////// |
|
// |
|
// VHEIGHT DOCUMENTATION |
|
// |
|
// "vheight" is the internal name for the special block types |
|
// with sloped tops or bottoms. "vheight" stands for "vertex height". |
|
// |
|
// Note that these blocks are very flexible (there are 256 of them, |
|
// although at least 17 of them should never be used), but they |
|
// also have a disadvantage that they generate extra invisible |
|
// faces; the generator does not currently detect whether adjacent |
|
// vheight blocks hide each others sides, so those side faces are |
|
// always generated. For a continuous ground terrain, this means |
|
// that you may generate 5x as many quads as needed. See notes |
|
// on "improvements for shipping products" in the introduction. |
|
|
|
enum |
|
{ |
|
STBVOX_VERTEX_HEIGHT_0, |
|
STBVOX_VERTEX_HEIGHT_half, |
|
STBVOX_VERTEX_HEIGHT_1, |
|
STBVOX_VERTEX_HEIGHT_one_and_a_half, |
|
}; |
|
// These are the "vheight" values. Vheight stands for "vertex height". |
|
// The idea is that for a "floor vheight" block, you take a cube and |
|
// reposition the top-most vertices at various heights as specified by |
|
// the vheight values. Similarly, a "ceiling vheight" block takes a |
|
// cube and repositions the bottom-most vertices. |
|
// |
|
// A floor block only adjusts the top four vertices; the bottom four vertices |
|
// remain at the bottom of the block. The height values are 2 bits, |
|
// measured in halves of a block; so you can specify heights of 0/2, |
|
// 1/2, 2/2, or 3/2. 0 is the bottom of the block, 1 is halfway |
|
// up the block, 2 is the top of the block, and 3 is halfway up the |
|
// next block (and actually outside of the block). The value 3 is |
|
// actually legal for floor vheight (but not ceiling), and allows you to: |
|
// |
|
// (A) have smoother terrain by having slopes that cross blocks, |
|
// e.g. (1,1,3,3) is a regular-seeming slope halfway between blocks |
|
// (B) make slopes steeper than 45-degrees, e.g. (0,0,3,3) |
|
// |
|
// (Because only z coordinates have half-block precision, and x&y are |
|
// limited to block corner precision, it's not possible to make these |
|
// things "properly" out of blocks, e.g. a half-slope block on its side |
|
// or a sloped block halfway between blocks that's made out of two blocks.) |
|
// |
|
// If you define STBVOX_CONFIG_OPTIMIZED_VHEIGHT, then the top face |
|
// (or bottom face for a ceiling vheight block) will be drawn as a |
|
// single quad even if the four vertex heights aren't planar, and a |
|
// single normal will be used over the entire quad. If you |
|
// don't define it, then if the top face is non-planar, it will be |
|
// split into two triangles, each with their own normal/lighting. |
|
// (Note that since all output from stb_voxel_render is quad meshes, |
|
// triangles are actually rendered as degenerate quads.) In this case, |
|
// the distinction betwen STBVOX_GEOM_floor_vheight_03 and |
|
// STBVOX_GEOM_floor_vheight_12 comes into play; the former introduces |
|
// an edge from the SW to NE corner (i.e. from <0,0,?> to <1,1,?>), |
|
// while the latter introduces an edge from the NW to SE corner |
|
// (i.e. from <0,1,?> to <1,0,?>.) For a "lazy mesh" look, use |
|
// exclusively _03 or _12. For a "classic mesh" look, alternate |
|
// _03 and _12 in a checkerboard pattern. For a "smoothest surface" |
|
// look, choose the edge based on actual vertex heights. |
|
// |
|
// The four vertex heights can come from several places. The simplest |
|
// encoding is to just use the 'vheight' parameter which stores four |
|
// explicit vertex heights for every block. This allows total independence, |
|
// but at the cost of the largest memory usage, 1 byte per 3D block. |
|
// Encode this with STBVOX_MAKE_VHEIGHT(vh_sw, vh_se, vh_nw, vh_ne). |
|
// These coordinates are absolute, not affected by block rotations. |
|
// |
|
// An alternative if you just want to encode some very specific block |
|
// types, not all the possibilities--say you just want half-height slopes, |
|
// so you want (0,0,1,1) and (1,1,2,2)--then you can use block_vheight |
|
// to specify them. The geometry rotation will cause block_vheight values |
|
// to be rotated (because it's as if you're just defining a type of |
|
// block). This value is also encoded with STBVOX_MAKE_VHEIGHT. |
|
// |
|
// If you want to save memory and you're creating a "continuous ground" |
|
// sort of effect, you can make each vertex of the lattice share the |
|
// vheight value; that is, two adjacent blocks that share a vertex will |
|
// always get the same vheight value for that vertex. Then you need to |
|
// store two bits of vheight for every block, which you do by storing it |
|
// as part another data structure. Store the south-west vertex's vheight |
|
// with the block. You can either use the "geometry" mesh variable (it's |
|
// a parameter to STBVOX_MAKE_GEOMETRY) or you can store it in the |
|
// "lighting" mesh variable if you defined STBVOX_CONFIG_VHEIGHT_IN_LIGHTING, |
|
// using STBVOX_MAKE_LIGHTING_EXT(lighting,vheight). |
|
// |
|
// Note that if you start with a 2D height map and generate vheight data from |
|
// it, you don't necessarily store only one value per (x,y) coordinate, |
|
// as the same value may need to be set up at multiple z heights. For |
|
// example, if height(8,8) = 13.5, then you want the block at (8,8,13) |
|
// to store STBVOX_VERTEX_HEIGHT_half, and this will be used by blocks |
|
// at (7,7,13), (8,7,13), (7,8,13), and (8,8,13). However, if you're |
|
// allowing steep slopes, it might be the case that you have a block |
|
// at (7,7,12) which is supposed to stick up to 13.5; that means |
|
// you also need to store STBVOX_VERTEX_HEIGHT_one_and_a_half at (8,8,12). |
|
|
|
enum |
|
{ |
|
STBVOX_TEXLERP_FACE_0, |
|
STBVOX_TEXLERP_FACE_half, |
|
STBVOX_TEXLERP_FACE_1, |
|
STBVOX_TEXLERP_FACE_use_vert, |
|
}; |
|
|
|
enum |
|
{ |
|
STBVOX_TEXLERP_BASE_0, // 0.0 |
|
STBVOX_TEXLERP_BASE_2_7, // 2/7 |
|
STBVOX_TEXLERP_BASE_5_7, // 4/7 |
|
STBVOX_TEXLERP_BASE_1 // 1.0 |
|
}; |
|
|
|
enum |
|
{ |
|
STBVOX_TEXLERP3_0_8, |
|
STBVOX_TEXLERP3_1_8, |
|
STBVOX_TEXLERP3_2_8, |
|
STBVOX_TEXLERP3_3_8, |
|
STBVOX_TEXLERP3_4_8, |
|
STBVOX_TEXLERP3_5_8, |
|
STBVOX_TEXLERP3_6_8, |
|
STBVOX_TEXLERP3_7_8, |
|
}; |
|
|
|
#define STBVOX_FACE_NONE 7 |
|
|
|
#define STBVOX_BLOCKTYPE_EMPTY 0 |
|
|
|
#ifdef STBVOX_BLOCKTYPE_SHORT |
|
#define STBVOX_BLOCKTYPE_HOLE 65535 |
|
#else |
|
#define STBVOX_BLOCKTYPE_HOLE 255 |
|
#endif |
|
|
|
#define STBVOX_MAKE_GEOMETRY(geom, rotate, vheight) ((geom) + (rotate)*16 + (vheight)*64) |
|
#define STBVOX_MAKE_VHEIGHT(v_sw, v_se, v_nw, v_ne) ((v_sw) + (v_se)*4 + (v_nw)*16 + (v_ne)*64) |
|
#define STBVOX_MAKE_MATROT(block, overlay, color) ((block) + (overlay)*4 + (color)*64) |
|
#define STBVOX_MAKE_TEX2_REPLACE(tex2, tex2_replace_face) ((tex2) + ((tex2_replace_face) & 3)*64) |
|
#define STBVOX_MAKE_TEXLERP(ns2, ew2, ud2, vert) ((ew2) + (ns2)*4 + (ud2)*16 + (vert)*64) |
|
#define STBVOX_MAKE_TEXLERP_SIMPLE(baselerp,vert,face) ((vert)*32 + (face)*4 + (baselerp)) |
|
#define STBVOX_MAKE_TEXLERP1(vert,e2,n2,w2,s2,u4,d2) STBVOX_MAKE_TEXLERP(s2, w2, d2, vert) |
|
#define STBVOX_MAKE_TEXLERP2(vert,e2,n2,w2,s2,u4,d2) ((u2)*16 + (n2)*4 + (s2)) |
|
#define STBVOX_MAKE_FACE_MASK(e,n,w,s,u,d) ((e)+(n)*2+(w)*4+(s)*8+(u)*16+(d)*32) |
|
#define STBVOX_MAKE_SIDE_TEXROT(e,n,w,s) ((e)+(n)*4+(w)*16+(s)*64) |
|
#define STBVOX_MAKE_COLOR(color,t1,t2) ((color)+(t1)*64+(t2)*128) |
|
#define STBVOX_MAKE_TEXLERP_VERT3(e,n,w,s,u) ((e)+(n)*8+(w)*64+(s)*512+(u)*4096) |
|
#define STBVOX_MAKE_TEXLERP_FACE3(e,n,w,s,u,d) ((e)+(n)*8+(w)*64+(s)*512+(u)*4096+(d)*16384) |
|
#define STBVOX_MAKE_PACKED_COMPACT(rot, vheight, texlerp, def) ((rot)+4*(vheight)+16*(use)+32*(texlerp)) |
|
|
|
#define STBVOX_MAKE_LIGHTING_EXT(lighting, rot) (((lighting)&~3)+(rot)) |
|
#define STBVOX_MAKE_LIGHTING(lighting) (lighting) |
|
|
|
#ifndef STBVOX_MAX_MESHES |
|
#define STBVOX_MAX_MESHES 2 // opaque & transparent |
|
#endif |
|
|
|
#define STBVOX_MAX_MESH_SLOTS 3 // one vertex & two faces, or two vertex and one face |
|
|
|
|
|
// don't mess with this directly, it's just here so you can |
|
// declare stbvox_mesh_maker on the stack or as a global |
|
struct stbvox_mesh_maker |
|
{ |
|
stbvox_input_description input; |
|
int cur_x, cur_y, cur_z; // last unprocessed voxel if it splits into multiple buffers |
|
int x0,y0,z0,x1,y1,z1; |
|
int x_stride_in_bytes; |
|
int y_stride_in_bytes; |
|
int config_dirty; |
|
int default_mesh; |
|
unsigned int tags; |
|
|
|
int cube_vertex_offset[6][4]; // this allows access per-vertex data stored block-centered (like texlerp, ambient) |
|
int vertex_gather_offset[6][4]; |
|
|
|
int pos_x,pos_y,pos_z; |
|
int full; |
|
|
|
// computed from user input |
|
char *output_cur [STBVOX_MAX_MESHES][STBVOX_MAX_MESH_SLOTS]; |
|
char *output_end [STBVOX_MAX_MESHES][STBVOX_MAX_MESH_SLOTS]; |
|
char *output_buffer[STBVOX_MAX_MESHES][STBVOX_MAX_MESH_SLOTS]; |
|
int output_len [STBVOX_MAX_MESHES][STBVOX_MAX_MESH_SLOTS]; |
|
|
|
// computed from config |
|
int output_size [STBVOX_MAX_MESHES][STBVOX_MAX_MESH_SLOTS]; // per quad |
|
int output_step [STBVOX_MAX_MESHES][STBVOX_MAX_MESH_SLOTS]; // per vertex or per face, depending |
|
int num_mesh_slots; |
|
|
|
float default_tex_scale[128][2]; |
|
}; |
|
|
|
#endif // INCLUDE_STB_VOXEL_RENDER_H |
|
|
|
|
|
#ifdef STB_VOXEL_RENDER_IMPLEMENTATION |
|
|
|
#include <stdlib.h> |
|
#include <assert.h> |
|
#include <string.h> // memset |
|
|
|
// have to use our own names to avoid the _MSC_VER path having conflicting type names |
|
#ifndef _MSC_VER |
|
#include <stdint.h> |
|
typedef uint16_t stbvox_uint16; |
|
typedef uint32_t stbvox_uint32; |
|
#else |
|
typedef unsigned short stbvox_uint16; |
|
typedef unsigned int stbvox_uint32; |
|
#endif |
|
|
|
#ifdef _MSC_VER |
|
#define STBVOX_NOTUSED(v) (void)(v) |
|
#else |
|
#define STBVOX_NOTUSED(v) (void)sizeof(v) |
|
#endif |
|
|
|
|
|
|
|
#ifndef STBVOX_CONFIG_MODE |
|
#error "Must defined STBVOX_CONFIG_MODE to select the mode" |
|
#endif |
|
|
|
#if defined(STBVOX_CONFIG_ROTATION_IN_LIGHTING) && defined(STBVOX_CONFIG_VHEIGHT_IN_LIGHTING) |
|
#error "Can't store both rotation and vheight in lighting" |
|
#endif |
|
|
|
|
|
// The following are candidate voxel modes. Only modes 0, 1, and 20, and 21 are |
|
// currently implemented. Reducing the storage-per-quad further |
|
// shouldn't improve performance, although obviously it allow you |
|
// to create larger worlds without streaming. |
|
// |
|
// |
|
// ----------- Two textures ----------- -- One texture -- ---- Color only ---- |
|
// Mode: 0 1 2 3 4 5 6 10 11 12 20 21 22 23 24 |
|
// ============================================================================================================ |
|
// uses Tex Buffer n Y Y Y Y Y Y Y Y Y n Y Y Y Y |
|
// bytes per quad 32 20 14 12 10 6 6 8 8 4 32 20 10 6 4 |
|
// non-blocks all all some some some slabs stairs some some none all all slabs slabs none |
|
// tex1 256 256 256 256 256 256 256 256 256 256 n n n n n |
|
// tex2 256 256 256 256 256 256 128 n n n n n n n n |
|
// colors 64 64 64 64 64 64 64 8 n n 2^24 2^24 2^24 2^24 256 |
|
// vertex ao Y Y Y Y Y n n Y Y n Y Y Y n n |
|
// vertex texlerp Y Y Y n n n n - - - - - - - - |
|
// x&y extents 127 127 128 64 64 128 64 64 128 128 127 127 128 128 128 |
|
// z extents 255 255 128 64? 64? 64 64 32 64 128 255 255 128 64 128 |
|
|
|
// not sure why I only wrote down the above "result data" and didn't preserve |
|
// the vertex formats, but here I've tried to reconstruct the designs... |
|
// mode # 3 is wrong, one byte too large, but they may have been an error originally |
|
|
|
// Mode: 0 1 2 3 4 5 6 10 11 12 20 21 22 23 24 |
|
// ============================================================================================================= |
|
// bytes per quad 32 20 14 12 10 6 6 8 8 4 20 10 6 4 |
|
// |
|
// vertex x bits 7 7 0 6 0 0 0 0 0 0 7 0 0 0 |
|
// vertex y bits 7 7 0 0 0 0 0 0 0 0 7 0 0 0 |
|
// vertex z bits 9 9 7 4 2 0 0 2 2 0 9 2 0 0 |
|
// vertex ao bits 6 6 6 6 6 0 0 6 6 0 6 6 0 0 |
|
// vertex txl bits 3 3 3 0 0 0 0 0 0 0 (3) 0 0 0 |
|
// |
|
// face tex1 bits (8) 8 8 8 8 8 8 8 8 8 |
|
// face tex2 bits (8) 8 8 8 8 8 7 - - - |
|
// face color bits (8) 8 8 8 8 8 8 3 0 0 24 24 24 8 |
|
// face normal bits (8) 8 8 8 6 4 7 4 4 3 8 3 4 3 |
|
// face x bits 7 0 6 7 6 6 7 7 0 7 7 7 |
|
// face y bits 7 6 6 7 6 6 7 7 0 7 7 7 |
|
// face z bits 2 2 6 6 6 5 6 7 0 7 6 7 |
|
|
|
|
|
#if STBVOX_CONFIG_MODE==0 || STBVOX_CONFIG_MODE==1 |
|
|
|
#define STBVOX_ICONFIG_VERTEX_32 |
|
#define STBVOX_ICONFIG_FACE1_1 |
|
|
|
#elif STBVOX_CONFIG_MODE==20 || STBVOX_CONFIG_MODE==21 |
|
|
|
#define STBVOX_ICONFIG_VERTEX_32 |
|
#define STBVOX_ICONFIG_FACE1_1 |
|
#define STBVOX_ICONFIG_UNTEXTURED |
|
|
|
#else |
|
#error "Selected value of STBVOX_CONFIG_MODE is not supported" |
|
#endif |
|
|
|
#if STBVOX_CONFIG_MODE==0 || STBVOX_CONFIG_MODE==20 |
|
#define STBVOX_ICONFIG_FACE_ATTRIBUTE |
|
#endif |
|
|
|
#ifndef STBVOX_CONFIG_HLSL |
|
// the fallback if all others are exhausted is GLSL |
|
#define STBVOX_ICONFIG_GLSL |
|
#endif |
|
|
|
#ifdef STBVOX_CONFIG_OPENGL_MODELVIEW |
|
#define STBVOX_ICONFIG_OPENGL_3_1_COMPATIBILITY |
|
#endif |
|
|
|
#if defined(STBVOX_ICONFIG_VERTEX_32) |
|
typedef stbvox_uint32 stbvox_mesh_vertex; |
|
#define stbvox_vertex_encode(x,y,z,ao,texlerp) \ |
|
((stbvox_uint32) ((x)+((y)<<7)+((z)<<14)+((ao)<<23)+((texlerp)<<29))) |
|
#elif defined(STBVOX_ICONFIG_VERTEX_16_1) // mode=2 |
|
typedef stbvox_uint16 stbvox_mesh_vertex; |
|
#define stbvox_vertex_encode(x,y,z,ao,texlerp) \ |
|
((stbvox_uint16) ((z)+((ao)<<7)+((texlerp)<<13) |
|
#elif defined(STBVOX_ICONFIG_VERTEX_16_2) // mode=3 |
|
typedef stbvox_uint16 stbvox_mesh_vertex; |
|
#define stbvox_vertex_encode(x,y,z,ao,texlerp) \ |
|
((stbvox_uint16) ((x)+((z)<<6))+((ao)<<10)) |
|
#elif defined(STBVOX_ICONFIG_VERTEX_8) |
|
typedef stbvox_uint8 stbvox_mesh_vertex; |
|
#define stbvox_vertex_encode(x,y,z,ao,texlerp) \ |
|
((stbvox_uint8) ((z)+((ao)<<6)) |
|
#else |
|
#error "internal error, no vertex type" |
|
#endif |
|
|
|
#ifdef STBVOX_ICONFIG_FACE1_1 |
|
typedef struct |
|
{ |
|
unsigned char tex1,tex2,color,face_info; |
|
} stbvox_mesh_face; |
|
#else |
|
#error "internal error, no face type" |
|
#endif |
|
|
|
|
|
// 20-byte quad format: |
|
// |
|
// per vertex: |
|
// |
|
// x:7 |
|
// y:7 |
|
// z:9 |
|
// ao:6 |
|
// tex_lerp:3 |
|
// |
|
// per face: |
|
// |
|
// tex1:8 |
|
// tex2:8 |
|
// face:8 |
|
// color:8 |
|
|
|
|
|
// Faces: |
|
// |
|
// Faces use the bottom 3 bits to choose the texgen |
|
// mode, and all the bits to choose the normal. |
|
// Thus the bottom 3 bits have to be: |
|
// e, n, w, s, u, d, u, d |
|
// |
|
// These use compact names so tables are readable |
|
|
|
enum |
|
{ |
|
STBVF_e, |
|
STBVF_n, |
|
STBVF_w, |
|
STBVF_s, |
|
STBVF_u, |
|
STBVF_d, |
|
STBVF_eu, |
|
STBVF_ed, |
|
|
|
STBVF_eu_wall, |
|
STBVF_nu_wall, |
|
STBVF_wu_wall, |
|
STBVF_su_wall, |
|
STBVF_ne_u, |
|
STBVF_ne_d, |
|
STBVF_nu, |
|
STBVF_nd, |
|
|
|
STBVF_ed_wall, |
|
STBVF_nd_wall, |
|
STBVF_wd_wall, |
|
STBVF_sd_wall, |
|
STBVF_nw_u, |
|
STBVF_nw_d, |
|
STBVF_wu, |
|
STBVF_wd, |
|
|
|
STBVF_ne_u_cross, |
|
STBVF_nw_u_cross, |
|
STBVF_sw_u_cross, |
|
STBVF_se_u_cross, |
|
STBVF_sw_u, |
|
STBVF_sw_d, |
|
STBVF_su, |
|
STBVF_sd, |
|
|
|
// @TODO we need more than 5 bits to encode the normal to fit the following |
|
// so for now we use the right projection but the wrong normal |
|
STBVF_se_u = STBVF_su, |
|
STBVF_se_d = STBVF_sd, |
|
|
|
STBVF_count, |
|
}; |
|
|
|
///////////////////////////////////////////////////////////////////////////// |
|
// |
|
// tables -- i'd prefer if these were at the end of the file, but: C++ |
|
// |
|
|
|
static float stbvox_default_texgen[2][32][3] = |
|
{ |
|
{ { 0, 1,0 }, { 0, 0, 1 }, { 0,-1,0 }, { 0, 0,-1 }, |
|
{ -1, 0,0 }, { 0, 0, 1 }, { 1, 0,0 }, { 0, 0,-1 }, |
|
{ 0,-1,0 }, { 0, 0, 1 }, { 0, 1,0 }, { 0, 0,-1 }, |
|
{ 1, 0,0 }, { 0, 0, 1 }, { -1, 0,0 }, { 0, 0,-1 }, |
|
|
|
{ 1, 0,0 }, { 0, 1, 0 }, { -1, 0,0 }, { 0,-1, 0 }, |
|
{ -1, 0,0 }, { 0,-1, 0 }, { 1, 0,0 }, { 0, 1, 0 }, |
|
{ 1, 0,0 }, { 0, 1, 0 }, { -1, 0,0 }, { 0,-1, 0 }, |
|
{ -1, 0,0 }, { 0,-1, 0 }, { 1, 0,0 }, { 0, 1, 0 }, |
|
}, |
|
{ { 0, 0,-1 }, { 0, 1,0 }, { 0, 0, 1 }, { 0,-1,0 }, |
|
{ 0, 0,-1 }, { -1, 0,0 }, { 0, 0, 1 }, { 1, 0,0 }, |
|
{ 0, 0,-1 }, { 0,-1,0 }, { 0, 0, 1 }, { 0, 1,0 }, |
|
{ 0, 0,-1 }, { 1, 0,0 }, { 0, 0, 1 }, { -1, 0,0 }, |
|
|
|
{ 0,-1, 0 }, { 1, 0,0 }, { 0, 1, 0 }, { -1, 0,0 }, |
|
{ 0, 1, 0 }, { -1, 0,0 }, { 0,-1, 0 }, { 1, 0,0 }, |
|
{ 0,-1, 0 }, { 1, 0,0 }, { 0, 1, 0 }, { -1, 0,0 }, |
|
{ 0, 1, 0 }, { -1, 0,0 }, { 0,-1, 0 }, { 1, 0,0 }, |
|
}, |
|
}; |
|
|
|
#define STBVOX_RSQRT2 0.7071067811865f |
|
#define STBVOX_RSQRT3 0.5773502691896f |
|
|
|
static float stbvox_default_normals[32][3] = |
|
{ |
|
{ 1,0,0 }, // east |
|
{ 0,1,0 }, // north |
|
{ -1,0,0 }, // west |
|
{ 0,-1,0 }, // south |
|
{ 0,0,1 }, // up |
|
{ 0,0,-1 }, // down |
|
{ STBVOX_RSQRT2,0, STBVOX_RSQRT2 }, // east & up |
|
{ STBVOX_RSQRT2,0, -STBVOX_RSQRT2 }, // east & down |
|
|
|
{ STBVOX_RSQRT2,0, STBVOX_RSQRT2 }, // east & up |
|
{ 0, STBVOX_RSQRT2, STBVOX_RSQRT2 }, // north & up |
|
{ -STBVOX_RSQRT2,0, STBVOX_RSQRT2 }, // west & up |
|
{ 0,-STBVOX_RSQRT2, STBVOX_RSQRT2 }, // south & up |
|
{ STBVOX_RSQRT3, STBVOX_RSQRT3, STBVOX_RSQRT3 }, // ne & up |
|
{ STBVOX_RSQRT3, STBVOX_RSQRT3,-STBVOX_RSQRT3 }, // ne & down |
|
{ 0, STBVOX_RSQRT2, STBVOX_RSQRT2 }, // north & up |
|
{ 0, STBVOX_RSQRT2, -STBVOX_RSQRT2 }, // north & down |
|
|
|
{ STBVOX_RSQRT2,0, -STBVOX_RSQRT2 }, // east & down |
|
{ 0, STBVOX_RSQRT2, -STBVOX_RSQRT2 }, // north & down |
|
{ -STBVOX_RSQRT2,0, -STBVOX_RSQRT2 }, // west & down |
|
{ 0,-STBVOX_RSQRT2, -STBVOX_RSQRT2 }, // south & down |
|
{ -STBVOX_RSQRT3, STBVOX_RSQRT3, STBVOX_RSQRT3 }, // NW & up |
|
{ -STBVOX_RSQRT3, STBVOX_RSQRT3,-STBVOX_RSQRT3 }, // NW & down |
|
{ -STBVOX_RSQRT2,0, STBVOX_RSQRT2 }, // west & up |
|
{ -STBVOX_RSQRT2,0, -STBVOX_RSQRT2 }, // west & down |
|
|
|
{ STBVOX_RSQRT3, STBVOX_RSQRT3,STBVOX_RSQRT3 }, // NE & up crossed |
|
{ -STBVOX_RSQRT3, STBVOX_RSQRT3,STBVOX_RSQRT3 }, // NW & up crossed |
|
{ -STBVOX_RSQRT3,-STBVOX_RSQRT3,STBVOX_RSQRT3 }, // SW & up crossed |
|
{ STBVOX_RSQRT3,-STBVOX_RSQRT3,STBVOX_RSQRT3 }, // SE & up crossed |
|
{ -STBVOX_RSQRT3,-STBVOX_RSQRT3, STBVOX_RSQRT3 }, // SW & up |
|
{ -STBVOX_RSQRT3,-STBVOX_RSQRT3,-STBVOX_RSQRT3 }, // SW & up |
|
{ 0,-STBVOX_RSQRT2, STBVOX_RSQRT2 }, // south & up |
|
{ 0,-STBVOX_RSQRT2, -STBVOX_RSQRT2 }, // south & down |
|
}; |
|
|
|
static float stbvox_default_texscale[128][4] = |
|
{ |
|
{1,1,0,0},{1,1,0,0},{1,1,0,0},{1,1,0,0},{1,1,0,0},{1,1,0,0},{1,1,0,0},{1,1,0,0}, |
|
{1,1,0,0},{1,1,0,0},{1,1,0,0},{1,1,0,0},{1,1,0,0},{1,1,0,0},{1,1,0,0},{1,1,0,0}, |
|
{1,1,0,0},{1,1,0,0},{1,1,0,0},{1,1,0,0},{1,1,0,0},{1,1,0,0},{1,1,0,0},{1,1,0,0}, |
|
{1,1,0,0},{1,1,0,0},{1,1,0,0},{1,1,0,0},{1,1,0,0},{1,1,0,0},{1,1,0,0},{1,1,0,0}, |
|
{1,1,0,0},{1,1,0,0},{1,1,0,0},{1,1,0,0},{1,1,0,0},{1,1,0,0},{1,1,0,0},{1,1,0,0}, |
|
{1,1,0,0},{1,1,0,0},{1,1,0,0},{1,1,0,0},{1,1,0,0},{1,1,0,0},{1,1,0,0},{1,1,0,0}, |
|
{1,1,0,0},{1,1,0,0},{1,1,0,0},{1,1,0,0},{1,1,0,0},{1,1,0,0},{1,1,0,0},{1,1,0,0}, |
|
{1,1,0,0},{1,1,0,0},{1,1,0,0},{1,1,0,0},{1,1,0,0},{1,1,0,0},{1,1,0,0},{1,1,0,0}, |
|
{1,1,0,0},{1,1,0,0},{1,1,0,0},{1,1,0,0},{1,1,0,0},{1,1,0,0},{1,1,0,0},{1,1,0,0}, |
|
{1,1,0,0},{1,1,0,0},{1,1,0,0},{1,1,0,0},{1,1,0,0},{1,1,0,0},{1,1,0,0},{1,1,0,0}, |
|
{1,1,0,0},{1,1,0,0},{1,1,0,0},{1,1,0,0},{1,1,0,0},{1,1,0,0},{1,1,0,0},{1,1,0,0}, |
|
{1,1,0,0},{1,1,0,0},{1,1,0,0},{1,1,0,0},{1,1,0,0},{1,1,0,0},{1,1,0,0},{1,1,0,0}, |
|
{1,1,0,0},{1,1,0,0},{1,1,0,0},{1,1,0,0},{1,1,0,0},{1,1,0,0},{1,1,0,0},{1,1,0,0}, |
|
{1,1,0,0},{1,1,0,0},{1,1,0,0},{1,1,0,0},{1,1,0,0},{1,1,0,0},{1,1,0,0},{1,1,0,0}, |
|
{1,1,0,0},{1,1,0,0},{1,1,0,0},{1,1,0,0},{1,1,0,0},{1,1,0,0},{1,1,0,0},{1,1,0,0}, |
|
{1,1,0,0},{1,1,0,0},{1,1,0,0},{1,1,0,0},{1,1,0,0},{1,1,0,0},{1,1,0,0},{1,1,0,0}, |
|
}; |
|
|
|
static unsigned char stbvox_default_palette_compact[64][3] = |
|
{ |
|
{ 255,255,255 }, { 238,238,238 }, { 221,221,221 }, { 204,204,204 }, |
|
{ 187,187,187 }, { 170,170,170 }, { 153,153,153 }, { 136,136,136 }, |
|
{ 119,119,119 }, { 102,102,102 }, { 85, 85, 85 }, { 68, 68, 68 }, |
|
{ 51, 51, 51 }, { 34, 34, 34 }, { 17, 17, 17 }, { 0, 0, 0 }, |
|
{ 255,240,240 }, { 255,220,220 }, { 255,160,160 }, { 255, 32, 32 }, |
|
{ 200,120,160 }, { 200, 60,150 }, { 220,100,130 }, { 255, 0,128 }, |
|
{ 240,240,255 }, { 220,220,255 }, { 160,160,255 }, { 32, 32,255 }, |
|
{ 120,160,200 }, { 60,150,200 }, { 100,130,220 }, { 0,128,255 }, |
|
{ 240,255,240 }, { 220,255,220 }, { 160,255,160 }, { 32,255, 32 }, |
|
{ 160,200,120 }, { 150,200, 60 }, { 130,220,100 }, { 128,255, 0 }, |
|
{ 255,255,240 }, { 255,255,220 }, { 220,220,180 }, { 255,255, 32 }, |
|
{ 200,160,120 }, { 200,150, 60 }, { 220,130,100 }, { 255,128, 0 }, |
|
{ 255,240,255 }, { 255,220,255 }, { 220,180,220 }, { 255, 32,255 }, |
|
{ 160,120,200 }, { 150, 60,200 }, { 130,100,220 }, { 128, 0,255 }, |
|
{ 240,255,255 }, { 220,255,255 }, { 180,220,220 }, { 32,255,255 }, |
|
{ 120,200,160 }, { 60,200,150 }, { 100,220,130 }, { 0,255,128 }, |
|
}; |
|
|
|
static float stbvox_default_ambient[4][4] = |
|
{ |
|
{ 0,0,1 ,0 }, // reversed lighting direction |
|
{ 0.5,0.5,0.5,0 }, // directional color |
|
{ 0.5,0.5,0.5,0 }, // constant color |
|
{ 0.5,0.5,0.5,1.0f/1000.0f/1000.0f }, // fog data for simple_fog |
|
}; |
|
|
|
static float stbvox_default_palette[64][4]; |
|
|
|
static void stbvox_build_default_palette(void) |
|
{ |
|
int i; |
|
for (i=0; i < 64; ++i) { |
|
stbvox_default_palette[i][0] = stbvox_default_palette_compact[i][0] / 255.0f; |
|
stbvox_default_palette[i][1] = stbvox_default_palette_compact[i][1] / 255.0f; |
|
stbvox_default_palette[i][2] = stbvox_default_palette_compact[i][2] / 255.0f; |
|
stbvox_default_palette[i][3] = 1.0f; |
|
} |
|
} |
|
|
|
////////////////////////////////////////////////////////////////////////////// |
|
// |
|
// Shaders |
|
// |
|
|
|
#if defined(STBVOX_ICONFIG_OPENGL_3_1_COMPATIBILITY) |
|
#define STBVOX_SHADER_VERSION "#version 150 compatibility\n" |
|
#elif defined(STBVOX_ICONFIG_OPENGL_3_0) |
|
#define STBVOX_SHADER_VERSION "#version 130\n" |
|
#elif defined(STBVOX_ICONFIG_GLSL) |
|
#define STBVOX_SHADER_VERSION "#version 150\n" |
|
#else |
|
#define STBVOX_SHADER_VERSION "" |
|
#endif |
|
|
|
static const char *stbvox_vertex_program = |
|
{ |
|
STBVOX_SHADER_VERSION |
|
|
|
#ifdef STBVOX_ICONFIG_FACE_ATTRIBUTE // NOT TAG_face_sampled |
|
"in uvec4 attr_face;\n" |
|
#else |
|
"uniform usamplerBuffer facearray;\n" |
|
#endif |
|
|
|
#ifdef STBVOX_ICONFIG_FACE_ARRAY_2 |
|
"uniform usamplerBuffer facearray2;\n" |
|
#endif |
|
|
|
// vertex input data |
|
"in uint attr_vertex;\n" |
|
|
|
// per-buffer data |
|
"uniform vec3 transform[3];\n" |
|
|
|
// per-frame data |
|
"uniform vec4 camera_pos;\n" // 4th value is used for arbitrary hacking |
|
|
|
// to simplify things, we avoid using more than 256 uniform vectors |
|
// in fragment shader to avoid possible 1024 component limit, so |
|
// we access this table in the fragment shader. |
|
"uniform vec3 normal_table[32];\n" |
|
|
|
#ifndef STBVOX_CONFIG_OPENGL_MODELVIEW |
|
"uniform mat4x4 model_view;\n" |
|
#endif |
|
|
|
// fragment output data |
|
"flat out uvec4 facedata;\n" |
|
" out vec3 voxelspace_pos;\n" |
|
" out vec3 vnormal;\n" |
|
" out float texlerp;\n" |
|
" out float amb_occ;\n" |
|
|
|
// @TODO handle the HLSL way to do this |
|
"void main()\n" |
|
"{\n" |
|
#ifdef STBVOX_ICONFIG_FACE_ATTRIBUTE |
|
" facedata = attr_face;\n" |
|
#else |
|
" int faceID = gl_VertexID >> 2;\n" |
|
" facedata = texelFetch(facearray, faceID);\n" |
|
#endif |
|
|
|
// extract data for vertex |
|
" vec3 offset;\n" |
|
" offset.x = float( (attr_vertex ) & 127u );\n" // a[0..6] |
|
" offset.y = float( (attr_vertex >> 7u) & 127u );\n" // a[7..13] |
|
" offset.z = float( (attr_vertex >> 14u) & 511u );\n" // a[14..22] |
|
" amb_occ = float( (attr_vertex >> 23u) & 63u ) / 63.0;\n" // a[23..28] |
|
" texlerp = float( (attr_vertex >> 29u) ) / 7.0;\n" // a[29..31] |
|
|
|
" vnormal = normal_table[(facedata.w>>2u) & 31u];\n" |
|
" voxelspace_pos = offset * transform[0];\n" // mesh-to-object scale |
|
" vec3 position = voxelspace_pos + transform[1];\n" // mesh-to-object translate |
|
|
|
#ifdef STBVOX_DEBUG_TEST_NORMALS |
|
" if ((facedata.w & 28u) == 16u || (facedata.w & 28u) == 24u)\n" |
|
" position += vnormal.xyz * camera_pos.w;\n" |
|
#endif |
|
|
|
#ifndef STBVOX_CONFIG_OPENGL_MODELVIEW |
|
" gl_Position = model_view * vec4(position,1.0);\n" |
|
#else |
|
" gl_Position = gl_ModelViewProjectionMatrix * vec4(position,1.0);\n" |
|
#endif |
|
|
|
"}\n" |
|
}; |
|
|
|
|
|
static const char *stbvox_fragment_program = |
|
{ |
|
STBVOX_SHADER_VERSION |
|
|
|
// rlerp is lerp but with t on the left, like god intended |
|
#if defined(STBVOX_ICONFIG_GLSL) |
|
"#define rlerp(t,x,y) mix(x,y,t)\n" |
|
#elif defined(STBVOX_CONFIG_HLSL) |
|
"#define rlerp(t,x,y) lerp(x,y,t)\n" |
|
#else |
|
#error "need definition of rlerp()" |
|
#endif |
|
|
|
|
|
// vertex-shader output data |
|
"flat in uvec4 facedata;\n" |
|
" in vec3 voxelspace_pos;\n" |
|
" in vec3 vnormal;\n" |
|
" in float texlerp;\n" |
|
" in float amb_occ;\n" |
|
|
|
// per-buffer data |
|
"uniform vec3 transform[3];\n" |
|
|
|
// per-frame data |
|
"uniform vec4 camera_pos;\n" // 4th value is used for arbitrary hacking |
|
|
|
// probably constant data |
|
"uniform vec4 ambient[4];\n" |
|
|
|
#ifndef STBVOX_ICONFIG_UNTEXTURED |
|
// generally constant data |
|
"uniform sampler2DArray tex_array[2];\n" |
|
|
|
#ifdef STBVOX_CONFIG_PREFER_TEXBUFFER |
|
"uniform samplerBuffer color_table;\n" |
|
"uniform samplerBuffer texscale;\n" |
|
"uniform samplerBuffer texgen;\n" |
|
#else |
|
"uniform vec4 color_table[64];\n" |
|
"uniform vec4 texscale[64];\n" // instead of 128, to avoid running out of uniforms |
|
"uniform vec3 texgen[64];\n" |
|
#endif |
|
#endif |
|
|
|
"out vec4 outcolor;\n" |
|
|
|
#if defined(STBVOX_CONFIG_LIGHTING) || defined(STBVOX_CONFIG_LIGHTING_SIMPLE) |
|
"vec3 compute_lighting(vec3 pos, vec3 norm, vec3 albedo, vec3 ambient);\n" |
|
#endif |
|
#if defined(STBVOX_CONFIG_FOG) || defined(STBVOX_CONFIG_FOG_SMOOTHSTEP) |
|
"vec3 compute_fog(vec3 color, vec3 relative_pos, float fragment_alpha);\n" |
|
#endif |
|
|
|
"void main()\n" |
|
"{\n" |
|
" vec3 albedo;\n" |
|
" float fragment_alpha;\n" |
|
|
|
#ifndef STBVOX_ICONFIG_UNTEXTURED |
|
// unpack the values |
|
" uint tex1_id = facedata.x;\n" |
|
" uint tex2_id = facedata.y;\n" |
|
" uint texprojid = facedata.w & 31u;\n" |
|
" uint color_id = facedata.z;\n" |
|
|
|
#ifndef STBVOX_CONFIG_PREFER_TEXBUFFER |
|
// load from uniforms / texture buffers |
|
" vec3 texgen_s = texgen[texprojid];\n" |
|
" vec3 texgen_t = texgen[texprojid+32u];\n" |
|
" float tex1_scale = texscale[tex1_id & 63u].x;\n" |
|
" vec4 color = color_table[color_id & 63u];\n" |
|
#ifndef STBVOX_CONFIG_DISABLE_TEX2 |
|
" vec4 tex2_props = texscale[tex2_id & 63u];\n" |
|
#endif |
|
#else |
|
" vec3 texgen_s = texelFetch(texgen, int(texprojid)).xyz;\n" |
|
" vec3 texgen_t = texelFetch(texgen, int(texprojid+32u)).xyz;\n" |
|
" float tex1_scale = texelFetch(texscale, int(tex1_id & 127u)).x;\n" |
|
" vec4 color = texelFetch(color_table, int(color_id & 63u));\n" |
|
#ifndef STBVOX_CONFIG_DISABLE_TEX2 |
|
" vec4 tex2_props = texelFetch(texscale, int(tex1_id & 127u));\n" |
|
#endif |
|
#endif |
|
|
|
#ifndef STBVOX_CONFIG_DISABLE_TEX2 |
|
" float tex2_scale = tex2_props.y;\n" |
|
" bool texblend_mode = tex2_props.z != 0.0;\n" |
|
#endif |
|
" vec2 texcoord;\n" |
|
" vec3 texturespace_pos = voxelspace_pos + transform[2].xyz;\n" |
|
" texcoord.s = dot(texturespace_pos, texgen_s);\n" |
|
" texcoord.t = dot(texturespace_pos, texgen_t);\n" |
|
|
|
" vec2 texcoord_1 = tex1_scale * texcoord;\n" |
|
#ifndef STBVOX_CONFIG_DISABLE_TEX2 |
|
" vec2 texcoord_2 = tex2_scale * texcoord;\n" |
|
#endif |
|
|
|
#ifdef STBVOX_CONFIG_TEX1_EDGE_CLAMP |
|
" texcoord_1 = texcoord_1 - floor(texcoord_1);\n" |
|
" vec4 tex1 = textureGrad(tex_array[0], vec3(texcoord_1, float(tex1_id)), dFdx(tex1_scale*texcoord), dFdy(tex1_scale*texcoord));\n" |
|
#else |
|
" vec4 tex1 = texture(tex_array[0], vec3(texcoord_1, float(tex1_id)));\n" |
|
#endif |
|
|
|
#ifndef STBVOX_CONFIG_DISABLE_TEX2 |
|
#ifdef STBVOX_CONFIG_TEX2_EDGE_CLAMP |
|
" texcoord_2 = texcoord_2 - floor(texcoord_2);\n" |
|
" vec4 tex2 = textureGrad(tex_array[0], vec3(texcoord_2, float(tex2_id)), dFdx(tex2_scale*texcoord), dFdy(tex2_scale*texcoord));\n" |
|
#else |
|
" vec4 tex2 = texture(tex_array[1], vec3(texcoord_2, float(tex2_id)));\n" |
|
#endif |
|
#endif |
|
|
|
" bool emissive = (color.a > 1.0);\n" |
|
" color.a = min(color.a, 1.0);\n" |
|
|
|
// recolor textures |
|
" if ((color_id & 64u) != 0u) tex1.rgba *= color.rgba;\n" |
|
" fragment_alpha = tex1.a;\n" |
|
#ifndef STBVOX_CONFIG_DISABLE_TEX2 |
|
" if ((color_id & 128u) != 0u) tex2.rgba *= color.rgba;\n" |
|
|
|
#ifdef STBVOX_CONFIG_PREMULTIPLIED_ALPHA |
|
" tex2.rgba *= texlerp;\n" |
|
#else |
|
" tex2.a *= texlerp;\n" |
|
#endif |
|
|
|
" if (texblend_mode)\n" |
|
" albedo = tex1.xyz * rlerp(tex2.a, vec3(1.0,1.0,1.0), 2.0*tex2.xyz);\n" |
|
" else {\n" |
|
#ifdef STBVOX_CONFIG_PREMULTIPLIED_ALPHA |
|
" albedo = (1.0-tex2.a)*tex1.xyz + tex2.xyz;\n" |
|
#else |
|
" albedo = rlerp(tex2.a, tex1.xyz, tex2.xyz);\n" |
|
#endif |
|
" fragment_alpha = tex1.a*(1-tex2.a)+tex2.a;\n" |
|
" }\n" |
|
#else |
|
" albedo = tex1.xyz;\n" |
|
#endif |
|
|
|
#else // UNTEXTURED |
|
" vec4 color;" |
|
" color.xyz = vec3(facedata.xyz) / 255.0;\n" |
|
" bool emissive = false;\n" |
|
" albedo = color.xyz;\n" |
|
" fragment_alpha = 1.0;\n" |
|
#endif |
|
|
|
#ifdef STBVOX_ICONFIG_VARYING_VERTEX_NORMALS |
|
// currently, there are no modes that trigger this path; idea is that there |
|
// could be a couple of bits per vertex to perturb the normal to e.g. get curved look |
|
" vec3 normal = normalize(vnormal);\n" |
|
#else |
|
" vec3 normal = vnormal;\n" |
|
#endif |
|
|
|
" vec3 ambient_color = dot(normal, ambient[0].xyz) * ambient[1].xyz + ambient[2].xyz;\n" |
|
|
|
" ambient_color = clamp(ambient_color, 0.0, 1.0);" |
|
" ambient_color *= amb_occ;\n" |
|
|
|
" vec3 lit_color;\n" |
|
" if (!emissive)\n" |
|
#if defined(STBVOX_ICONFIG_LIGHTING) || defined(STBVOX_CONFIG_LIGHTING_SIMPLE) |
|
" lit_color = compute_lighting(voxelspace_pos + transform[1], normal, albedo, ambient_color);\n" |
|
#else |
|
" lit_color = albedo * ambient_color ;\n" |
|
#endif |
|
" else\n" |
|
" lit_color = albedo;\n" |
|
|
|
#if defined(STBVOX_ICONFIG_FOG) || defined(STBVOX_CONFIG_FOG_SMOOTHSTEP) |
|
" vec3 dist = voxelspace_pos + (transform[1] - camera_pos.xyz);\n" |
|
" lit_color = compute_fog(lit_color, dist, fragment_alpha);\n" |
|
#endif |
|
|
|
#ifdef STBVOX_CONFIG_UNPREMULTIPLY |
|
" vec4 final_color = vec4(lit_color/fragment_alpha, fragment_alpha);\n" |
|
#else |
|
" vec4 final_color = vec4(lit_color, fragment_alpha);\n" |
|
#endif |
|
" outcolor = final_color;\n" |
|
"}\n" |
|
|
|
#ifdef STBVOX_CONFIG_LIGHTING_SIMPLE |
|
"\n" |
|
"uniform vec3 light_source[2];\n" |
|
"vec3 compute_lighting(vec3 pos, vec3 norm, vec3 albedo, vec3 ambient)\n" |
|
"{\n" |
|
" vec3 light_dir = light_source[0] - pos;\n" |
|
" float lambert = dot(light_dir, norm) / dot(light_dir, light_dir);\n" |
|
" vec3 diffuse = clamp(light_source[1] * clamp(lambert, 0.0, 1.0), 0.0, 1.0);\n" |
|
" return (diffuse + ambient) * albedo;\n" |
|
"}\n" |
|
#endif |
|
|
|
#ifdef STBVOX_CONFIG_FOG_SMOOTHSTEP |
|
"\n" |
|
"vec3 compute_fog(vec3 color, vec3 relative_pos, float fragment_alpha)\n" |
|
"{\n" |
|
" float f = dot(relative_pos,relative_pos)*ambient[3].w;\n" |
|
//" f = rlerp(f, -2,1);\n" |
|
" f = clamp(f, 0.0, 1.0);\n" |
|
" f = 3.0*f*f - 2.0*f*f*f;\n" // smoothstep |
|
//" f = f*f;\n" // fade in more smoothly |
|
#ifdef STBVOX_CONFIG_PREMULTIPLIED_ALPHA |
|
" return rlerp(f, color.xyz, ambient[3].xyz*fragment_alpha);\n" |
|
#else |
|
" return rlerp(f, color.xyz, ambient[3].xyz);\n" |
|
#endif |
|
"}\n" |
|
#endif |
|
}; |
|
|
|
|
|
// still requires full alpha lookups, including tex2 if texblend is enabled |
|
static const char *stbvox_fragment_program_alpha_only = |
|
{ |
|
STBVOX_SHADER_VERSION |
|
|
|
// vertex-shader output data |
|
"flat in uvec4 facedata;\n" |
|
" in vec3 voxelspace_pos;\n" |
|
" in float texlerp;\n" |
|
|
|
// per-buffer data |
|
"uniform vec3 transform[3];\n" |
|
|
|
#ifndef STBVOX_ICONFIG_UNTEXTURED |
|
// generally constant data |
|
"uniform sampler2DArray tex_array[2];\n" |
|
|
|
#ifdef STBVOX_CONFIG_PREFER_TEXBUFFER |
|
"uniform samplerBuffer texscale;\n" |
|
"uniform samplerBuffer texgen;\n" |
|
#else |
|
"uniform vec4 texscale[64];\n" // instead of 128, to avoid running out of uniforms |
|
"uniform vec3 texgen[64];\n" |
|
#endif |
|
#endif |
|
|
|
"out vec4 outcolor;\n" |
|
|
|
"void main()\n" |
|
"{\n" |
|
" vec3 albedo;\n" |
|
" float fragment_alpha;\n" |
|
|
|
#ifndef STBVOX_ICONFIG_UNTEXTURED |
|
// unpack the values |
|
" uint tex1_id = facedata.x;\n" |
|
" uint tex2_id = facedata.y;\n" |
|
" uint texprojid = facedata.w & 31u;\n" |
|
" uint color_id = facedata.z;\n" |
|
|
|
#ifndef STBVOX_CONFIG_PREFER_TEXBUFFER |
|
// load from uniforms / texture buffers |
|
" vec3 texgen_s = texgen[texprojid];\n" |
|
" vec3 texgen_t = texgen[texprojid+32u];\n" |
|
" float tex1_scale = texscale[tex1_id & 63u].x;\n" |
|
" vec4 color = color_table[color_id & 63u];\n" |
|
" vec4 tex2_props = texscale[tex2_id & 63u];\n" |
|
#else |
|
" vec3 texgen_s = texelFetch(texgen, int(texprojid)).xyz;\n" |
|
" vec3 texgen_t = texelFetch(texgen, int(texprojid+32u)).xyz;\n" |
|
" float tex1_scale = texelFetch(texscale, int(tex1_id & 127u)).x;\n" |
|
" vec4 color = texelFetch(color_table, int(color_id & 63u));\n" |
|
" vec4 tex2_props = texelFetch(texscale, int(tex2_id & 127u));\n" |
|
#endif |
|
|
|
#ifndef STBVOX_CONFIG_DISABLE_TEX2 |
|
" float tex2_scale = tex2_props.y;\n" |
|
" bool texblend_mode = tex2_props.z &((facedata.w & 128u) != 0u);\n" |
|
#endif |
|
|
|
" color.a = min(color.a, 1.0);\n" |
|
|
|
" vec2 texcoord;\n" |
|
" vec3 texturespace_pos = voxelspace_pos + transform[2].xyz;\n" |
|
" texcoord.s = dot(texturespace_pos, texgen_s);\n" |
|
" texcoord.t = dot(texturespace_pos, texgen_t);\n" |
|
|
|
" vec2 texcoord_1 = tex1_scale * texcoord;\n" |
|
" vec2 texcoord_2 = tex2_scale * texcoord;\n" |
|
|
|
#ifdef STBVOX_CONFIG_TEX1_EDGE_CLAMP |
|
" texcoord_1 = texcoord_1 - floor(texcoord_1);\n" |
|
" vec4 tex1 = textureGrad(tex_array[0], vec3(texcoord_1, float(tex1_id)), dFdx(tex1_scale*texcoord), dFdy(tex1_scale*texcoord));\n" |
|
#else |
|
" vec4 tex1 = texture(tex_array[0], vec3(texcoord_1, float(tex1_id)));\n" |
|
#endif |
|
|
|
" if ((color_id & 64u) != 0u) tex1.a *= color.a;\n" |
|
" fragment_alpha = tex1.a;\n" |
|
|
|
#ifndef STBVOX_CONFIG_DISABLE_TEX2 |
|
" if (!texblend_mode) {\n" |
|
#ifdef STBVOX_CONFIG_TEX2_EDGE_CLAMP |
|
" texcoord_2 = texcoord_2 - floor(texcoord_2);\n" |
|
" vec4 tex2 = textureGrad(tex_array[0], vec3(texcoord_2, float(tex2_id)), dFdx(tex2_scale*texcoord), dFdy(tex2_scale*texcoord));\n" |
|
#else |
|
" vec4 tex2 = texture(tex_array[1], vec3(texcoord_2, float(tex2_id)));\n" |
|
#endif |
|
|
|
" tex2.a *= texlerp;\n" |
|
" if ((color_id & 128u) != 0u) tex2.rgba *= color.a;\n" |
|
" fragment_alpha = tex1.a*(1-tex2.a)+tex2.a;\n" |
|
"}\n" |
|
"\n" |
|
#endif |
|
|
|
#else // UNTEXTURED |
|
" fragment_alpha = 1.0;\n" |
|
#endif |
|
|
|
" outcolor = vec4(0.0, 0.0, 0.0, fragment_alpha);\n" |
|
"}\n" |
|
}; |
|
|
|
|
|
STBVXDEC char *stbvox_get_vertex_shader(void) |
|
{ |
|
return (char *) stbvox_vertex_program; |
|
} |
|
|
|
STBVXDEC char *stbvox_get_fragment_shader(void) |
|
{ |
|
return (char *) stbvox_fragment_program; |
|
} |
|
|
|
STBVXDEC char *stbvox_get_fragment_shader_alpha_only(void) |
|
{ |
|
return (char *) stbvox_fragment_program_alpha_only; |
|
} |
|
|
|
static float stbvox_dummy_transform[3][3]; |
|
|
|
#ifdef STBVOX_CONFIG_PREFER_TEXBUFFER |
|
#define STBVOX_TEXBUF 1 |
|
#else |
|
#define STBVOX_TEXBUF 0 |
|
#endif |
|
|
|
static stbvox_uniform_info stbvox_uniforms[] = |
|
{ |
|
{ STBVOX_UNIFORM_TYPE_sampler , 4, 1, (char*) "facearray" , 0 }, |
|
{ STBVOX_UNIFORM_TYPE_vec3 , 12, 3, (char*) "transform" , stbvox_dummy_transform[0] }, |
|
{ STBVOX_UNIFORM_TYPE_sampler , 4, 2, (char*) "tex_array" , 0 }, |
|
{ STBVOX_UNIFORM_TYPE_vec4 , 16, 128, (char*) "texscale" , stbvox_default_texscale[0] , STBVOX_TEXBUF }, |
|
{ STBVOX_UNIFORM_TYPE_vec4 , 16, 64, (char*) "color_table" , stbvox_default_palette[0] , STBVOX_TEXBUF }, |
|
{ STBVOX_UNIFORM_TYPE_vec3 , 12, 32, (char*) "normal_table" , stbvox_default_normals[0] }, |
|
{ STBVOX_UNIFORM_TYPE_vec3 , 12, 64, (char*) "texgen" , stbvox_default_texgen[0][0], STBVOX_TEXBUF }, |
|
{ STBVOX_UNIFORM_TYPE_vec4 , 16, 4, (char*) "ambient" , stbvox_default_ambient[0] }, |
|
{ STBVOX_UNIFORM_TYPE_vec4 , 16, 1, (char*) "camera_pos" , stbvox_dummy_transform[0] }, |
|
}; |
|
|
|
STBVXDEC int stbvox_get_uniform_info(stbvox_uniform_info *info, int uniform) |
|
{ |
|
if (uniform < 0 || uniform >= STBVOX_UNIFORM_count) |
|
return 0; |
|
|
|
*info = stbvox_uniforms[uniform]; |
|
return 1; |
|
} |
|
|
|
#define STBVOX_GET_GEO(geom_data) ((geom_data) & 15) |
|
|
|
typedef struct |
|
{ |
|
unsigned char block:2; |
|
unsigned char overlay:2; |
|
unsigned char facerot:2; |
|
unsigned char ecolor:2; |
|
} stbvox_rotate; |
|
|
|
typedef struct |
|
{ |
|
unsigned char x,y,z; |
|
} stbvox_pos; |
|
|
|
static unsigned char stbvox_rotate_face[6][4] = |
|
{ |
|
{ 0,1,2,3 }, |
|
{ 1,2,3,0 }, |
|
{ 2,3,0,1 }, |
|
{ 3,0,1,2 }, |
|
{ 4,4,4,4 }, |
|
{ 5,5,5,5 }, |
|
}; |
|
|
|
#define STBVOX_ROTATE(x,r) stbvox_rotate_face[x][r] // (((x)+(r))&3) |
|
|
|
stbvox_mesh_face stbvox_compute_mesh_face_value(stbvox_mesh_maker *mm, stbvox_rotate rot, int face, int v_off, int normal) |
|
{ |
|
stbvox_mesh_face face_data = { 0 }; |
|
stbvox_block_type bt = mm->input.blocktype[v_off]; |
|
unsigned char bt_face = STBVOX_ROTATE(face, rot.block); |
|
int facerot = rot.facerot; |
|
|
|
#ifdef STBVOX_ICONFIG_UNTEXTURED |
|
if (mm->input.rgb) { |
|
face_data.tex1 = mm->input.rgb[v_off].r; |
|
face_data.tex2 = mm->input.rgb[v_off].g; |
|
face_data.color = mm->input.rgb[v_off].b; |
|
face_data.face_info = (normal<<2); |
|
return face_data; |
|
} |
|
#else |
|
unsigned char color_face; |
|
|
|
if (mm->input.color) |
|
face_data.color = mm->input.color[v_off]; |
|
|
|
if (mm->input.block_tex1) |
|
face_data.tex1 = mm->input.block_tex1[bt]; |
|
else if (mm->input.block_tex1_face) |
|
face_data.tex1 = mm->input.block_tex1_face[bt][bt_face]; |
|
else |
|
face_data.tex1 = bt; |
|
|
|
if (mm->input.block_tex2) |
|
face_data.tex2 = mm->input.block_tex2[bt]; |
|
else if (mm->input.block_tex2_face) |
|
face_data.tex2 = mm->input.block_tex2_face[bt][bt_face]; |
|
|
|
if (mm->input.block_color) { |
|
unsigned char mcol = mm->input.block_color[bt]; |
|
if (mcol) |
|
face_data.color = mcol; |
|
} else if (mm->input.block_color_face) { |
|
unsigned char mcol = mm->input.block_color_face[bt][bt_face]; |
|
if (mcol) |
|
face_data.color = mcol; |
|
} |
|
|
|
if (face <= STBVOX_FACE_south) { |
|
if (mm->input.side_texrot) |
|
facerot = mm->input.side_texrot[v_off] >> (2 * face); |
|
else if (mm->input.block_side_texrot) |
|
facerot = mm->input.block_side_texrot[v_off] >> (2 * bt_face); |
|
} |
|
|
|
if (mm->input.overlay) { |
|
int over_face = STBVOX_ROTATE(face, rot.overlay); |
|
unsigned char over = mm->input.overlay[v_off]; |
|
if (over) { |
|
if (mm->input.overlay_tex1) { |
|
unsigned char rep1 = mm->input.overlay_tex1[over][over_face]; |
|
if (rep1) |
|
face_data.tex1 = rep1; |
|
} |
|
if (mm->input.overlay_tex2) { |
|
unsigned char rep2 = mm->input.overlay_tex2[over][over_face]; |
|
if (rep2) |
|
face_data.tex2 = rep2; |
|
} |
|
if (mm->input.overlay_color) { |
|
unsigned char rep3 = mm->input.overlay_color[over][over_face]; |
|
if (rep3) |
|
face_data.color = rep3; |
|
} |
|
|
|
if (mm->input.overlay_side_texrot && face <= STBVOX_FACE_south) |
|
facerot = mm->input.overlay_side_texrot[over] >> (2*over_face); |
|
} |
|
} |
|
|
|
if (mm->input.tex2_for_tex1) |
|
face_data.tex2 = mm->input.tex2_for_tex1[face_data.tex1]; |
|
if (mm->input.tex2) |
|
face_data.tex2 = mm->input.tex2[v_off]; |
|
if (mm->input.tex2_replace) { |
|
if (mm->input.tex2_facemask[v_off] & (1 << face)) |
|
face_data.tex2 = mm->input.tex2_replace[v_off]; |
|
} |
|
|
|
color_face = STBVOX_ROTATE(face, rot.ecolor); |
|
if (mm->input.extended_color) { |
|
unsigned char ec = mm->input.extended_color[v_off]; |
|
if (mm->input.ecolor_facemask[ec] & (1 << color_face)) |
|
face_data.color = mm->input.ecolor_color[ec]; |
|
} |
|
|
|
if (mm->input.color2) { |
|
if (mm->input.color2_facemask[v_off] & (1 << color_face)) |
|
face_data.color = mm->input.color2[v_off]; |
|
if (mm->input.color3 && (mm->input.color3_facemask[v_off] & (1 << color_face))) |
|
face_data.color = mm->input.color3[v_off]; |
|
} |
|
#endif |
|
|
|
face_data.face_info = (normal<<2) + facerot; |
|
return face_data; |
|
} |
|
|
|
// these are the types of faces each block can have |
|
enum |
|
{ |
|
STBVOX_FT_none , |
|
STBVOX_FT_upper , |
|
STBVOX_FT_lower , |
|
STBVOX_FT_solid , |
|
STBVOX_FT_diag_012, |
|
STBVOX_FT_diag_023, |
|
STBVOX_FT_diag_013, |
|
STBVOX_FT_diag_123, |
|
STBVOX_FT_force , // can't be covered up, used for internal faces, also hides nothing |
|
STBVOX_FT_partial , // only covered by solid, never covers anything else |
|
|
|
STBVOX_FT_count |
|
}; |
|
|
|
static unsigned char stbvox_face_lerp[6] = { 0,2,0,2,4,4 }; |
|
static unsigned char stbvox_vert3_lerp[5] = { 0,3,6,9,12 }; |
|
static unsigned char stbvox_vert_lerp_for_face_lerp[4] = { 0, 4, 7, 7 }; |
|
static unsigned char stbvox_face3_lerp[6] = { 0,3,6,9,12,14 }; |
|
static unsigned char stbvox_vert_lerp_for_simple[4] = { 0,2,5,7 }; |
|
static unsigned char stbvox_face3_updown[8] = { 0,2,5,7,0,2,5,7 }; // ignore top bit |
|
|
|
// vertex offsets for face vertices |
|
static unsigned char stbvox_vertex_vector[6][4][3] = |
|
{ |
|
{ { 1,0,1 }, { 1,1,1 }, { 1,1,0 }, { 1,0,0 } }, // east |
|
{ { 1,1,1 }, { 0,1,1 }, { 0,1,0 }, { 1,1,0 } }, // north |
|
{ { 0,1,1 }, { 0,0,1 }, { 0,0,0 }, { 0,1,0 } }, // west |
|
{ { 0,0,1 }, { 1,0,1 }, { 1,0,0 }, { 0,0,0 } }, // south |
|
{ { 0,1,1 }, { 1,1,1 }, { 1,0,1 }, { 0,0,1 } }, // up |
|
{ { 0,0,0 }, { 1,0,0 }, { 1,1,0 }, { 0,1,0 } }, // down |
|
}; |
|
|
|
// stbvox_vertex_vector, but read coordinates as binary numbers, zyx |
|
static unsigned char stbvox_vertex_selector[6][4] = |
|
{ |
|
{ 5,7,3,1 }, |
|
{ 7,6,2,3 }, |
|
{ 6,4,0,2 }, |
|
{ 4,5,1,0 }, |
|
{ 6,7,5,4 }, |
|
{ 0,1,3,2 }, |
|
}; |
|
|
|
static stbvox_mesh_vertex stbvox_vmesh_delta_normal[6][4] = |
|
{ |
|
{ stbvox_vertex_encode(1,0,1,0,0) , |
|
stbvox_vertex_encode(1,1,1,0,0) , |
|
stbvox_vertex_encode(1,1,0,0,0) , |
|
stbvox_vertex_encode(1,0,0,0,0) }, |
|
{ stbvox_vertex_encode(1,1,1,0,0) , |
|
stbvox_vertex_encode(0,1,1,0,0) , |
|
stbvox_vertex_encode(0,1,0,0,0) , |
|
stbvox_vertex_encode(1,1,0,0,0) }, |
|
{ stbvox_vertex_encode(0,1,1,0,0) , |
|
stbvox_vertex_encode(0,0,1,0,0) , |
|
stbvox_vertex_encode(0,0,0,0,0) , |
|
stbvox_vertex_encode(0,1,0,0,0) }, |
|
{ stbvox_vertex_encode(0,0,1,0,0) , |
|
stbvox_vertex_encode(1,0,1,0,0) , |
|
stbvox_vertex_encode(1,0,0,0,0) , |
|
stbvox_vertex_encode(0,0,0,0,0) }, |
|
{ stbvox_vertex_encode(0,1,1,0,0) , |
|
stbvox_vertex_encode(1,1,1,0,0) , |
|
stbvox_vertex_encode(1,0,1,0,0) , |
|
stbvox_vertex_encode(0,0,1,0,0) }, |
|
{ stbvox_vertex_encode(0,0,0,0,0) , |
|
stbvox_vertex_encode(1,0,0,0,0) , |
|
stbvox_vertex_encode(1,1,0,0,0) , |
|
stbvox_vertex_encode(0,1,0,0,0) } |
|
}; |
|
|
|
static stbvox_mesh_vertex stbvox_vmesh_pre_vheight[6][4] = |
|
{ |
|
{ stbvox_vertex_encode(1,0,0,0,0) , |
|
stbvox_vertex_encode(1,1,0,0,0) , |
|
stbvox_vertex_encode(1,1,0,0,0) , |
|
stbvox_vertex_encode(1,0,0,0,0) }, |
|
{ stbvox_vertex_encode(1,1,0,0,0) , |
|
stbvox_vertex_encode(0,1,0,0,0) , |
|
stbvox_vertex_encode(0,1,0,0,0) , |
|
stbvox_vertex_encode(1,1,0,0,0) }, |
|
{ stbvox_vertex_encode(0,1,0,0,0) , |
|
stbvox_vertex_encode(0,0,0,0,0) , |
|
stbvox_vertex_encode(0,0,0,0,0) , |
|
stbvox_vertex_encode(0,1,0,0,0) }, |
|
{ stbvox_vertex_encode(0,0,0,0,0) , |
|
stbvox_vertex_encode(1,0,0,0,0) , |
|
stbvox_vertex_encode(1,0,0,0,0) , |
|
stbvox_vertex_encode(0,0,0,0,0) }, |
|
{ stbvox_vertex_encode(0,1,0,0,0) , |
|
stbvox_vertex_encode(1,1,0,0,0) , |
|
stbvox_vertex_encode(1,0,0,0,0) , |
|
stbvox_vertex_encode(0,0,0,0,0) }, |
|
{ stbvox_vertex_encode(0,0,0,0,0) , |
|
stbvox_vertex_encode(1,0,0,0,0) , |
|
stbvox_vertex_encode(1,1,0,0,0) , |
|
stbvox_vertex_encode(0,1,0,0,0) } |
|
}; |
|
|
|
static stbvox_mesh_vertex stbvox_vmesh_delta_half_z[6][4] = |
|
{ |
|
{ stbvox_vertex_encode(1,0,2,0,0) , |
|
stbvox_vertex_encode(1,1,2,0,0) , |
|
stbvox_vertex_encode(1,1,0,0,0) , |
|
stbvox_vertex_encode(1,0,0,0,0) }, |
|
{ stbvox_vertex_encode(1,1,2,0,0) , |
|
stbvox_vertex_encode(0,1,2,0,0) , |
|
stbvox_vertex_encode(0,1,0,0,0) , |
|
stbvox_vertex_encode(1,1,0,0,0) }, |
|
{ stbvox_vertex_encode(0,1,2,0,0) , |
|
stbvox_vertex_encode(0,0,2,0,0) , |
|
stbvox_vertex_encode(0,0,0,0,0) , |
|
stbvox_vertex_encode(0,1,0,0,0) }, |
|
{ stbvox_vertex_encode(0,0,2,0,0) , |
|
stbvox_vertex_encode(1,0,2,0,0) , |
|
stbvox_vertex_encode(1,0,0,0,0) , |
|
stbvox_vertex_encode(0,0,0,0,0) }, |
|
{ stbvox_vertex_encode(0,1,2,0,0) , |
|
stbvox_vertex_encode(1,1,2,0,0) , |
|
stbvox_vertex_encode(1,0,2,0,0) , |
|
stbvox_vertex_encode(0,0,2,0,0) }, |
|
{ stbvox_vertex_encode(0,0,0,0,0) , |
|
stbvox_vertex_encode(1,0,0,0,0) , |
|
stbvox_vertex_encode(1,1,0,0,0) , |
|
stbvox_vertex_encode(0,1,0,0,0) } |
|
}; |
|
|
|
static stbvox_mesh_vertex stbvox_vmesh_crossed_pair[6][4] = |
|
{ |
|
{ stbvox_vertex_encode(1,0,2,0,0) , |
|
stbvox_vertex_encode(0,1,2,0,0) , |
|
stbvox_vertex_encode(0,1,0,0,0) , |
|
stbvox_vertex_encode(1,0,0,0,0) }, |
|
{ stbvox_vertex_encode(1,1,2,0,0) , |
|
stbvox_vertex_encode(0,0,2,0,0) , |
|
stbvox_vertex_encode(0,0,0,0,0) , |
|
stbvox_vertex_encode(1,1,0,0,0) }, |
|
{ stbvox_vertex_encode(0,1,2,0,0) , |
|
stbvox_vertex_encode(1,0,2,0,0) , |
|
stbvox_vertex_encode(1,0,0,0,0) , |
|
stbvox_vertex_encode(0,1,0,0,0) }, |
|
{ stbvox_vertex_encode(0,0,2,0,0) , |
|
stbvox_vertex_encode(1,1,2,0,0) , |
|
stbvox_vertex_encode(1,1,0,0,0) , |
|
stbvox_vertex_encode(0,0,0,0,0) }, |
|
// not used, so we leave it non-degenerate to make sure it doesn't get gen'd accidentally |
|
{ stbvox_vertex_encode(0,1,2,0,0) , |
|
stbvox_vertex_encode(1,1,2,0,0) , |
|
stbvox_vertex_encode(1,0,2,0,0) , |
|
stbvox_vertex_encode(0,0,2,0,0) }, |
|
{ stbvox_vertex_encode(0,0,0,0,0) , |
|
stbvox_vertex_encode(1,0,0,0,0) , |
|
stbvox_vertex_encode(1,1,0,0,0) , |
|
stbvox_vertex_encode(0,1,0,0,0) } |
|
}; |
|
|
|
#define STBVOX_MAX_GEOM 16 |
|
#define STBVOX_NUM_ROTATION 4 |
|
|
|
// this is used to determine if a face is ever generated at all |
|
static unsigned char stbvox_hasface[STBVOX_MAX_GEOM][STBVOX_NUM_ROTATION] = |
|
{ |
|
{ 0,0,0,0 }, // empty |
|
{ 0,0,0,0 }, // knockout |
|
{ 63,63,63,63 }, // solid |
|
{ 63,63,63,63 }, // transp |
|
{ 63,63,63,63 }, // slab |
|
{ 63,63,63,63 }, // slab |
|
{ 1|2|4|48, 8|1|2|48, 4|8|1|48, 2|4|8|48, }, // floor slopes |
|
{ 1|2|4|48, 8|1|2|48, 4|8|1|48, 2|4|8|48, }, // ceil slopes |
|
{ 47,47,47,47 }, // wall-projected diagonal with down face |
|
{ 31,31,31,31 }, // wall-projected diagonal with up face |
|
{ 63,63,63,63 }, // crossed-pair has special handling, but avoid early-out |
|
{ 63,63,63,63 }, // force |
|
{ 63,63,63,63 }, // vheight |
|
{ 63,63,63,63 }, // vheight |
|
{ 63,63,63,63 }, // vheight |
|
{ 63,63,63,63 }, // vheight |
|
}; |
|
|
|
// this determines which face type above is visible on each side of the geometry |
|
static unsigned char stbvox_facetype[STBVOX_GEOM_count][6] = |
|
{ |
|
{ 0, }, // STBVOX_GEOM_empty |
|
{ STBVOX_FT_solid, STBVOX_FT_solid, STBVOX_FT_solid, STBVOX_FT_solid, STBVOX_FT_solid, STBVOX_FT_solid }, // knockout |
|
{ STBVOX_FT_solid, STBVOX_FT_solid, STBVOX_FT_solid, STBVOX_FT_solid, STBVOX_FT_solid, STBVOX_FT_solid }, // solid |
|
{ STBVOX_FT_force, STBVOX_FT_force, STBVOX_FT_force, STBVOX_FT_force, STBVOX_FT_force, STBVOX_FT_force }, // transp |
|
|
|
{ STBVOX_FT_upper, STBVOX_FT_upper, STBVOX_FT_upper, STBVOX_FT_upper, STBVOX_FT_solid, STBVOX_FT_force }, |
|
{ STBVOX_FT_lower, STBVOX_FT_lower, STBVOX_FT_lower, STBVOX_FT_lower, STBVOX_FT_force, STBVOX_FT_solid }, |
|
{ STBVOX_FT_diag_123, STBVOX_FT_solid, STBVOX_FT_diag_023, STBVOX_FT_none, STBVOX_FT_force, STBVOX_FT_solid }, |
|
{ STBVOX_FT_diag_012, STBVOX_FT_solid, STBVOX_FT_diag_013, STBVOX_FT_none, STBVOX_FT_solid, STBVOX_FT_force }, |
|
|
|
{ STBVOX_FT_diag_123, STBVOX_FT_solid, STBVOX_FT_diag_023, STBVOX_FT_force, STBVOX_FT_none, STBVOX_FT_solid }, |
|
{ STBVOX_FT_diag_012, STBVOX_FT_solid, STBVOX_FT_diag_013, STBVOX_FT_force, STBVOX_FT_solid, STBVOX_FT_none }, |
|
{ STBVOX_FT_force, STBVOX_FT_force, STBVOX_FT_force, STBVOX_FT_force, 0,0 }, // crossed pair |
|
{ STBVOX_FT_force, STBVOX_FT_force, STBVOX_FT_force, STBVOX_FT_force, STBVOX_FT_force, STBVOX_FT_force }, // GEOM_force |
|
|
|
{ STBVOX_FT_partial,STBVOX_FT_partial,STBVOX_FT_partial,STBVOX_FT_partial, STBVOX_FT_force, STBVOX_FT_solid }, // floor vheight, all neighbors forced |
|
{ STBVOX_FT_partial,STBVOX_FT_partial,STBVOX_FT_partial,STBVOX_FT_partial, STBVOX_FT_force, STBVOX_FT_solid }, // floor vheight, all neighbors forced |
|
{ STBVOX_FT_partial,STBVOX_FT_partial,STBVOX_FT_partial,STBVOX_FT_partial, STBVOX_FT_solid, STBVOX_FT_force }, // ceil vheight, all neighbors forced |
|
{ STBVOX_FT_partial,STBVOX_FT_partial,STBVOX_FT_partial,STBVOX_FT_partial, STBVOX_FT_solid, STBVOX_FT_force }, // ceil vheight, all neighbors forced |
|
}; |
|
|
|
// This table indicates what normal to use for the "up" face of a sloped geom |
|
// @TODO this could be done with math given the current arrangement of the enum, but let's not require it |
|
static unsigned char stbvox_floor_slope_for_rot[4] = |
|
{ |
|
STBVF_su, |
|
STBVF_wu, // @TODO: why is this reversed from what it should be? this is a north-is-up face, so slope should be south&up |
|
STBVF_nu, |
|
STBVF_eu, |
|
}; |
|
|
|
static unsigned char stbvox_ceil_slope_for_rot[4] = |
|
{ |
|
STBVF_sd, |
|
STBVF_ed, |
|
STBVF_nd, |
|
STBVF_wd, |
|
}; |
|
|
|
// this table indicates whether, for each pair of types above, a face is visible. |
|
// each value indicates whether a given type is visible for all neighbor types |
|
static unsigned short stbvox_face_visible[STBVOX_FT_count] = |
|
{ |
|
// we encode the table by listing which cases cause *obscuration*, and bitwise inverting that |
|
// table is pre-shifted by 5 to save a shift when it's accessed |
|
(unsigned short) ((~0x07ff )<<5), // none is completely obscured by everything |
|
(unsigned short) ((~((1<<STBVOX_FT_solid) | (1<<STBVOX_FT_upper) ))<<5), // upper |
|
(unsigned short) ((~((1<<STBVOX_FT_solid) | (1<<STBVOX_FT_lower) ))<<5), // lower |
|
(unsigned short) ((~((1<<STBVOX_FT_solid) ))<<5), // solid is only completely obscured only by solid |
|
(unsigned short) ((~((1<<STBVOX_FT_solid) | (1<<STBVOX_FT_diag_013)))<<5), // diag012 matches diag013 |
|
(unsigned short) ((~((1<<STBVOX_FT_solid) | (1<<STBVOX_FT_diag_123)))<<5), // diag023 matches diag123 |
|
(unsigned short) ((~((1<<STBVOX_FT_solid) | (1<<STBVOX_FT_diag_012)))<<5), // diag013 matches diag012 |
|
(unsigned short) ((~((1<<STBVOX_FT_solid) | (1<<STBVOX_FT_diag_023)))<<5), // diag123 matches diag023 |
|
(unsigned short) ((~0 )<<5), // force is always rendered regardless, always forces neighbor |
|
(unsigned short) ((~((1<<STBVOX_FT_solid) ))<<5), // partial is only completely obscured only by solid |
|
}; |
|
|
|
// the vertex heights of the block types, in binary vertex order (zyx): |
|
// lower: SW, SE, NW, NE; upper: SW, SE, NW, NE |
|
static stbvox_mesh_vertex stbvox_geometry_vheight[8][8] = |
|
{ |
|
#define STBVOX_HEIGHTS(a,b,c,d,e,f,g,h) \ |
|
{ stbvox_vertex_encode(0,0,a,0,0), \ |
|
stbvox_vertex_encode(0,0,b,0,0), \ |
|
stbvox_vertex_encode(0,0,c,0,0), \ |
|
stbvox_vertex_encode(0,0,d,0,0), \ |
|
stbvox_vertex_encode(0,0,e,0,0), \ |
|
stbvox_vertex_encode(0,0,f,0,0), \ |
|
stbvox_vertex_encode(0,0,g,0,0), \ |
|
stbvox_vertex_encode(0,0,h,0,0) } |
|
|
|
STBVOX_HEIGHTS(0,0,0,0, 2,2,2,2), |
|
STBVOX_HEIGHTS(0,0,0,0, 2,2,2,2), |
|
STBVOX_HEIGHTS(0,0,0,0, 2,2,2,2), |
|
STBVOX_HEIGHTS(0,0,0,0, 2,2,2,2), |
|
STBVOX_HEIGHTS(1,1,1,1, 2,2,2,2), |
|
STBVOX_HEIGHTS(0,0,0,0, 1,1,1,1), |
|
STBVOX_HEIGHTS(0,0,0,0, 0,0,2,2), |
|
STBVOX_HEIGHTS(2,2,0,0, 2,2,2,2), |
|
}; |
|
|
|
// rotate vertices defined as [z][y][x] coords |
|
static unsigned char stbvox_rotate_vertex[8][4] = |
|
{ |
|
{ 0,1,3,2 }, // zyx=000 |
|
{ 1,3,2,0 }, // zyx=001 |
|
{ 2,0,1,3 }, // zyx=010 |
|
{ 3,2,0,1 }, // zyx=011 |
|
{ 4,5,7,6 }, // zyx=100 |
|
{ 5,7,6,4 }, // zyx=101 |
|
{ 6,4,5,7 }, // zyx=110 |
|
{ 7,6,4,5 }, // zyx=111 |
|
}; |
|
|
|
#ifdef STBVOX_CONFIG_OPTIMIZED_VHEIGHT |
|
// optimized vheight generates a single normal over the entire face, even if it's not planar |
|
static unsigned char stbvox_optimized_face_up_normal[4][4][4][4] = |
|
{ |
|
{ |
|
{ |
|
{ STBVF_u , STBVF_ne_u, STBVF_ne_u, STBVF_ne_u, }, |
|
{ STBVF_nw_u, STBVF_nu , STBVF_nu , STBVF_ne_u, }, |
|
{ STBVF_nw_u, STBVF_nu , STBVF_nu , STBVF_nu , }, |
|
{ STBVF_nw_u, STBVF_nw_u, STBVF_nu , STBVF_nu , }, |
|
},{ |
|
{ STBVF_su , STBVF_eu , STBVF_eu , STBVF_ne_u, }, |
|
{ STBVF_u , STBVF_ne_u, STBVF_ne_u, STBVF_ne_u, }, |
|
{ STBVF_nw_u, STBVF_nu , STBVF_nu , STBVF_ne_u, }, |
|
{ STBVF_nw_u, STBVF_nu , STBVF_nu , STBVF_nu , }, |
|
},{ |
|
{ STBVF_eu , STBVF_eu , STBVF_eu , STBVF_eu , }, |
|
{ STBVF_su , STBVF_eu , STBVF_eu , STBVF_ne_u, }, |
|
{ STBVF_u , STBVF_ne_u, STBVF_ne_u, STBVF_ne_u, }, |
|
{ STBVF_nw_u, STBVF_nu , STBVF_nu , STBVF_ne_u, }, |
|
},{ |
|
{ STBVF_eu , STBVF_eu , STBVF_eu , STBVF_eu , }, |
|
{ STBVF_eu , STBVF_eu , STBVF_eu , STBVF_eu , }, |
|
{ STBVF_su , STBVF_eu , STBVF_eu , STBVF_ne_u, }, |
|
{ STBVF_u , STBVF_ne_u, STBVF_ne_u, STBVF_ne_u, }, |
|
}, |
|
},{ |
|
{ |
|
{ STBVF_sw_u, STBVF_u , STBVF_ne_u, STBVF_ne_u, }, |
|
{ STBVF_wu , STBVF_nw_u, STBVF_nu , STBVF_nu , }, |
|
{ STBVF_wu , STBVF_nw_u, STBVF_nu , STBVF_nu , }, |
|
{ STBVF_nw_u, STBVF_nw_u, STBVF_nw_u, STBVF_nu , }, |
|
},{ |
|
{ STBVF_su , STBVF_su , STBVF_eu , STBVF_eu , }, |
|
{ STBVF_sw_u, STBVF_u , STBVF_ne_u, STBVF_ne_u, }, |
|
{ STBVF_wu , STBVF_nw_u, STBVF_nu , STBVF_nu , }, |
|
{ STBVF_wu , STBVF_nw_u, STBVF_nu , STBVF_nu , }, |
|
},{ |
|
{ STBVF_su , STBVF_eu , STBVF_eu , STBVF_eu , }, |
|
{ STBVF_su , STBVF_su , STBVF_eu , STBVF_eu , }, |
|
{ STBVF_sw_u, STBVF_u , STBVF_ne_u, STBVF_ne_u, }, |
|
{ STBVF_wu , STBVF_nw_u, STBVF_nu , STBVF_nu , }, |
|
},{ |
|
{ STBVF_su , STBVF_eu , STBVF_eu , STBVF_eu , }, |
|
{ STBVF_su , STBVF_eu , STBVF_eu , STBVF_eu , }, |
|
{ STBVF_su , STBVF_su , STBVF_eu , STBVF_eu , }, |
|
{ STBVF_sw_u, STBVF_u , STBVF_ne_u, STBVF_ne_u, }, |
|
}, |
|
},{ |
|
{ |
|
{ STBVF_sw_u, STBVF_sw_u, STBVF_u , STBVF_ne_u, }, |
|
{ STBVF_wu , STBVF_wu , STBVF_nw_u, STBVF_nu , }, |
|
{ STBVF_wu , STBVF_wu , STBVF_nw_u, STBVF_nu , }, |
|
{ STBVF_wu , STBVF_nw_u, STBVF_nw_u, STBVF_nw_u, }, |
|
},{ |
|
{ STBVF_su , STBVF_su , STBVF_su , STBVF_eu , }, |
|
{ STBVF_sw_u, STBVF_sw_u, STBVF_u , STBVF_ne_u, }, |
|
{ STBVF_wu , STBVF_wu , STBVF_nw_u, STBVF_nu , }, |
|
{ STBVF_wu , STBVF_wu , STBVF_nw_u, STBVF_nu , }, |
|
},{ |
|
{ STBVF_su , STBVF_su , STBVF_eu , STBVF_eu , }, |
|
{ STBVF_su , STBVF_su , STBVF_su , STBVF_eu , }, |
|
{ STBVF_sw_u, STBVF_sw_u, STBVF_u , STBVF_ne_u, }, |
|
{ STBVF_wu , STBVF_wu , STBVF_nw_u, STBVF_nu , }, |
|
},{ |
|
{ STBVF_su , STBVF_su , STBVF_eu , STBVF_eu , }, |
|
{ STBVF_su , STBVF_su , STBVF_eu , STBVF_eu , }, |
|
{ STBVF_su , STBVF_su , STBVF_su , STBVF_eu , }, |
|
{ STBVF_sw_u, STBVF_sw_u, STBVF_u , STBVF_ne_u, }, |
|
}, |
|
},{ |
|
{ |
|
{ STBVF_sw_u, STBVF_sw_u, STBVF_sw_u, STBVF_u , }, |
|
{ STBVF_sw_u, STBVF_wu , STBVF_wu , STBVF_nw_u, }, |
|
{ STBVF_wu , STBVF_wu , STBVF_wu , STBVF_nw_u, }, |
|
{ STBVF_wu , STBVF_wu , STBVF_nw_u, STBVF_nw_u, }, |
|
},{ |
|
{ STBVF_sw_u, STBVF_su , STBVF_su , STBVF_su , }, |
|
{ STBVF_sw_u, STBVF_sw_u, STBVF_sw_u, STBVF_u , }, |
|
{ STBVF_sw_u, STBVF_wu , STBVF_wu , STBVF_nw_u, }, |
|
{ STBVF_wu , STBVF_wu , STBVF_wu , STBVF_nw_u, }, |
|
},{ |
|
{ STBVF_su , STBVF_su , STBVF_su , STBVF_eu , }, |
|
{ STBVF_sw_u, STBVF_su , STBVF_su , STBVF_su , }, |
|
{ STBVF_sw_u, STBVF_sw_u, STBVF_sw_u, STBVF_u , }, |
|
{ STBVF_sw_u, STBVF_wu , STBVF_wu , STBVF_nw_u, }, |
|
},{ |
|
{ STBVF_su , STBVF_su , STBVF_su , STBVF_eu , }, |
|
{ STBVF_su , STBVF_su , STBVF_su , STBVF_eu , }, |
|
{ STBVF_sw_u, STBVF_su , STBVF_su , STBVF_su , }, |
|
{ STBVF_sw_u, STBVF_sw_u, STBVF_sw_u, STBVF_u , }, |
|
}, |
|
}, |
|
}; |
|
#else |
|
// which normal to use for a given vheight that's planar |
|
// @TODO: this table was constructed by hand and may have bugs |
|
// nw se sw |
|
static unsigned char stbvox_planar_face_up_normal[4][4][4] = |
|
{ |
|
{ // sw,se,nw,ne; ne = se+nw-sw |
|
{ STBVF_u , 0 , 0 , 0 }, // 0,0,0,0; 1,0,0,-1; 2,0,0,-2; 3,0,0,-3; |
|
{ STBVF_u , STBVF_u , 0 , 0 }, // 0,1,0,1; 1,1,0, 0; 2,1,0,-1; 3,1,0,-2; |
|
{ STBVF_wu , STBVF_nw_u, STBVF_nu , 0 }, // 0,2,0,2; 1,2,0, 1; 2,2,0, 0; 3,2,0,-1; |
|
{ STBVF_wu , STBVF_nw_u, STBVF_nw_u, STBVF_nu }, // 0,3,0,3; 1,3,0, 2; 2,3,0, 1; 3,3,0, 0; |
|
},{ |
|
{ STBVF_u , STBVF_u , 0 , 0 }, // 0,0,1,1; 1,0,1, 0; 2,0,1,-1; 3,0,1,-2; |
|
{ STBVF_sw_u, STBVF_u , STBVF_ne_u, 0 }, // 0,1,1,2; 1,1,1, 1; 2,1,1, 0; 3,1,1,-1; |
|
{ STBVF_sw_u, STBVF_u , STBVF_u , STBVF_ne_u }, // 0,2,1,3; 1,2,1, 2; 2,2,1, 1; 3,2,1, 0; |
|
{ 0 , STBVF_wu , STBVF_nw_u, STBVF_nu }, // 0,3,1,4; 1,3,1, 3; 2,3,1, 2; 3,3,1, 1; |
|
},{ |
|
{ STBVF_su , STBVF_se_u, STBVF_eu , 0 }, // 0,0,2,2; 1,0,2, 1; 2,0,2, 0; 3,0,2,-1; |
|
{ STBVF_sw_u, STBVF_u , STBVF_u , STBVF_ne_u }, // 0,1,2,3; 1,1,2, 2; 2,1,2, 1; 3,1,2, 0; |
|
{ 0 , STBVF_sw_u, STBVF_u , STBVF_ne_u }, // 0,2,2,4; 1,2,2, 3; 2,2,2, 2; 3,2,2, 1; |
|
{ 0 , 0 , STBVF_u , STBVF_u }, // 0,3,2,5; 1,3,2, 4; 2,3,2, 3; 3,3,2, 2; |
|
},{ |
|
{ STBVF_su , STBVF_se_u, STBVF_se_u, STBVF_eu }, // 0,0,3,3; 1,0,3, 2; 2,0,3, 1; 3,0,3, 0; |
|
{ 0 , STBVF_su , STBVF_se_u, STBVF_eu }, // 0,1,3,4; 1,1,3, 3; 2,1,3, 2; 3,1,3, 1; |
|
{ 0 , 0 , STBVF_u , STBVF_u }, // 0,2,3,5; 1,2,3, 4; 2,2,3, 3; 3,2,3, 2; |
|
{ 0 , 0 , 0 , STBVF_u }, // 0,3,3,6; 1,3,3, 5; 2,3,3, 4; 3,3,3, 3; |
|
} |
|
}; |
|
|
|
// these tables were constructed automatically using a variant of the code |
|
// below; however, they seem wrong, so who knows |
|
static unsigned char stbvox_face_up_normal_012[4][4][4] = |
|
{ |
|
{ |
|
{ STBVF_u , STBVF_ne_u, STBVF_ne_u, STBVF_ne_u, }, |
|
{ STBVF_wu , STBVF_nu , STBVF_ne_u, STBVF_ne_u, }, |
|
{ STBVF_wu , STBVF_nw_u, STBVF_nu , STBVF_ne_u, }, |
|
{ STBVF_wu , STBVF_nw_u, STBVF_nw_u, STBVF_nu , }, |
|
},{ |
|
{ STBVF_su , STBVF_eu , STBVF_ne_u, STBVF_ne_u, }, |
|
{ STBVF_sw_u, STBVF_u , STBVF_ne_u, STBVF_ne_u, }, |
|
{ STBVF_sw_u, STBVF_wu , STBVF_nu , STBVF_ne_u, }, |
|
{ STBVF_sw_u, STBVF_wu , STBVF_nw_u, STBVF_nu , }, |
|
},{ |
|
{ STBVF_su , STBVF_eu , STBVF_eu , STBVF_ne_u, }, |
|
{ STBVF_sw_u, STBVF_su , STBVF_eu , STBVF_ne_u, }, |
|
{ STBVF_sw_u, STBVF_sw_u, STBVF_u , STBVF_ne_u, }, |
|
{ STBVF_sw_u, STBVF_sw_u, STBVF_wu , STBVF_nu , }, |
|
},{ |
|
{ STBVF_su , STBVF_su , STBVF_eu , STBVF_eu , }, |
|
{ STBVF_sw_u, STBVF_su , STBVF_eu , STBVF_eu , }, |
|
{ STBVF_sw_u, STBVF_sw_u, STBVF_su , STBVF_eu , }, |
|
{ STBVF_sw_u, STBVF_sw_u, STBVF_sw_u, STBVF_u , }, |
|
} |
|
}; |
|
|
|
static unsigned char stbvox_face_up_normal_013[4][4][4] = |
|
{ |
|
{ |
|
{ STBVF_u , STBVF_eu , STBVF_eu , STBVF_eu , }, |
|
{ STBVF_nw_u, STBVF_nu , STBVF_ne_u, STBVF_ne_u, }, |
|
{ STBVF_nw_u, STBVF_nw_u, STBVF_nu , STBVF_ne_u, }, |
|
{ STBVF_nw_u, STBVF_nw_u, STBVF_nw_u, STBVF_nu , }, |
|
},{ |
|
{ STBVF_su , STBVF_eu , STBVF_eu , STBVF_eu , }, |
|
{ STBVF_wu , STBVF_u , STBVF_eu , STBVF_eu , }, |
|
{ STBVF_nw_u, STBVF_nw_u, STBVF_nu , STBVF_ne_u, }, |
|
{ STBVF_nw_u, STBVF_nw_u, STBVF_nw_u, STBVF_nu , }, |
|
},{ |
|
{ STBVF_su , STBVF_su , STBVF_su , STBVF_eu , }, |
|
{ STBVF_sw_u, STBVF_su , STBVF_eu , STBVF_eu , }, |
|
{ STBVF_wu , STBVF_wu , STBVF_u , STBVF_eu , }, |
|
{ STBVF_nw_u, STBVF_nw_u, STBVF_nw_u, STBVF_nu , }, |
|
},{ |
|
{ STBVF_su , STBVF_su , STBVF_su , STBVF_eu , }, |
|
{ STBVF_sw_u, STBVF_su , STBVF_su , STBVF_su , }, |
|
{ STBVF_sw_u, STBVF_sw_u, STBVF_su , STBVF_eu , }, |
|
{ STBVF_wu , STBVF_wu , STBVF_wu , STBVF_u , }, |
|
} |
|
}; |
|
|
|
static unsigned char stbvox_face_up_normal_023[4][4][4] = |
|
{ |
|
{ |
|
{ STBVF_u , STBVF_nu , STBVF_nu , STBVF_nu , }, |
|
{ STBVF_eu , STBVF_eu , STBVF_ne_u, STBVF_ne_u, }, |
|
{ STBVF_su , STBVF_eu , STBVF_eu , STBVF_ne_u, }, |
|
{ STBVF_eu , STBVF_eu , STBVF_eu , STBVF_eu , }, |
|
},{ |
|
{ STBVF_wu , STBVF_nw_u, STBVF_nw_u, STBVF_nw_u, }, |
|
{ STBVF_su , STBVF_u , STBVF_nu , STBVF_nu , }, |
|
{ STBVF_su , STBVF_eu , STBVF_eu , STBVF_ne_u, }, |
|
{ STBVF_su , STBVF_su , STBVF_eu , STBVF_eu , }, |
|
},{ |
|
{ STBVF_wu , STBVF_nw_u, STBVF_nw_u, STBVF_nw_u, }, |
|
{ STBVF_sw_u, STBVF_wu , STBVF_nw_u, STBVF_nw_u, }, |
|
{ STBVF_su , STBVF_su , STBVF_u , STBVF_nu , }, |
|
{ STBVF_su , STBVF_su , STBVF_eu , STBVF_eu , }, |
|
},{ |
|
{ STBVF_wu , STBVF_nw_u, STBVF_nw_u, STBVF_nw_u, }, |
|
{ STBVF_sw_u, STBVF_wu , STBVF_nw_u, STBVF_nw_u, }, |
|
{ STBVF_sw_u, STBVF_sw_u, STBVF_wu , STBVF_nw_u, }, |
|
{ STBVF_su , STBVF_su , STBVF_su , STBVF_u , }, |
|
} |
|
}; |
|
|
|
static unsigned char stbvox_face_up_normal_123[4][4][4] = |
|
{ |
|
{ |
|
{ STBVF_u , STBVF_nu , STBVF_nu , STBVF_nu , }, |
|
{ STBVF_eu , STBVF_ne_u, STBVF_ne_u, STBVF_ne_u, }, |
|
{ STBVF_eu , STBVF_ne_u, STBVF_ne_u, STBVF_ne_u, }, |
|
{ STBVF_eu , STBVF_ne_u, STBVF_ne_u, STBVF_ne_u, }, |
|
},{ |
|
{ STBVF_sw_u, STBVF_wu , STBVF_nw_u, STBVF_nw_u, }, |
|
{ STBVF_su , STBVF_u , STBVF_nu , STBVF_nu , }, |
|
{ STBVF_eu , STBVF_eu , STBVF_ne_u, STBVF_ne_u, }, |
|
{ STBVF_eu , STBVF_eu , STBVF_ne_u, STBVF_ne_u, }, |
|
},{ |
|
{ STBVF_sw_u, STBVF_sw_u, STBVF_wu , STBVF_nw_u, }, |
|
{ STBVF_sw_u, STBVF_sw_u, STBVF_wu , STBVF_nw_u, }, |
|
{ STBVF_su , STBVF_su , STBVF_u , STBVF_nu , }, |
|
{ STBVF_su , STBVF_eu , STBVF_eu , STBVF_ne_u, }, |
|
},{ |
|
{ STBVF_sw_u, STBVF_sw_u, STBVF_sw_u, STBVF_wu , }, |
|
{ STBVF_sw_u, STBVF_sw_u, STBVF_sw_u, STBVF_wu , }, |
|
{ STBVF_sw_u, STBVF_sw_u, STBVF_sw_u, STBVF_wu , }, |
|
{ STBVF_su , STBVF_su , STBVF_su , STBVF_u , }, |
|
} |
|
}; |
|
#endif |
|
|
|
void stbvox_get_quad_vertex_pointer(stbvox_mesh_maker *mm, int mesh, stbvox_mesh_vertex **vertices, stbvox_mesh_face face) |
|
{ |
|
char *p = mm->output_cur[mesh][0]; |
|
int step = mm->output_step[mesh][0]; |
|
|
|
// allocate a new quad from the mesh |
|
vertices[0] = (stbvox_mesh_vertex *) p; p += step; |
|
vertices[1] = (stbvox_mesh_vertex *) p; p += step; |
|
vertices[2] = (stbvox_mesh_vertex *) p; p += step; |
|
vertices[3] = (stbvox_mesh_vertex *) p; p += step; |
|
mm->output_cur[mesh][0] = p; |
|
|
|
// output the face |
|
#ifdef STBVOX_ICONFIG_FACE_ATTRIBUTE |
|
// write face as interleaved vertex data |
|
*(stbvox_mesh_face *) (vertices[0]+1) = face; |
|
*(stbvox_mesh_face *) (vertices[1]+1) = face; |
|
*(stbvox_mesh_face *) (vertices[2]+1) = face; |
|
*(stbvox_mesh_face *) (vertices[3]+1) = face; |
|
#else |
|
*(stbvox_mesh_face *) mm->output_cur[mesh][1] = face; |
|
mm->output_cur[mesh][1] += 4; |
|
#endif |
|
} |
|
|
|
void stbvox_make_mesh_for_face(stbvox_mesh_maker *mm, stbvox_rotate rot, int face, int v_off, stbvox_pos pos, stbvox_mesh_vertex vertbase, stbvox_mesh_vertex *face_coord, unsigned char mesh, int normal) |
|
{ |
|
stbvox_mesh_face face_data = stbvox_compute_mesh_face_value(mm,rot,face,v_off, normal); |
|
|
|
// still need to compute ao & texlerp for each vertex |
|
|
|
// first compute texlerp into p1 |
|
stbvox_mesh_vertex p1[4] = { 0 }; |
|
|
|
#if defined(STBVOX_CONFIG_DOWN_TEXLERP_PACKED) && defined(STBVOX_CONFIG_UP_TEXLERP_PACKED) |
|
#define STBVOX_USE_PACKED(f) ((f) == STBVOX_FACE_up || (f) == STBVOX_FACE_down) |
|
#elif defined(STBVOX_CONFIG_UP_TEXLERP_PACKED) |
|
#define STBVOX_USE_PACKED(f) ((f) == STBVOX_FACE_up ) |
|
#elif defined(STBVOX_CONFIG_DOWN_TEXLERP_PACKED) |
|
#define STBVOX_USE_PACKED(f) ( (f) == STBVOX_FACE_down) |
|
#endif |
|
|
|
#if defined(STBVOX_CONFIG_DOWN_TEXLERP_PACKED) || defined(STBVOX_CONFIG_UP_TEXLERP_PACKED) |
|
if (STBVOX_USE_PACKED(face)) { |
|
if (!mm->input.packed_compact || 0==(mm->input.packed_compact[v_off]&16)) |
|
goto set_default; |
|
p1[0] = (mm->input.packed_compact[v_off + mm->cube_vertex_offset[face][0]] >> 5); |
|
p1[1] = (mm->input.packed_compact[v_off + mm->cube_vertex_offset[face][1]] >> 5); |
|
p1[2] = (mm->input.packed_compact[v_off + mm->cube_vertex_offset[face][2]] >> 5); |
|
p1[3] = (mm->input.packed_compact[v_off + mm->cube_vertex_offset[face][3]] >> 5); |
|
p1[0] = stbvox_vertex_encode(0,0,0,0,p1[0]); |
|
p1[1] = stbvox_vertex_encode(0,0,0,0,p1[1]); |
|
p1[2] = stbvox_vertex_encode(0,0,0,0,p1[2]); |
|
p1[3] = stbvox_vertex_encode(0,0,0,0,p1[3]); |
|
goto skip; |
|
} |
|
#endif |
|
|
|
if (mm->input.block_texlerp) { |
|
stbvox_block_type bt = mm->input.blocktype[v_off]; |
|
unsigned char val = mm->input.block_texlerp[bt]; |
|
p1[0] = p1[1] = p1[2] = p1[3] = stbvox_vertex_encode(0,0,0,0,val); |
|
} else if (mm->input.block_texlerp_face) { |
|
stbvox_block_type bt = mm->input.blocktype[v_off]; |
|
unsigned char bt_face = STBVOX_ROTATE(face, rot.block); |
|
unsigned char val = mm->input.block_texlerp_face[bt][bt_face]; |
|
p1[0] = p1[1] = p1[2] = p1[3] = stbvox_vertex_encode(0,0,0,0,val); |
|
} else if (mm->input.texlerp_face3) { |
|
unsigned char val = (mm->input.texlerp_face3[v_off] >> stbvox_face3_lerp[face]) & 7; |
|
if (face >= STBVOX_FACE_up) |
|
val = stbvox_face3_updown[val]; |
|
p1[0] = p1[1] = p1[2] = p1[3] = stbvox_vertex_encode(0,0,0,0,val); |
|
} else if (mm->input.texlerp_simple) { |
|
unsigned char val = mm->input.texlerp_simple[v_off]; |
|
unsigned char lerp_face = (val >> 2) & 7; |
|
if (lerp_face == face) { |
|
p1[0] = (mm->input.texlerp_simple[v_off + mm->cube_vertex_offset[face][0]] >> 5) & 7; |
|
p1[1] = (mm->input.texlerp_simple[v_off + mm->cube_vertex_offset[face][1]] >> 5) & 7; |
|
p1[2] = (mm->input.texlerp_simple[v_off + mm->cube_vertex_offset[face][2]] >> 5) & 7; |
|
p1[3] = (mm->input.texlerp_simple[v_off + mm->cube_vertex_offset[face][3]] >> 5) & 7; |
|
p1[0] = stbvox_vertex_encode(0,0,0,0,p1[0]); |
|
p1[1] = stbvox_vertex_encode(0,0,0,0,p1[1]); |
|
p1[2] = stbvox_vertex_encode(0,0,0,0,p1[2]); |
|
p1[3] = stbvox_vertex_encode(0,0,0,0,p1[3]); |
|
} else { |
|
unsigned char base = stbvox_vert_lerp_for_simple[val&3]; |
|
p1[0] = p1[1] = p1[2] = p1[3] = stbvox_vertex_encode(0,0,0,0,base); |
|
} |
|
} else if (mm->input.texlerp) { |
|
unsigned char facelerp = (mm->input.texlerp[v_off] >> stbvox_face_lerp[face]) & 3; |
|
if (facelerp == STBVOX_TEXLERP_FACE_use_vert) { |
|
if (mm->input.texlerp_vert3 && face != STBVOX_FACE_down) { |
|
unsigned char shift = stbvox_vert3_lerp[face]; |
|
p1[0] = (mm->input.texlerp_vert3[mm->cube_vertex_offset[face][0]] >> shift) & 7; |
|
p1[1] = (mm->input.texlerp_vert3[mm->cube_vertex_offset[face][1]] >> shift) & 7; |
|
p1[2] = (mm->input.texlerp_vert3[mm->cube_vertex_offset[face][2]] >> shift) & 7; |
|
p1[3] = (mm->input.texlerp_vert3[mm->cube_vertex_offset[face][3]] >> shift) & 7; |
|
} else { |
|
p1[0] = stbvox_vert_lerp_for_simple[mm->input.texlerp[mm->cube_vertex_offset[face][0]]>>6]; |
|
p1[1] = stbvox_vert_lerp_for_simple[mm->input.texlerp[mm->cube_vertex_offset[face][1]]>>6]; |
|
p1[2] = stbvox_vert_lerp_for_simple[mm->input.texlerp[mm->cube_vertex_offset[face][2]]>>6]; |
|
p1[3] = stbvox_vert_lerp_for_simple[mm->input.texlerp[mm->cube_vertex_offset[face][3]]>>6]; |
|
} |
|
p1[0] = stbvox_vertex_encode(0,0,0,0,p1[0]); |
|
p1[1] = stbvox_vertex_encode(0,0,0,0,p1[1]); |
|
p1[2] = stbvox_vertex_encode(0,0,0,0,p1[2]); |
|
p1[3] = stbvox_vertex_encode(0,0,0,0,p1[3]); |
|
} else { |
|
p1[0] = p1[1] = p1[2] = p1[3] = stbvox_vertex_encode(0,0,0,0,stbvox_vert_lerp_for_face_lerp[facelerp]); |
|
} |
|
} else { |
|
#if defined(STBVOX_CONFIG_UP_TEXLERP_PACKED) || defined(STBVOX_CONFIG_DOWN_TEXLERP_PACKED) |
|
set_default: |
|
#endif |
|
p1[0] = p1[1] = p1[2] = p1[3] = stbvox_vertex_encode(0,0,0,0,7); // @TODO make this configurable |
|
} |
|
|
|
#if defined(STBVOX_CONFIG_UP_TEXLERP_PACKED) || defined(STBVOX_CONFIG_DOWN_TEXLERP_PACKED) |
|
skip: |
|
#endif |
|
|
|
// now compute lighting and store to vertices |
|
{ |
|
stbvox_mesh_vertex *mv[4]; |
|
stbvox_get_quad_vertex_pointer(mm, mesh, mv, face_data); |
|
|
|
if (mm->input.lighting) { |
|
// @TODO: lighting at block centers, but not gathered, instead constant-per-face |
|
if (mm->input.lighting_at_vertices) { |
|
int i; |
|
for (i=0; i < 4; ++i) { |
|
*mv[i] = vertbase + face_coord[i] |
|
+ stbvox_vertex_encode(0,0,0,mm->input.lighting[v_off + mm->cube_vertex_offset[face][i]] & 63,0) |
|
+ p1[i]; |
|
} |
|
} else { |
|
unsigned char *amb = &mm->input.lighting[v_off]; |
|
int i,j; |
|
#if defined(STBVOX_CONFIG_ROTATION_IN_LIGHTING) || defined(STBVOX_CONFIG_VHEIGHT_IN_LIGHTING) |
|
#define STBVOX_GET_LIGHTING(light) ((light) & ~3) |
|
#define STBVOX_LIGHTING_ROUNDOFF 8 |
|
#else |
|
#define STBVOX_GET_LIGHTING(light) (light) |
|
#define STBVOX_LIGHTING_ROUNDOFF 2 |
|
#endif |
|
|
|
for (i=0; i < 4; ++i) { |
|
// for each vertex, gather from the four neighbor blocks it's facing |
|
unsigned char *vamb = &amb[mm->cube_vertex_offset[face][i]]; |
|
int total=0; |
|
for (j=0; j < 4; ++j) |
|
total += STBVOX_GET_LIGHTING(vamb[mm->vertex_gather_offset[face][j]]); |
|
*mv[i] = vertbase + face_coord[i] |
|
+ stbvox_vertex_encode(0,0,0,(total+STBVOX_LIGHTING_ROUNDOFF)>>4,0) |
|
+ p1[i]; |
|
// >> 4 is because: |
|
// >> 2 to divide by 4 to get average over 4 samples |
|
// >> 2 because input is 8 bits, output is 6 bits |
|
} |
|
|
|
// @TODO: note that gathering baked *lighting* |
|
// is different from gathering baked ao; baked ao can count |
|
// solid blocks as 0 ao, but baked lighting wants average |
|
// of non-blocked--not take average & treat blocked as 0. And |
|
// we can't bake the right value into the solid blocks |
|
// because they can have different lighting values on |
|
// different sides. So we need to actually gather and |
|
// then divide by 0..4 (which we can do with a table-driven |
|
// multiply, or have an 'if' for the 3 case) |
|
|
|
} |
|
} else { |
|
vertbase += stbvox_vertex_encode(0,0,0,63,0); |
|
*mv[0] = vertbase + face_coord[0] + p1[0]; |
|
*mv[1] = vertbase + face_coord[1] + p1[1]; |
|
*mv[2] = vertbase + face_coord[2] + p1[2]; |
|
*mv[3] = vertbase + face_coord[3] + p1[3]; |
|
} |
|
} |
|
} |
|
|
|
// get opposite-facing normal & texgen for opposite face, used to map up-facing vheight data to down-facing data |
|
static unsigned char stbvox_reverse_face[STBVF_count] = |
|
{ |
|
STBVF_w, STBVF_s, STBVF_e, STBVF_n, STBVF_d , STBVF_u , STBVF_wd, STBVF_wu, |
|
0, 0, 0, 0, STBVF_sw_d, STBVF_sw_u, STBVF_sd, STBVF_su, |
|
0, 0, 0, 0, STBVF_se_d, STBVF_se_u, STBVF_ed, STBVF_eu, |
|
0, 0, 0, 0, STBVF_ne_d, STBVF_ne_d, STBVF_nd, STBVF_nu |
|
}; |
|
|
|
#ifndef STBVOX_CONFIG_OPTIMIZED_VHEIGHT |
|
// render non-planar quads by splitting into two triangles, rendering each as a degenerate quad |
|
static void stbvox_make_12_split_mesh_for_face(stbvox_mesh_maker *mm, stbvox_rotate rot, int face, int v_off, stbvox_pos pos, stbvox_mesh_vertex vertbase, stbvox_mesh_vertex *face_coord, unsigned char mesh, unsigned char *ht) |
|
{ |
|
stbvox_mesh_vertex v[4]; |
|
|
|
unsigned char normal1 = stbvox_face_up_normal_012[ht[2]][ht[1]][ht[0]]; |
|
unsigned char normal2 = stbvox_face_up_normal_123[ht[3]][ht[2]][ht[1]]; |
|
|
|
if (face == STBVOX_FACE_down) { |
|
normal1 = stbvox_reverse_face[normal1]; |
|
normal2 = stbvox_reverse_face[normal2]; |
|
} |
|
|
|
// the floor side face_coord is stored in order NW,NE,SE,SW, but ht[] is stored SW,SE,NW,NE |
|
v[0] = face_coord[2]; |
|
v[1] = face_coord[3]; |
|
v[2] = face_coord[0]; |
|
v[3] = face_coord[2]; |
|
stbvox_make_mesh_for_face(mm, rot, face, v_off, pos, vertbase, v, mesh, normal1); |
|
v[1] = face_coord[0]; |
|
v[2] = face_coord[1]; |
|
stbvox_make_mesh_for_face(mm, rot, face, v_off, pos, vertbase, v, mesh, normal2); |
|
} |
|
|
|
static void stbvox_make_03_split_mesh_for_face(stbvox_mesh_maker *mm, stbvox_rotate rot, int face, int v_off, stbvox_pos pos, stbvox_mesh_vertex vertbase, stbvox_mesh_vertex *face_coord, unsigned char mesh, unsigned char *ht) |
|
{ |
|
stbvox_mesh_vertex v[4]; |
|
|
|
unsigned char normal1 = stbvox_face_up_normal_013[ht[3]][ht[1]][ht[0]]; |
|
unsigned char normal2 = stbvox_face_up_normal_023[ht[3]][ht[2]][ht[0]]; |
|
|
|
if (face == STBVOX_FACE_down) { |
|
normal1 = stbvox_reverse_face[normal1]; |
|
normal2 = stbvox_reverse_face[normal2]; |
|
} |
|
|
|
v[0] = face_coord[1]; |
|
v[1] = face_coord[2]; |
|
v[2] = face_coord[3]; |
|
v[3] = face_coord[1]; |
|
stbvox_make_mesh_for_face(mm, rot, face, v_off, pos, vertbase, v, mesh, normal1); |
|
v[1] = face_coord[3]; |
|
v[2] = face_coord[0]; |
|
stbvox_make_mesh_for_face(mm, rot, face, v_off, pos, vertbase, v, mesh, normal2); // this one is correct! |
|
} |
|
#endif |
|
|
|
#ifndef STBVOX_CONFIG_PRECISION_Z |
|
#define STBVOX_CONFIG_PRECISION_Z 1 |
|
#endif |
|
|
|
// simple case for mesh generation: we have only solid and empty blocks |
|
static void stbvox_make_mesh_for_block(stbvox_mesh_maker *mm, stbvox_pos pos, int v_off, stbvox_mesh_vertex *vmesh) |
|
{ |
|
int ns_off = mm->y_stride_in_bytes; |
|
int ew_off = mm->x_stride_in_bytes; |
|
|
|
unsigned char *blockptr = &mm->input.blocktype[v_off]; |
|
stbvox_mesh_vertex basevert = stbvox_vertex_encode(pos.x, pos.y, pos.z << STBVOX_CONFIG_PRECISION_Z , 0,0); |
|
|
|
stbvox_rotate rot = { 0,0,0,0 }; |
|
unsigned char simple_rot = 0; |
|
|
|
unsigned char mesh = mm->default_mesh; |
|
|
|
if (mm->input.selector) |
|
mesh = mm->input.selector[v_off]; |
|
else if (mm->input.block_selector) |
|
mesh = mm->input.block_selector[mm->input.blocktype[v_off]]; |
|
|
|
// check if we're going off the end |
|
if (mm->output_cur[mesh][0] + mm->output_size[mesh][0]*6 > mm->output_end[mesh][0]) { |
|
mm->full = 1; |
|
return; |
|
} |
|
|
|
#ifdef STBVOX_CONFIG_ROTATION_IN_LIGHTING |
|
simple_rot = mm->input.lighting[v_off] & 3; |
|
#endif |
|
|
|
if (mm->input.packed_compact) |
|
simple_rot = mm->input.packed_compact[v_off] & 3; |
|
|
|
if (blockptr[ 1]==0) { |
|
rot.facerot = simple_rot; |
|
stbvox_make_mesh_for_face(mm, rot, STBVOX_FACE_up , v_off, pos, basevert, vmesh+4*STBVOX_FACE_up, mesh, STBVOX_FACE_up); |
|
} |
|
if (blockptr[-1]==0) { |
|
rot.facerot = (-simple_rot) & 3; |
|
stbvox_make_mesh_for_face(mm, rot, STBVOX_FACE_down, v_off, pos, basevert, vmesh+4*STBVOX_FACE_down, mesh, STBVOX_FACE_down); |
|
} |
|
|
|
if (mm->input.rotate) { |
|
unsigned char val = mm->input.rotate[v_off]; |
|
rot.block = (val >> 0) & 3; |
|
rot.overlay = (val >> 2) & 3; |
|
//rot.tex2 = (val >> 4) & 3; |
|
rot.ecolor = (val >> 6) & 3; |
|
} else { |
|
rot.block = rot.overlay = rot.ecolor = simple_rot; |
|
} |
|
rot.facerot = 0; |
|
|
|
if (blockptr[ ns_off]==0) |
|
stbvox_make_mesh_for_face(mm, rot, STBVOX_FACE_north, v_off, pos, basevert, vmesh+4*STBVOX_FACE_north, mesh, STBVOX_FACE_north); |
|
if (blockptr[-ns_off]==0) |
|
stbvox_make_mesh_for_face(mm, rot, STBVOX_FACE_south, v_off, pos, basevert, vmesh+4*STBVOX_FACE_south, mesh, STBVOX_FACE_south); |
|
if (blockptr[ ew_off]==0) |
|
stbvox_make_mesh_for_face(mm, rot, STBVOX_FACE_east , v_off, pos, basevert, vmesh+4*STBVOX_FACE_east, mesh, STBVOX_FACE_east); |
|
if (blockptr[-ew_off]==0) |
|
stbvox_make_mesh_for_face(mm, rot, STBVOX_FACE_west , v_off, pos, basevert, vmesh+4*STBVOX_FACE_west, mesh, STBVOX_FACE_west); |
|
} |
|
|
|
// complex case for mesh generation: we have lots of different |
|
// block types, and we don't want to generate faces of blocks |
|
// if they're hidden by neighbors. |
|
// |
|
// we use lots of tables to determine this: we have a table |
|
// which tells us what face type is generated for each type of |
|
// geometry, and then a table that tells us whether that type |
|
// is hidden by a neighbor. |
|
static void stbvox_make_mesh_for_block_with_geo(stbvox_mesh_maker *mm, stbvox_pos pos, int v_off) |
|
{ |
|
int ns_off = mm->y_stride_in_bytes; |
|
int ew_off = mm->x_stride_in_bytes; |
|
int visible_faces, visible_base; |
|
unsigned char mesh; |
|
|
|
// first gather the geometry info for this block and all neighbors |
|
|
|
unsigned char bt, nbt[6]; |
|
unsigned char geo, ngeo[6]; |
|
unsigned char rot, nrot[6]; |
|
|
|
bt = mm->input.blocktype[v_off]; |
|
nbt[0] = mm->input.blocktype[v_off + ew_off]; |
|
nbt[1] = mm->input.blocktype[v_off + ns_off]; |
|
nbt[2] = mm->input.blocktype[v_off - ew_off]; |
|
nbt[3] = mm->input.blocktype[v_off - ns_off]; |
|
nbt[4] = mm->input.blocktype[v_off + 1]; |
|
nbt[5] = mm->input.blocktype[v_off - 1]; |
|
if (mm->input.geometry) { |
|
int i; |
|
geo = mm->input.geometry[v_off]; |
|
ngeo[0] = mm->input.geometry[v_off + ew_off]; |
|
ngeo[1] = mm->input.geometry[v_off + ns_off]; |
|
ngeo[2] = mm->input.geometry[v_off - ew_off]; |
|
ngeo[3] = mm->input.geometry[v_off - ns_off]; |
|
ngeo[4] = mm->input.geometry[v_off + 1]; |
|
ngeo[5] = mm->input.geometry[v_off - 1]; |
|
|
|
rot = (geo >> 4) & 3; |
|
geo &= 15; |
|
for (i=0; i < 6; ++i) { |
|
nrot[i] = (ngeo[i] >> 4) & 3; |
|
ngeo[i] &= 15; |
|
} |
|
} else { |
|
int i; |
|
assert(mm->input.block_geometry); |
|
geo = mm->input.block_geometry[bt]; |
|
for (i=0; i < 6; ++i) |
|
ngeo[i] = mm->input.block_geometry[nbt[i]]; |
|
if (mm->input.selector) { |
|
#ifndef STBVOX_CONFIG_ROTATION_IN_LIGHTING |
|
if (mm->input.packed_compact == NULL) { |
|
rot = (mm->input.selector[v_off ] >> 4) & 3; |
|
nrot[0] = (mm->input.selector[v_off + ew_off] >> 4) & 3; |
|
nrot[1] = (mm->input.selector[v_off + ns_off] >> 4) & 3; |
|
nrot[2] = (mm->input.selector[v_off - ew_off] >> 4) & 3; |
|
nrot[3] = (mm->input.selector[v_off - ns_off] >> 4) & 3; |
|
nrot[4] = (mm->input.selector[v_off + 1] >> 4) & 3; |
|
nrot[5] = (mm->input.selector[v_off - 1] >> 4) & 3; |
|
} |
|
#endif |
|
} else { |
|
#ifndef STBVOX_CONFIG_ROTATION_IN_LIGHTING |
|
if (mm->input.packed_compact == NULL) { |
|
rot = (geo>>4)&3; |
|
geo &= 15; |
|
for (i=0; i < 6; ++i) { |
|
nrot[i] = (ngeo[i]>>4)&3; |
|
ngeo[i] &= 15; |
|
} |
|
} |
|
#endif |
|
} |
|
} |
|
|
|
#ifndef STBVOX_CONFIG_ROTATION_IN_LIGHTING |
|
if (mm->input.packed_compact) { |
|
rot = mm->input.packed_compact[rot] & 3; |
|
nrot[0] = mm->input.packed_compact[v_off + ew_off] & 3; |
|
nrot[1] = mm->input.packed_compact[v_off + ns_off] & 3; |
|
nrot[2] = mm->input.packed_compact[v_off - ew_off] & 3; |
|
nrot[3] = mm->input.packed_compact[v_off - ns_off] & 3; |
|
nrot[4] = mm->input.packed_compact[v_off + 1] & 3; |
|
nrot[5] = mm->input.packed_compact[v_off - 1] & 3; |
|
} |
|
#else |
|
rot = mm->input.lighting[v_off] & 3; |
|
nrot[0] = (mm->input.lighting[v_off + ew_off]) & 3; |
|
nrot[1] = (mm->input.lighting[v_off + ns_off]) & 3; |
|
nrot[2] = (mm->input.lighting[v_off - ew_off]) & 3; |
|
nrot[3] = (mm->input.lighting[v_off - ns_off]) & 3; |
|
nrot[4] = (mm->input.lighting[v_off + 1]) & 3; |
|
nrot[5] = (mm->input.lighting[v_off - 1]) & 3; |
|
#endif |
|
|
|
if (geo == STBVOX_GEOM_transp) { |
|
// transparency has a special rule: if the blocktype is the same, |
|
// and the faces are compatible, then can hide them; otherwise, |
|
// force them on |
|
// Note that this means we don't support any transparentshapes other |
|
// than solid blocks, since detecting them is too complicated. If |
|
// you wanted to do something like minecraft water, you probably |
|
// should just do that with a separate renderer anyway. (We don't |
|
// support transparency sorting so you need to use alpha test |
|
// anyway) |
|
int i; |
|
for (i=0; i < 6; ++i) |
|
if (nbt[i] != bt) { |
|
nbt[i] = 0; |
|
ngeo[i] = STBVOX_GEOM_empty; |
|
} else |
|
ngeo[i] = STBVOX_GEOM_solid; |
|
geo = STBVOX_GEOM_solid; |
|
} |
|
|
|
// now compute the face visibility |
|
visible_base = stbvox_hasface[geo][rot]; |
|
// @TODO: assert(visible_base != 0); // we should have early-outted earlier in this case |
|
visible_faces = 0; |
|
|
|
// now, for every face that might be visible, check if neighbor hides it |
|
if (visible_base & (1 << STBVOX_FACE_east)) { |
|
int type = stbvox_facetype[ geo ][(STBVOX_FACE_east+ rot )&3]; |
|
int ntype = stbvox_facetype[ngeo[0]][(STBVOX_FACE_west+nrot[0])&3]; |
|
visible_faces |= ((stbvox_face_visible[type]) >> (ntype + 5 - STBVOX_FACE_east)) & (1 << STBVOX_FACE_east); |
|
} |
|
if (visible_base & (1 << STBVOX_FACE_north)) { |
|
int type = stbvox_facetype[ geo ][(STBVOX_FACE_north+ rot )&3]; |
|
int ntype = stbvox_facetype[ngeo[1]][(STBVOX_FACE_south+nrot[1])&3]; |
|
visible_faces |= ((stbvox_face_visible[type]) >> (ntype + 5 - STBVOX_FACE_north)) & (1 << STBVOX_FACE_north); |
|
} |
|
if (visible_base & (1 << STBVOX_FACE_west)) { |
|
int type = stbvox_facetype[ geo ][(STBVOX_FACE_west+ rot )&3]; |
|
int ntype = stbvox_facetype[ngeo[2]][(STBVOX_FACE_east+nrot[2])&3]; |
|
visible_faces |= ((stbvox_face_visible[type]) >> (ntype + 5 - STBVOX_FACE_west)) & (1 << STBVOX_FACE_west); |
|
} |
|
if (visible_base & (1 << STBVOX_FACE_south)) { |
|
int type = stbvox_facetype[ geo ][(STBVOX_FACE_south+ rot )&3]; |
|
int ntype = stbvox_facetype[ngeo[3]][(STBVOX_FACE_north+nrot[3])&3]; |
|
visible_faces |= ((stbvox_face_visible[type]) >> (ntype + 5 - STBVOX_FACE_south)) & (1 << STBVOX_FACE_south); |
|
} |
|
if (visible_base & (1 << STBVOX_FACE_up)) { |
|
int type = stbvox_facetype[ geo ][STBVOX_FACE_up]; |
|
int ntype = stbvox_facetype[ngeo[4]][STBVOX_FACE_down]; |
|
visible_faces |= ((stbvox_face_visible[type]) >> (ntype + 5 - STBVOX_FACE_up)) & (1 << STBVOX_FACE_up); |
|
} |
|
if (visible_base & (1 << STBVOX_FACE_down)) { |
|
int type = stbvox_facetype[ geo ][STBVOX_FACE_down]; |
|
int ntype = stbvox_facetype[ngeo[5]][STBVOX_FACE_up]; |
|
visible_faces |= ((stbvox_face_visible[type]) >> (ntype + 5 - STBVOX_FACE_down)) & (1 << STBVOX_FACE_down); |
|
} |
|
|
|
if (geo == STBVOX_GEOM_force) |
|
geo = STBVOX_GEOM_solid; |
|
|
|
assert((geo == STBVOX_GEOM_crossed_pair) ? (visible_faces == 15) : 1); |
|
|
|
// now we finally know for sure which faces are getting generated |
|
if (visible_faces == 0) |
|
return; |
|
|
|
mesh = mm->default_mesh; |
|
if (mm->input.selector) |
|
mesh = mm->input.selector[v_off]; |
|
else if (mm->input.block_selector) |
|
mesh = mm->input.block_selector[bt]; |
|
|
|
if (geo <= STBVOX_GEOM_ceil_slope_north_is_bottom) { |
|
// this is the simple case, we can just use regular block gen with special vmesh calculated with vheight |
|
stbvox_mesh_vertex basevert; |
|
stbvox_mesh_vertex vmesh[6][4]; |
|
stbvox_rotate rotate = { 0,0,0,0 }; |
|
unsigned char simple_rot = rot; |
|
int i; |
|
// we only need to do this for the displayed faces, but it's easier |
|
// to just do it up front; @OPTIMIZE check if it's faster to do it |
|
// for visible faces only |
|
for (i=0; i < 6*4; ++i) { |
|
int vert = stbvox_vertex_selector[0][i]; |
|
vert = stbvox_rotate_vertex[vert][rot]; |
|
vmesh[0][i] = stbvox_vmesh_pre_vheight[0][i] |
|
+ stbvox_geometry_vheight[geo][vert]; |
|
} |
|
|
|
basevert = stbvox_vertex_encode(pos.x, pos.y, pos.z << STBVOX_CONFIG_PRECISION_Z, 0,0); |
|
if (mm->input.selector) { |
|
mesh = mm->input.selector[v_off]; |
|
} else if (mm->input.block_selector) |
|
mesh = mm->input.block_selector[bt]; |
|
|
|
|
|
// check if we're going off the end |
|
if (mm->output_cur[mesh][0] + mm->output_size[mesh][0]*6 > mm->output_end[mesh][0]) { |
|
mm->full = 1; |
|
return; |
|
} |
|
|
|
if (geo >= STBVOX_GEOM_floor_slope_north_is_top) { |
|
if (visible_faces & (1 << STBVOX_FACE_up)) { |
|
int normal = geo == STBVOX_GEOM_floor_slope_north_is_top ? stbvox_floor_slope_for_rot[simple_rot] : STBVOX_FACE_up; |
|
rotate.facerot = simple_rot; |
|
stbvox_make_mesh_for_face(mm, rotate, STBVOX_FACE_up , v_off, pos, basevert, vmesh[STBVOX_FACE_up], mesh, normal); |
|
} |
|
if (visible_faces & (1 << STBVOX_FACE_down)) { |
|
int normal = geo == STBVOX_GEOM_ceil_slope_north_is_bottom ? stbvox_ceil_slope_for_rot[simple_rot] : STBVOX_FACE_down; |
|
rotate.facerot = (-rotate.facerot) & 3; |
|
stbvox_make_mesh_for_face(mm, rotate, STBVOX_FACE_down, v_off, pos, basevert, vmesh[STBVOX_FACE_down], mesh, normal); |
|
} |
|
} else { |
|
if (visible_faces & (1 << STBVOX_FACE_up)) { |
|
rotate.facerot = simple_rot; |
|
stbvox_make_mesh_for_face(mm, rotate, STBVOX_FACE_up , v_off, pos, basevert, vmesh[STBVOX_FACE_up], mesh, STBVOX_FACE_up); |
|
} |
|
if (visible_faces & (1 << STBVOX_FACE_down)) { |
|
rotate.facerot = (-rotate.facerot) & 3; |
|
stbvox_make_mesh_for_face(mm, rotate, STBVOX_FACE_down, v_off, pos, basevert, vmesh[STBVOX_FACE_down], mesh, STBVOX_FACE_down); |
|
} |
|
} |
|
|
|
if (mm->input.rotate) { |
|
unsigned char val = mm->input.rotate[v_off]; |
|
rotate.block = (val >> 0) & 3; |
|
rotate.overlay = (val >> 2) & 3; |
|
//rotate.tex2 = (val >> 4) & 3; |
|
rotate.ecolor = (val >> 6) & 3; |
|
} else { |
|
rotate.block = rotate.overlay = rotate.ecolor = simple_rot; |
|
} |
|
|
|
rotate.facerot = 0; |
|
|
|
if (visible_faces & (1 << STBVOX_FACE_north)) |
|
stbvox_make_mesh_for_face(mm, rotate, STBVOX_FACE_north, v_off, pos, basevert, vmesh[STBVOX_FACE_north], mesh, STBVOX_FACE_north); |
|
if (visible_faces & (1 << STBVOX_FACE_south)) |
|
stbvox_make_mesh_for_face(mm, rotate, STBVOX_FACE_south, v_off, pos, basevert, vmesh[STBVOX_FACE_south], mesh, STBVOX_FACE_south); |
|
if (visible_faces & (1 << STBVOX_FACE_east)) |
|
stbvox_make_mesh_for_face(mm, rotate, STBVOX_FACE_east , v_off, pos, basevert, vmesh[STBVOX_FACE_east ], mesh, STBVOX_FACE_east); |
|
if (visible_faces & (1 << STBVOX_FACE_west)) |
|
stbvox_make_mesh_for_face(mm, rotate, STBVOX_FACE_west , v_off, pos, basevert, vmesh[STBVOX_FACE_west ], mesh, STBVOX_FACE_west); |
|
} |
|
if (geo >= STBVOX_GEOM_floor_vheight_03) { |
|
// this case can also be generated with regular block gen with special vmesh, |
|
// except: |
|
// if we want to generate middle diagonal for 'weird' blocks |
|
// it's more complicated to detect neighbor matchups |
|
stbvox_mesh_vertex vmesh[6][4]; |
|
stbvox_mesh_vertex cube[8]; |
|
stbvox_mesh_vertex basevert; |
|
stbvox_rotate rotate = { 0,0,0,0 }; |
|
unsigned char simple_rot = rot; |
|
unsigned char ht[4]; |
|
int extreme; |
|
|
|
// extract the heights |
|
#ifdef STBVOX_CONFIG_VHEIGHT_IN_LIGHTING |
|
ht[0] = mm->input.lighting[v_off ] & 3; |
|
ht[1] = mm->input.lighting[v_off+ew_off ] & 3; |
|
ht[2] = mm->input.lighting[v_off +ns_off] & 3; |
|
ht[3] = mm->input.lighting[v_off+ew_off+ns_off] & 3; |
|
#else |
|
if (mm->input.vheight) { |
|
unsigned char v = mm->input.vheight[v_off]; |
|
ht[0] = (v >> 0) & 3; |
|
ht[1] = (v >> 2) & 3; |
|
ht[2] = (v >> 4) & 3; |
|
ht[3] = (v >> 6) & 3; |
|
} else if (mm->input.block_vheight) { |
|
unsigned char v = mm->input.block_vheight[bt]; |
|
unsigned char raw[4]; |
|
int i; |
|
|
|
raw[0] = (v >> 0) & 3; |
|
raw[1] = (v >> 2) & 3; |
|
raw[2] = (v >> 4) & 3; |
|
raw[3] = (v >> 6) & 3; |
|
|
|
for (i=0; i < 4; ++i) |
|
ht[i] = raw[stbvox_rotate_vertex[i][rot]]; |
|
} else if (mm->input.packed_compact) { |
|
ht[0] = (mm->input.packed_compact[v_off ] >> 2) & 3; |
|
ht[1] = (mm->input.packed_compact[v_off+ew_off ] >> 2) & 3; |
|
ht[2] = (mm->input.packed_compact[v_off +ns_off] >> 2) & 3; |
|
ht[3] = (mm->input.packed_compact[v_off+ew_off+ns_off] >> 2) & 3; |
|
} else if (mm->input.geometry) { |
|
ht[0] = mm->input.geometry[v_off ] >> 6; |
|
ht[1] = mm->input.geometry[v_off+ew_off ] >> 6; |
|
ht[2] = mm->input.geometry[v_off +ns_off] >> 6; |
|
ht[3] = mm->input.geometry[v_off+ew_off+ns_off] >> 6; |
|
} else { |
|
assert(0); |
|
} |
|
#endif |
|
|
|
// flag whether any sides go off the top of the block, which means |
|
// our visible_faces test was wrong |
|
extreme = (ht[0] == 3 || ht[1] == 3 || ht[2] == 3 || ht[3] == 3); |
|
|
|
if (geo >= STBVOX_GEOM_ceil_vheight_03) { |
|
cube[0] = stbvox_vertex_encode(0,0,ht[0],0,0); |
|
cube[1] = stbvox_vertex_encode(0,0,ht[1],0,0); |
|
cube[2] = stbvox_vertex_encode(0,0,ht[2],0,0); |
|
cube[3] = stbvox_vertex_encode(0,0,ht[3],0,0); |
|
cube[4] = stbvox_vertex_encode(0,0,2,0,0); |
|
cube[5] = stbvox_vertex_encode(0,0,2,0,0); |
|
cube[6] = stbvox_vertex_encode(0,0,2,0,0); |
|
cube[7] = stbvox_vertex_encode(0,0,2,0,0); |
|
} else { |
|
cube[0] = stbvox_vertex_encode(0,0,0,0,0); |
|
cube[1] = stbvox_vertex_encode(0,0,0,0,0); |
|
cube[2] = stbvox_vertex_encode(0,0,0,0,0); |
|
cube[3] = stbvox_vertex_encode(0,0,0,0,0); |
|
cube[4] = stbvox_vertex_encode(0,0,ht[0],0,0); |
|
cube[5] = stbvox_vertex_encode(0,0,ht[1],0,0); |
|
cube[6] = stbvox_vertex_encode(0,0,ht[2],0,0); |
|
cube[7] = stbvox_vertex_encode(0,0,ht[3],0,0); |
|
} |
|
if (!mm->input.vheight && mm->input.block_vheight) { |
|
// @TODO: support block vheight here, I've forgotten what needs to be done specially |
|
} |
|
|
|
// build vertex mesh |
|
{ |
|
int i; |
|
for (i=0; i < 6*4; ++i) { |
|
int vert = stbvox_vertex_selector[0][i]; |
|
vmesh[0][i] = stbvox_vmesh_pre_vheight[0][i] |
|
+ cube[vert]; |
|
} |
|
} |
|
|
|
basevert = stbvox_vertex_encode(pos.x, pos.y, pos.z << STBVOX_CONFIG_PRECISION_Z, 0,0); |
|
// check if we're going off the end |
|
if (mm->output_cur[mesh][0] + mm->output_size[mesh][0]*6 > mm->output_end[mesh][0]) { |
|
mm->full = 1; |
|
return; |
|
} |
|
|
|
// @TODO generate split faces |
|
if (visible_faces & (1 << STBVOX_FACE_up)) { |
|
if (geo >= STBVOX_GEOM_ceil_vheight_03) |
|
// flat |
|
stbvox_make_mesh_for_face(mm, rotate, STBVOX_FACE_up , v_off, pos, basevert, vmesh[STBVOX_FACE_up], mesh, STBVOX_FACE_up); |
|
else { |
|
#ifndef STBVOX_CONFIG_OPTIMIZED_VHEIGHT |
|
// check if it's non-planar |
|
if (cube[5] + cube[6] != cube[4] + cube[7]) { |
|
// not planar, split along diagonal and make degenerate quads |
|
if (geo == STBVOX_GEOM_floor_vheight_03) |
|
stbvox_make_03_split_mesh_for_face(mm, rotate, STBVOX_FACE_up, v_off, pos, basevert, vmesh[STBVOX_FACE_up], mesh, ht); |
|
else |
|
stbvox_make_12_split_mesh_for_face(mm, rotate, STBVOX_FACE_up, v_off, pos, basevert, vmesh[STBVOX_FACE_up], mesh, ht); |
|
} else |
|
stbvox_make_mesh_for_face(mm, rotate, STBVOX_FACE_up , v_off, pos, basevert, vmesh[STBVOX_FACE_up], mesh, stbvox_planar_face_up_normal[ht[2]][ht[1]][ht[0]]); |
|
#else |
|
stbvox_make_mesh_for_face(mm, rotate, STBVOX_FACE_up , v_off, pos, basevert, vmesh[STBVOX_FACE_up], mesh, stbvox_optimized_face_up_normal[ht[3]][ht[2]][ht[1]][ht[0]]); |
|
#endif |
|
} |
|
} |
|
if (visible_faces & (1 << STBVOX_FACE_down)) { |
|
if (geo < STBVOX_GEOM_ceil_vheight_03) |
|
// flat |
|
stbvox_make_mesh_for_face(mm, rotate, STBVOX_FACE_down, v_off, pos, basevert, vmesh[STBVOX_FACE_down], mesh, STBVOX_FACE_down); |
|
else { |
|
#ifndef STBVOX_CONFIG_OPTIMIZED_VHEIGHT |
|
// check if it's non-planar |
|
if (cube[1] + cube[2] != cube[0] + cube[3]) { |
|
// not planar, split along diagonal and make degenerate quads |
|
if (geo == STBVOX_GEOM_ceil_vheight_03) |
|
stbvox_make_03_split_mesh_for_face(mm, rotate, STBVOX_FACE_down, v_off, pos, basevert, vmesh[STBVOX_FACE_down], mesh, ht); |
|
else |
|
stbvox_make_12_split_mesh_for_face(mm, rotate, STBVOX_FACE_down, v_off, pos, basevert, vmesh[STBVOX_FACE_down], mesh, ht); |
|
} else |
|
stbvox_make_mesh_for_face(mm, rotate, STBVOX_FACE_down, v_off, pos, basevert, vmesh[STBVOX_FACE_down], mesh, stbvox_reverse_face[stbvox_planar_face_up_normal[ht[2]][ht[1]][ht[0]]]); |
|
#else |
|
stbvox_make_mesh_for_face(mm, rotate, STBVOX_FACE_down, v_off, pos, basevert, vmesh[STBVOX_FACE_down], mesh, stbvox_reverse_face[stbvox_optimized_face_up_normal[ht[3]][ht[2]][ht[1]][ht[0]]]); |
|
#endif |
|
} |
|
} |
|
|
|
if (mm->input.rotate) { |
|
unsigned char val = mm->input.rotate[v_off]; |
|
rotate.block = (val >> 0) & 3; |
|
rotate.overlay = (val >> 2) & 3; |
|
//rotate.tex2 = (val >> 4) & 3; |
|
rotate.ecolor = (val >> 6) & 3; |
|
} else if (mm->input.selector) { |
|
rotate.block = rotate.overlay = rotate.ecolor = simple_rot; |
|
} |
|
|
|
if ((visible_faces & (1 << STBVOX_FACE_north)) || (extreme && (ht[2] == 3 || ht[3] == 3))) |
|
stbvox_make_mesh_for_face(mm, rotate, STBVOX_FACE_north, v_off, pos, basevert, vmesh[STBVOX_FACE_north], mesh, STBVOX_FACE_north); |
|
if ((visible_faces & (1 << STBVOX_FACE_south)) || (extreme && (ht[0] == 3 || ht[1] == 3))) |
|
stbvox_make_mesh_for_face(mm, rotate, STBVOX_FACE_south, v_off, pos, basevert, vmesh[STBVOX_FACE_south], mesh, STBVOX_FACE_south); |
|
if ((visible_faces & (1 << STBVOX_FACE_east)) || (extreme && (ht[1] == 3 || ht[3] == 3))) |
|
stbvox_make_mesh_for_face(mm, rotate, STBVOX_FACE_east , v_off, pos, basevert, vmesh[STBVOX_FACE_east ], mesh, STBVOX_FACE_east); |
|
if ((visible_faces & (1 << STBVOX_FACE_west)) || (extreme && (ht[0] == 3 || ht[2] == 3))) |
|
stbvox_make_mesh_for_face(mm, rotate, STBVOX_FACE_west , v_off, pos, basevert, vmesh[STBVOX_FACE_west ], mesh, STBVOX_FACE_west); |
|
} |
|
|
|
if (geo == STBVOX_GEOM_crossed_pair) { |
|
// this can be generated with a special vmesh |
|
stbvox_mesh_vertex basevert = stbvox_vertex_encode(pos.x, pos.y, pos.z << STBVOX_CONFIG_PRECISION_Z , 0,0); |
|
unsigned char simple_rot=0; |
|
stbvox_rotate rot = { 0,0,0,0 }; |
|
unsigned char mesh = mm->default_mesh; |
|
if (mm->input.selector) { |
|
mesh = mm->input.selector[v_off]; |
|
simple_rot = mesh >> 4; |
|
mesh &= 15; |
|
} |
|
if (mm->input.block_selector) { |
|
mesh = mm->input.block_selector[bt]; |
|
} |
|
|
|
// check if we're going off the end |
|
if (mm->output_cur[mesh][0] + mm->output_size[mesh][0]*4 > mm->output_end[mesh][0]) { |
|
mm->full = 1; |
|
return; |
|
} |
|
|
|
if (mm->input.rotate) { |
|
unsigned char val = mm->input.rotate[v_off]; |
|
rot.block = (val >> 0) & 3; |
|
rot.overlay = (val >> 2) & 3; |
|
//rot.tex2 = (val >> 4) & 3; |
|
rot.ecolor = (val >> 6) & 3; |
|
} else if (mm->input.selector) { |
|
rot.block = rot.overlay = rot.ecolor = simple_rot; |
|
} |
|
rot.facerot = 0; |
|
|
|
stbvox_make_mesh_for_face(mm, rot, STBVOX_FACE_north, v_off, pos, basevert, stbvox_vmesh_crossed_pair[STBVOX_FACE_north], mesh, STBVF_ne_u_cross); |
|
stbvox_make_mesh_for_face(mm, rot, STBVOX_FACE_south, v_off, pos, basevert, stbvox_vmesh_crossed_pair[STBVOX_FACE_south], mesh, STBVF_sw_u_cross); |
|
stbvox_make_mesh_for_face(mm, rot, STBVOX_FACE_east , v_off, pos, basevert, stbvox_vmesh_crossed_pair[STBVOX_FACE_east ], mesh, STBVF_se_u_cross); |
|
stbvox_make_mesh_for_face(mm, rot, STBVOX_FACE_west , v_off, pos, basevert, stbvox_vmesh_crossed_pair[STBVOX_FACE_west ], mesh, STBVF_nw_u_cross); |
|
} |
|
|
|
|
|
// @TODO |
|
// STBVOX_GEOM_floor_slope_north_is_top_as_wall, |
|
// STBVOX_GEOM_ceil_slope_north_is_bottom_as_wall, |
|
} |
|
|
|
static void stbvox_make_mesh_for_column(stbvox_mesh_maker *mm, int x, int y, int z0) |
|
{ |
|
stbvox_pos pos; |
|
int v_off = x * mm->x_stride_in_bytes + y * mm->y_stride_in_bytes; |
|
int ns_off = mm->y_stride_in_bytes; |
|
int ew_off = mm->x_stride_in_bytes; |
|
pos.x = x; |
|
pos.y = y; |
|
pos.z = 0; |
|
if (mm->input.geometry) { |
|
unsigned char *bt = mm->input.blocktype + v_off; |
|
unsigned char *geo = mm->input.geometry + v_off; |
|
int z; |
|
for (z=z0; z < mm->z1; ++z) { |
|
if (bt[z] && ( !bt[z+ns_off] || !STBVOX_GET_GEO(geo[z+ns_off]) || !bt[z-ns_off] || !STBVOX_GET_GEO(geo[z-ns_off]) |
|
|| !bt[z+ew_off] || !STBVOX_GET_GEO(geo[z+ew_off]) || !bt[z-ew_off] || !STBVOX_GET_GEO(geo[z-ew_off]) |
|
|| !bt[z-1] || !STBVOX_GET_GEO(geo[z-1]) || !bt[z+1] || !STBVOX_GET_GEO(geo[z+1]))) |
|
{ // TODO check up and down |
|
pos.z = z; |
|
stbvox_make_mesh_for_block_with_geo(mm, pos, v_off+z); |
|
if (mm->full) { |
|
mm->cur_z = z; |
|
return; |
|
} |
|
} |
|
} |
|
} else if (mm->input.block_geometry) { |
|
int z; |
|
unsigned char *bt = mm->input.blocktype + v_off; |
|
unsigned char *geo = mm->input.block_geometry; |
|
for (z=z0; z < mm->z1; ++z) { |
|
if (bt[z] && ( geo[bt[z+ns_off]] != STBVOX_GEOM_solid |
|
|| geo[bt[z-ns_off]] != STBVOX_GEOM_solid |
|
|| geo[bt[z+ew_off]] != STBVOX_GEOM_solid |
|
|| geo[bt[z-ew_off]] != STBVOX_GEOM_solid |
|
|| geo[bt[z-1]] != STBVOX_GEOM_solid |
|
|| geo[bt[z+1]] != STBVOX_GEOM_solid)) |
|
{ |
|
pos.z = z; |
|
stbvox_make_mesh_for_block_with_geo(mm, pos, v_off+z); |
|
if (mm->full) { |
|
mm->cur_z = z; |
|
return; |
|
} |
|
} |
|
} |
|
} else { |
|
unsigned char *bt = mm->input.blocktype + v_off; |
|
int z; |
|
#if STBVOX_CONFIG_PRECISION_Z == 1 |
|
stbvox_mesh_vertex *vmesh = stbvox_vmesh_delta_half_z[0]; |
|
#else |
|
stbvox_mesh_vertex *vmesh = stbvox_vmesh_delta_normal[0]; |
|
#endif |
|
for (z=z0; z < mm->z1; ++z) { |
|
// if it's solid and at least one neighbor isn't solid |
|
if (bt[z] && (!bt[z+ns_off] || !bt[z-ns_off] || !bt[z+ew_off] || !bt[z-ew_off] || !bt[z-1] || !bt[z+1])) { |
|
pos.z = z; |
|
stbvox_make_mesh_for_block(mm, pos, v_off+z, vmesh); |
|
if (mm->full) { |
|
mm->cur_z = z; |
|
return; |
|
} |
|
} |
|
} |
|
} |
|
} |
|
|
|
static void stbvox_bring_up_to_date(stbvox_mesh_maker *mm) |
|
{ |
|
if (mm->config_dirty) { |
|
int i; |
|
#ifdef STBVOX_ICONFIG_FACE_ATTRIBUTE |
|
mm->num_mesh_slots = 1; |
|
for (i=0; i < STBVOX_MAX_MESHES; ++i) { |
|
mm->output_size[i][0] = 32; |
|
mm->output_step[i][0] = 8; |
|
} |
|
#else |
|
mm->num_mesh_slots = 2; |
|
for (i=0; i < STBVOX_MAX_MESHES; ++i) { |
|
mm->output_size[i][0] = 16; |
|
mm->output_step[i][0] = 4; |
|
mm->output_size[i][1] = 4; |
|
mm->output_step[i][1] = 4; |
|
} |
|
#endif |
|
|
|
mm->config_dirty = 0; |
|
} |
|
} |
|
|
|
int stbvox_make_mesh(stbvox_mesh_maker *mm) |
|
{ |
|
int x,y; |
|
stbvox_bring_up_to_date(mm); |
|
mm->full = 0; |
|
if (mm->cur_x > mm->x0 || mm->cur_y > mm->y0 || mm->cur_z > mm->z0) { |
|
stbvox_make_mesh_for_column(mm, mm->cur_x, mm->cur_y, mm->cur_z); |
|
if (mm->full) |
|
return 0; |
|
++mm->cur_y; |
|
while (mm->cur_y < mm->y1 && !mm->full) { |
|
stbvox_make_mesh_for_column(mm, mm->cur_x, mm->cur_y, mm->z0); |
|
if (mm->full) |
|
return 0; |
|
++mm->cur_y; |
|
} |
|
++mm->cur_x; |
|
} |
|
for (x=mm->cur_x; x < mm->x1; ++x) { |
|
for (y=mm->y0; y < mm->y1; ++y) { |
|
stbvox_make_mesh_for_column(mm, x, y, mm->z0); |
|
if (mm->full) { |
|
mm->cur_x = x; |
|
mm->cur_y = y; |
|
return 0; |
|
} |
|
} |
|
} |
|
return 1; |
|
} |
|
|
|
void stbvox_init_mesh_maker(stbvox_mesh_maker *mm) |
|
{ |
|
memset(mm, 0, sizeof(*mm)); |
|
stbvox_build_default_palette(); |
|
|
|
mm->config_dirty = 1; |
|
mm->default_mesh = 0; |
|
} |
|
|
|
int stbvox_get_buffer_count(stbvox_mesh_maker *mm) |
|
{ |
|
stbvox_bring_up_to_date(mm); |
|
return mm->num_mesh_slots; |
|
} |
|
|
|
int stbvox_get_buffer_size_per_quad(stbvox_mesh_maker *mm, int n) |
|
{ |
|
return mm->output_size[0][n]; |
|
} |
|
|
|
void stbvox_reset_buffers(stbvox_mesh_maker *mm) |
|
{ |
|
int i; |
|
for (i=0; i < STBVOX_MAX_MESHES*STBVOX_MAX_MESH_SLOTS; ++i) { |
|
mm->output_cur[0][i] = 0; |
|
mm->output_buffer[0][i] = 0; |
|
} |
|
} |
|
|
|
void stbvox_set_buffer(stbvox_mesh_maker *mm, int mesh, int slot, void *buffer, size_t len) |
|
{ |
|
int i; |
|
stbvox_bring_up_to_date(mm); |
|
mm->output_buffer[mesh][slot] = (char *) buffer; |
|
mm->output_cur [mesh][slot] = (char *) buffer; |
|
mm->output_len [mesh][slot] = len; |
|
mm->output_end [mesh][slot] = (char *) buffer + len; |
|
for (i=0; i < STBVOX_MAX_MESH_SLOTS; ++i) { |
|
if (mm->output_buffer[mesh][i]) { |
|
assert(mm->output_len[mesh][i] / mm->output_size[mesh][i] == mm->output_len[mesh][slot] / mm->output_size[mesh][slot]); |
|
} |
|
} |
|
} |
|
|
|
void stbvox_set_default_mesh(stbvox_mesh_maker *mm, int mesh) |
|
{ |
|
mm->default_mesh = mesh; |
|
} |
|
|
|
int stbvox_get_quad_count(stbvox_mesh_maker *mm, int mesh) |
|
{ |
|
return (mm->output_cur[mesh][0] - mm->output_buffer[mesh][0]) / mm->output_size[mesh][0]; |
|
} |
|
|
|
stbvox_input_description *stbvox_get_input_description(stbvox_mesh_maker *mm) |
|
{ |
|
return &mm->input; |
|
} |
|
|
|
void stbvox_set_input_range(stbvox_mesh_maker *mm, int x0, int y0, int z0, int x1, int y1, int z1) |
|
{ |
|
mm->x0 = x0; |
|
mm->y0 = y0; |
|
mm->z0 = z0; |
|
|
|
mm->x1 = x1; |
|
mm->y1 = y1; |
|
mm->z1 = z1; |
|
|
|
mm->cur_x = x0; |
|
mm->cur_y = y0; |
|
mm->cur_z = z0; |
|
|
|
// @TODO validate that this range is representable in this mode |
|
} |
|
|
|
void stbvox_get_transform(stbvox_mesh_maker *mm, float transform[3][3]) |
|
{ |
|
// scale |
|
transform[0][0] = 1.0; |
|
transform[0][1] = 1.0; |
|
#if STBVOX_CONFIG_PRECISION_Z==1 |
|
transform[0][2] = 0.5f; |
|
#else |
|
transform[0][2] = 1.0f; |
|
#endif |
|
// translation |
|
transform[1][0] = (float) (mm->pos_x); |
|
transform[1][1] = (float) (mm->pos_y); |
|
transform[1][2] = (float) (mm->pos_z); |
|
// texture coordinate projection translation |
|
transform[2][0] = (float) (mm->pos_x & 255); // @TODO depends on max texture scale |
|
transform[2][1] = (float) (mm->pos_y & 255); |
|
transform[2][2] = (float) (mm->pos_z & 255); |
|
} |
|
|
|
void stbvox_get_bounds(stbvox_mesh_maker *mm, float bounds[2][3]) |
|
{ |
|
bounds[0][0] = (float) (mm->pos_x + mm->x0); |
|
bounds[0][1] = (float) (mm->pos_y + mm->y0); |
|
bounds[0][2] = (float) (mm->pos_z + mm->z0); |
|
bounds[1][0] = (float) (mm->pos_x + mm->x1); |
|
bounds[1][1] = (float) (mm->pos_y + mm->y1); |
|
bounds[1][2] = (float) (mm->pos_z + mm->z1); |
|
} |
|
|
|
void stbvox_set_mesh_coordinates(stbvox_mesh_maker *mm, int x, int y, int z) |
|
{ |
|
mm->pos_x = x; |
|
mm->pos_y = y; |
|
mm->pos_z = z; |
|
} |
|
|
|
void stbvox_set_input_stride(stbvox_mesh_maker *mm, int x_stride_in_bytes, int y_stride_in_bytes) |
|
{ |
|
int f,v; |
|
mm->x_stride_in_bytes = x_stride_in_bytes; |
|
mm->y_stride_in_bytes = y_stride_in_bytes; |
|
for (f=0; f < 6; ++f) { |
|
for (v=0; v < 4; ++v) { |
|
mm->cube_vertex_offset[f][v] = stbvox_vertex_vector[f][v][0] * mm->x_stride_in_bytes |
|
+ stbvox_vertex_vector[f][v][1] * mm->y_stride_in_bytes |
|
+ stbvox_vertex_vector[f][v][2] ; |
|
mm->vertex_gather_offset[f][v] = (stbvox_vertex_vector[f][v][0]-1) * mm->x_stride_in_bytes |
|
+ (stbvox_vertex_vector[f][v][1]-1) * mm->y_stride_in_bytes |
|
+ (stbvox_vertex_vector[f][v][2]-1) ; |
|
} |
|
} |
|
} |
|
|
|
///////////////////////////////////////////////////////////////////////////// |
|
// |
|
// offline computation of tables |
|
// |
|
|
|
#if 0 |
|
// compute optimized vheight table |
|
static char *normal_names[32] = |
|
{ |
|
0,0,0,0,"u ",0, "eu ",0, |
|
0,0,0,0,"ne_u",0, "nu ",0, |
|
0,0,0,0,"nw_u",0, "wu ",0, |
|
0,0,0,0,"sw_u",0, "su ",0, |
|
}; |
|
|
|
static char *find_best_normal(float x, float y, float z) |
|
{ |
|
int best_slot = 4; |
|
float best_dot = 0; |
|
int i; |
|
for (i=0; i < 32; ++i) { |
|
if (normal_names[i]) { |
|
float dot = x * stbvox_default_normals[i][0] + y * stbvox_default_normals[i][1] + z * stbvox_default_normals[i][2]; |
|
if (dot > best_dot) { |
|
best_dot = dot; |
|
best_slot = i; |
|
} |
|
} |
|
} |
|
return normal_names[best_slot]; |
|
} |
|
|
|
int main(int argc, char **argv) |
|
{ |
|
int sw,se,nw,ne; |
|
for (ne=0; ne < 4; ++ne) { |
|
for (nw=0; nw < 4; ++nw) { |
|
for (se=0; se < 4; ++se) { |
|
printf(" { "); |
|
for (sw=0; sw < 4; ++sw) { |
|
float x = (float) (nw + sw - ne - se); |
|
float y = (float) (sw + se - nw - ne); |
|
float z = 2; |
|
printf("STBVF_%s, ", find_best_normal(x,y,z)); |
|
} |
|
printf("},\n"); |
|
} |
|
} |
|
} |
|
return 0; |
|
} |
|
#endif |
|
|
|
// @TODO |
|
// |
|
// - test API for texture rotation on side faces |
|
// - API for texture rotation on top & bottom |
|
// - better culling of vheight faces with vheight neighbors |
|
// - better culling of non-vheight faces with vheight neighbors |
|
// - gather vertex lighting from slopes correctly |
|
// - better support texture edge_clamp: currently if you fall |
|
// exactly on 1.0 you get wrapped incorrectly; this is rare, but |
|
// can avoid: compute texcoords in vertex shader, offset towards |
|
// center before modding, need 2 bits per vertex to know offset direction) |
|
// - other mesh modes (10,6,4-byte quads) |
|
// |
|
// |
|
// With TexBuffer for the fixed vertex data, we can actually do |
|
// minecrafty non-blocks like stairs -- we still probably only |
|
// want 256 or so, so we can't do the equivalent of all the vheight |
|
// combos, but that's ok. The 256 includes baked rotations, but only |
|
// some of them need it, and lots of block types share some faces. |
|
// |
|
// mode 5 (6 bytes): mode 6 (6 bytes) |
|
// x:7 x:6 |
|
// y:7 y:6 |
|
// z:6 z:6 |
|
// tex1:8 tex1:8 |
|
// tex2:8 tex2:7 |
|
// color:8 color:8 |
|
// face:4 face:7 |
|
// |
|
// |
|
// side faces (all x4) top&bottom faces (2x) internal faces (1x) |
|
// 1 regular 1 regular |
|
// 2 slabs 2 |
|
// 8 stairs 4 stairs 16 |
|
// 4 diag side 8 |
|
// 4 upper diag side 8 |
|
// 4 lower diag side 8 |
|
// 4 crossed pairs |
|
// |
|
// 23*4 + 5*4 + 46 |
|
// == 92 + 20 + 46 = 158 |
|
// |
|
// Must drop 30 of them to fit in 7 bits: |
|
// ceiling half diagonals: 16+8 = 24 |
|
// Need to get rid of 6 more. |
|
// ceiling diagonals: 8+4 = 12 |
|
// This brings it to 122, so can add a crossed-pair variant. |
|
// (diagonal and non-diagonal, or randomly offset) |
|
// Or carpet, which would be 5 more. |
|
// |
|
// |
|
// Mode 4 (10 bytes): |
|
// v: z:2,light:6 |
|
// f: x:6,y:6,z:7, t1:8,t2:8,c:8,f:5 |
|
// |
|
// Mode ? (10 bytes) |
|
// v: xyz:5 (27 values), light:3 |
|
// f: x:7,y:7,z:6, t1:8,t2:8,c:8,f:4 |
|
// (v: x:2,y:2,z:2,light:2) |
|
|
|
#endif // STB_VOXEL_RENDER_IMPLEMENTATION |
|
|
|
/* |
|
------------------------------------------------------------------------------ |
|
This software is available under 2 licenses -- choose whichever you prefer. |
|
------------------------------------------------------------------------------ |
|
ALTERNATIVE A - MIT License |
|
Copyright (c) 2017 Sean Barrett |
|
Permission is hereby granted, free of charge, to any person obtaining a copy of |
|
this software and associated documentation files (the "Software"), to deal in |
|
the Software without restriction, including without limitation the rights to |
|
use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies |
|
of the Software, and to permit persons to whom the Software is furnished to do |
|
so, subject to the following conditions: |
|
The above copyright notice and this permission notice shall be included in all |
|
copies or substantial portions of the Software. |
|
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
|
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
|
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE |
|
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER |
|
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, |
|
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE |
|
SOFTWARE. |
|
------------------------------------------------------------------------------ |
|
ALTERNATIVE B - Public Domain (www.unlicense.org) |
|
This is free and unencumbered software released into the public domain. |
|
Anyone is free to copy, modify, publish, use, compile, sell, or distribute this |
|
software, either in source code form or as a compiled binary, for any purpose, |
|
commercial or non-commercial, and by any means. |
|
In jurisdictions that recognize copyright laws, the author or authors of this |
|
software dedicate any and all copyright interest in the software to the public |
|
domain. We make this dedication for the benefit of the public at large and to |
|
the detriment of our heirs and successors. We intend this dedication to be an |
|
overt act of relinquishment in perpetuity of all present and future rights to |
|
this software under copyright law. |
|
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
|
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
|
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE |
|
AUTHORS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN |
|
ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION |
|
WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. |
|
------------------------------------------------------------------------------ |
|
*/
|
|
|