You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
1166 lines
32 KiB
1166 lines
32 KiB
/* ==================================================================== |
|
* Copyright (c) 1999 The OpenSSL Project. All rights reserved. |
|
* |
|
* Redistribution and use in source and binary forms, with or without |
|
* modification, are permitted provided that the following conditions |
|
* are met: |
|
* |
|
* 1. Redistributions of source code must retain the above copyright |
|
* notice, this list of conditions and the following disclaimer. |
|
* |
|
* 2. Redistributions in binary form must reproduce the above copyright |
|
* notice, this list of conditions and the following disclaimer in |
|
* the documentation and/or other materials provided with the |
|
* distribution. |
|
* |
|
* 3. All advertising materials mentioning features or use of this |
|
* software must display the following acknowledgment: |
|
* "This product includes software developed by the OpenSSL Project |
|
* for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)" |
|
* |
|
* 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to |
|
* endorse or promote products derived from this software without |
|
* prior written permission. For written permission, please contact |
|
* licensing@OpenSSL.org. |
|
* |
|
* 5. Products derived from this software may not be called "OpenSSL" |
|
* nor may "OpenSSL" appear in their names without prior written |
|
* permission of the OpenSSL Project. |
|
* |
|
* 6. Redistributions of any form whatsoever must retain the following |
|
* acknowledgment: |
|
* "This product includes software developed by the OpenSSL Project |
|
* for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)" |
|
* |
|
* THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY |
|
* EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR |
|
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR |
|
* ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
|
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT |
|
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; |
|
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, |
|
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
|
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED |
|
* OF THE POSSIBILITY OF SUCH DAMAGE. |
|
* ==================================================================== |
|
* |
|
* This product includes cryptographic software written by Eric Young |
|
* (eay@cryptsoft.com). This product includes software written by Tim |
|
* Hudson (tjh@cryptsoft.com). |
|
* |
|
*/ |
|
|
|
#include <stdio.h> |
|
#include <openssl/bn.h> |
|
#include <string.h> |
|
|
|
#include <openssl/e_os2.h> |
|
#if !defined(OPENSSL_SYS_MSDOS) || defined(__DJGPP__) || defined(__MINGW32__) |
|
# include <sys/types.h> |
|
# include <unistd.h> |
|
#else |
|
# include <process.h> |
|
typedef int pid_t; |
|
#endif |
|
|
|
#if defined(OPENSSL_SYS_NETWARE) && defined(NETWARE_CLIB) |
|
# define getpid GetThreadID |
|
extern int GetThreadID(void); |
|
#elif defined(_WIN32) && !defined(__WATCOMC__) |
|
# define getpid _getpid |
|
#endif |
|
|
|
#include <openssl/crypto.h> |
|
#include <openssl/dso.h> |
|
#include <openssl/engine.h> |
|
#include <openssl/buffer.h> |
|
#ifndef OPENSSL_NO_RSA |
|
# include <openssl/rsa.h> |
|
#endif |
|
#ifndef OPENSSL_NO_DSA |
|
# include <openssl/dsa.h> |
|
#endif |
|
#ifndef OPENSSL_NO_DH |
|
# include <openssl/dh.h> |
|
#endif |
|
|
|
#ifndef OPENSSL_NO_HW |
|
# ifndef OPENSSL_NO_HW_AEP |
|
# ifdef FLAT_INC |
|
# include "aep.h" |
|
# else |
|
# include "vendor_defns/aep.h" |
|
# endif |
|
|
|
# define AEP_LIB_NAME "aep engine" |
|
# define FAIL_TO_SW 0x10101010 |
|
|
|
# include "e_aep_err.c" |
|
|
|
static int aep_init(ENGINE *e); |
|
static int aep_finish(ENGINE *e); |
|
static int aep_ctrl(ENGINE *e, int cmd, long i, void *p, void (*f) (void)); |
|
static int aep_destroy(ENGINE *e); |
|
|
|
static AEP_RV aep_get_connection(AEP_CONNECTION_HNDL_PTR hConnection); |
|
static AEP_RV aep_return_connection(AEP_CONNECTION_HNDL hConnection); |
|
static AEP_RV aep_close_connection(AEP_CONNECTION_HNDL hConnection); |
|
static AEP_RV aep_close_all_connections(int use_engine_lock, int *in_use); |
|
|
|
/* BIGNUM stuff */ |
|
# ifndef OPENSSL_NO_RSA |
|
static int aep_mod_exp(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, |
|
const BIGNUM *m, BN_CTX *ctx); |
|
|
|
static AEP_RV aep_mod_exp_crt(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, |
|
const BIGNUM *q, const BIGNUM *dmp1, |
|
const BIGNUM *dmq1, const BIGNUM *iqmp, |
|
BN_CTX *ctx); |
|
# endif |
|
|
|
/* RSA stuff */ |
|
# ifndef OPENSSL_NO_RSA |
|
static int aep_rsa_mod_exp(BIGNUM *r0, const BIGNUM *I, RSA *rsa, |
|
BN_CTX *ctx); |
|
# endif |
|
|
|
/* This function is aliased to mod_exp (with the mont stuff dropped). */ |
|
# ifndef OPENSSL_NO_RSA |
|
static int aep_mod_exp_mont(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, |
|
const BIGNUM *m, BN_CTX *ctx, BN_MONT_CTX *m_ctx); |
|
# endif |
|
|
|
/* DSA stuff */ |
|
# ifndef OPENSSL_NO_DSA |
|
static int aep_dsa_mod_exp(DSA *dsa, BIGNUM *rr, BIGNUM *a1, |
|
BIGNUM *p1, BIGNUM *a2, BIGNUM *p2, BIGNUM *m, |
|
BN_CTX *ctx, BN_MONT_CTX *in_mont); |
|
|
|
static int aep_mod_exp_dsa(DSA *dsa, BIGNUM *r, BIGNUM *a, |
|
const BIGNUM *p, const BIGNUM *m, BN_CTX *ctx, |
|
BN_MONT_CTX *m_ctx); |
|
# endif |
|
|
|
/* DH stuff */ |
|
/* This function is aliased to mod_exp (with the DH and mont dropped). */ |
|
# ifndef OPENSSL_NO_DH |
|
static int aep_mod_exp_dh(const DH *dh, BIGNUM *r, const BIGNUM *a, |
|
const BIGNUM *p, const BIGNUM *m, BN_CTX *ctx, |
|
BN_MONT_CTX *m_ctx); |
|
# endif |
|
|
|
/* rand stuff */ |
|
# ifdef AEPRAND |
|
static int aep_rand(unsigned char *buf, int num); |
|
static int aep_rand_status(void); |
|
# endif |
|
|
|
/* Bignum conversion stuff */ |
|
static AEP_RV GetBigNumSize(AEP_VOID_PTR ArbBigNum, AEP_U32 *BigNumSize); |
|
static AEP_RV MakeAEPBigNum(AEP_VOID_PTR ArbBigNum, AEP_U32 BigNumSize, |
|
unsigned char *AEP_BigNum); |
|
static AEP_RV ConvertAEPBigNum(void *ArbBigNum, AEP_U32 BigNumSize, |
|
unsigned char *AEP_BigNum); |
|
|
|
/* The definitions for control commands specific to this engine */ |
|
# define AEP_CMD_SO_PATH ENGINE_CMD_BASE |
|
static const ENGINE_CMD_DEFN aep_cmd_defns[] = { |
|
{AEP_CMD_SO_PATH, |
|
"SO_PATH", |
|
"Specifies the path to the 'aep' shared library", |
|
ENGINE_CMD_FLAG_STRING}, |
|
{0, NULL, NULL, 0} |
|
}; |
|
|
|
# ifndef OPENSSL_NO_RSA |
|
/* Our internal RSA_METHOD that we provide pointers to */ |
|
static RSA_METHOD aep_rsa = { |
|
"Aep RSA method", |
|
NULL, /* rsa_pub_encrypt */ |
|
NULL, /* rsa_pub_decrypt */ |
|
NULL, /* rsa_priv_encrypt */ |
|
NULL, /* rsa_priv_encrypt */ |
|
aep_rsa_mod_exp, /* rsa_mod_exp */ |
|
aep_mod_exp_mont, /* bn_mod_exp */ |
|
NULL, /* init */ |
|
NULL, /* finish */ |
|
0, /* flags */ |
|
NULL, /* app_data */ |
|
NULL, /* rsa_sign */ |
|
NULL, /* rsa_verify */ |
|
NULL /* rsa_keygen */ |
|
}; |
|
# endif |
|
|
|
# ifndef OPENSSL_NO_DSA |
|
/* Our internal DSA_METHOD that we provide pointers to */ |
|
static DSA_METHOD aep_dsa = { |
|
"Aep DSA method", |
|
NULL, /* dsa_do_sign */ |
|
NULL, /* dsa_sign_setup */ |
|
NULL, /* dsa_do_verify */ |
|
aep_dsa_mod_exp, /* dsa_mod_exp */ |
|
aep_mod_exp_dsa, /* bn_mod_exp */ |
|
NULL, /* init */ |
|
NULL, /* finish */ |
|
0, /* flags */ |
|
NULL, /* app_data */ |
|
NULL, /* dsa_paramgen */ |
|
NULL /* dsa_keygen */ |
|
}; |
|
# endif |
|
|
|
# ifndef OPENSSL_NO_DH |
|
/* Our internal DH_METHOD that we provide pointers to */ |
|
static DH_METHOD aep_dh = { |
|
"Aep DH method", |
|
NULL, |
|
NULL, |
|
aep_mod_exp_dh, |
|
NULL, |
|
NULL, |
|
0, |
|
NULL, |
|
NULL |
|
}; |
|
# endif |
|
|
|
# ifdef AEPRAND |
|
/* our internal RAND_method that we provide pointers to */ |
|
static RAND_METHOD aep_random = { |
|
/* |
|
* "AEP RAND method", |
|
*/ |
|
NULL, |
|
aep_rand, |
|
NULL, |
|
NULL, |
|
aep_rand, |
|
aep_rand_status, |
|
}; |
|
# endif |
|
|
|
/* |
|
* Define an array of structures to hold connections |
|
*/ |
|
static AEP_CONNECTION_ENTRY aep_app_conn_table[MAX_PROCESS_CONNECTIONS]; |
|
|
|
/* |
|
* Used to determine if this is a new process |
|
*/ |
|
static pid_t recorded_pid = 0; |
|
|
|
# ifdef AEPRAND |
|
static AEP_U8 rand_block[RAND_BLK_SIZE]; |
|
static AEP_U32 rand_block_bytes = 0; |
|
# endif |
|
|
|
/* Constants used when creating the ENGINE */ |
|
static const char *engine_aep_id = "aep"; |
|
static const char *engine_aep_name = "Aep hardware engine support"; |
|
|
|
static int max_key_len = 2176; |
|
|
|
/* |
|
* This internal function is used by ENGINE_aep() and possibly by the |
|
* "dynamic" ENGINE support too |
|
*/ |
|
static int bind_aep(ENGINE *e) |
|
{ |
|
# ifndef OPENSSL_NO_RSA |
|
const RSA_METHOD *meth1; |
|
# endif |
|
# ifndef OPENSSL_NO_DSA |
|
const DSA_METHOD *meth2; |
|
# endif |
|
# ifndef OPENSSL_NO_DH |
|
const DH_METHOD *meth3; |
|
# endif |
|
|
|
if (!ENGINE_set_id(e, engine_aep_id) || |
|
!ENGINE_set_name(e, engine_aep_name) || |
|
# ifndef OPENSSL_NO_RSA |
|
!ENGINE_set_RSA(e, &aep_rsa) || |
|
# endif |
|
# ifndef OPENSSL_NO_DSA |
|
!ENGINE_set_DSA(e, &aep_dsa) || |
|
# endif |
|
# ifndef OPENSSL_NO_DH |
|
!ENGINE_set_DH(e, &aep_dh) || |
|
# endif |
|
# ifdef AEPRAND |
|
!ENGINE_set_RAND(e, &aep_random) || |
|
# endif |
|
!ENGINE_set_init_function(e, aep_init) || |
|
!ENGINE_set_destroy_function(e, aep_destroy) || |
|
!ENGINE_set_finish_function(e, aep_finish) || |
|
!ENGINE_set_ctrl_function(e, aep_ctrl) || |
|
!ENGINE_set_cmd_defns(e, aep_cmd_defns)) |
|
return 0; |
|
|
|
# ifndef OPENSSL_NO_RSA |
|
/* |
|
* We know that the "PKCS1_SSLeay()" functions hook properly to the |
|
* aep-specific mod_exp and mod_exp_crt so we use those functions. NB: We |
|
* don't use ENGINE_openssl() or anything "more generic" because |
|
* something like the RSAref code may not hook properly, and if you own |
|
* one of these cards then you have the right to do RSA operations on it |
|
* anyway! |
|
*/ |
|
meth1 = RSA_PKCS1_SSLeay(); |
|
aep_rsa.rsa_pub_enc = meth1->rsa_pub_enc; |
|
aep_rsa.rsa_pub_dec = meth1->rsa_pub_dec; |
|
aep_rsa.rsa_priv_enc = meth1->rsa_priv_enc; |
|
aep_rsa.rsa_priv_dec = meth1->rsa_priv_dec; |
|
# endif |
|
|
|
# ifndef OPENSSL_NO_DSA |
|
/* |
|
* Use the DSA_OpenSSL() method and just hook the mod_exp-ish bits. |
|
*/ |
|
meth2 = DSA_OpenSSL(); |
|
aep_dsa.dsa_do_sign = meth2->dsa_do_sign; |
|
aep_dsa.dsa_sign_setup = meth2->dsa_sign_setup; |
|
aep_dsa.dsa_do_verify = meth2->dsa_do_verify; |
|
|
|
aep_dsa = *DSA_get_default_method(); |
|
aep_dsa.dsa_mod_exp = aep_dsa_mod_exp; |
|
aep_dsa.bn_mod_exp = aep_mod_exp_dsa; |
|
# endif |
|
|
|
# ifndef OPENSSL_NO_DH |
|
/* Much the same for Diffie-Hellman */ |
|
meth3 = DH_OpenSSL(); |
|
aep_dh.generate_key = meth3->generate_key; |
|
aep_dh.compute_key = meth3->compute_key; |
|
aep_dh.bn_mod_exp = meth3->bn_mod_exp; |
|
# endif |
|
|
|
/* Ensure the aep error handling is set up */ |
|
ERR_load_AEPHK_strings(); |
|
|
|
return 1; |
|
} |
|
|
|
# ifndef OPENSSL_NO_DYNAMIC_ENGINE |
|
static int bind_helper(ENGINE *e, const char *id) |
|
{ |
|
if (id && (strcmp(id, engine_aep_id) != 0)) |
|
return 0; |
|
if (!bind_aep(e)) |
|
return 0; |
|
return 1; |
|
} |
|
|
|
IMPLEMENT_DYNAMIC_CHECK_FN() |
|
IMPLEMENT_DYNAMIC_BIND_FN(bind_helper) |
|
# else |
|
static ENGINE *engine_aep(void) |
|
{ |
|
ENGINE *ret = ENGINE_new(); |
|
if (!ret) |
|
return NULL; |
|
if (!bind_aep(ret)) { |
|
ENGINE_free(ret); |
|
return NULL; |
|
} |
|
return ret; |
|
} |
|
|
|
void ENGINE_load_aep(void) |
|
{ |
|
/* Copied from eng_[openssl|dyn].c */ |
|
ENGINE *toadd = engine_aep(); |
|
if (!toadd) |
|
return; |
|
ENGINE_add(toadd); |
|
ENGINE_free(toadd); |
|
ERR_clear_error(); |
|
} |
|
# endif |
|
|
|
/* |
|
* This is a process-global DSO handle used for loading and unloading the Aep |
|
* library. NB: This is only set (or unset) during an init() or finish() call |
|
* (reference counts permitting) and they're operating with global locks, so |
|
* this should be thread-safe implicitly. |
|
*/ |
|
static DSO *aep_dso = NULL; |
|
|
|
/* |
|
* These are the static string constants for the DSO file name and the |
|
* function symbol names to bind to. |
|
*/ |
|
static const char *AEP_LIBNAME = NULL; |
|
static const char *get_AEP_LIBNAME(void) |
|
{ |
|
if (AEP_LIBNAME) |
|
return AEP_LIBNAME; |
|
return "aep"; |
|
} |
|
|
|
static void free_AEP_LIBNAME(void) |
|
{ |
|
if (AEP_LIBNAME) |
|
OPENSSL_free((void *)AEP_LIBNAME); |
|
AEP_LIBNAME = NULL; |
|
} |
|
|
|
static long set_AEP_LIBNAME(const char *name) |
|
{ |
|
free_AEP_LIBNAME(); |
|
return ((AEP_LIBNAME = BUF_strdup(name)) != NULL ? 1 : 0); |
|
} |
|
|
|
static const char *AEP_F1 = "AEP_ModExp"; |
|
static const char *AEP_F2 = "AEP_ModExpCrt"; |
|
# ifdef AEPRAND |
|
static const char *AEP_F3 = "AEP_GenRandom"; |
|
# endif |
|
static const char *AEP_F4 = "AEP_Finalize"; |
|
static const char *AEP_F5 = "AEP_Initialize"; |
|
static const char *AEP_F6 = "AEP_OpenConnection"; |
|
static const char *AEP_F7 = "AEP_SetBNCallBacks"; |
|
static const char *AEP_F8 = "AEP_CloseConnection"; |
|
|
|
/* |
|
* These are the function pointers that are (un)set when the library has |
|
* successfully (un)loaded. |
|
*/ |
|
static t_AEP_OpenConnection *p_AEP_OpenConnection = NULL; |
|
static t_AEP_CloseConnection *p_AEP_CloseConnection = NULL; |
|
static t_AEP_ModExp *p_AEP_ModExp = NULL; |
|
static t_AEP_ModExpCrt *p_AEP_ModExpCrt = NULL; |
|
# ifdef AEPRAND |
|
static t_AEP_GenRandom *p_AEP_GenRandom = NULL; |
|
# endif |
|
static t_AEP_Initialize *p_AEP_Initialize = NULL; |
|
static t_AEP_Finalize *p_AEP_Finalize = NULL; |
|
static t_AEP_SetBNCallBacks *p_AEP_SetBNCallBacks = NULL; |
|
|
|
/* (de)initialisation functions. */ |
|
static int aep_init(ENGINE *e) |
|
{ |
|
t_AEP_ModExp *p1; |
|
t_AEP_ModExpCrt *p2; |
|
# ifdef AEPRAND |
|
t_AEP_GenRandom *p3; |
|
# endif |
|
t_AEP_Finalize *p4; |
|
t_AEP_Initialize *p5; |
|
t_AEP_OpenConnection *p6; |
|
t_AEP_SetBNCallBacks *p7; |
|
t_AEP_CloseConnection *p8; |
|
|
|
int to_return = 0; |
|
|
|
if (aep_dso != NULL) { |
|
AEPHKerr(AEPHK_F_AEP_INIT, AEPHK_R_ALREADY_LOADED); |
|
goto err; |
|
} |
|
/* Attempt to load libaep.so. */ |
|
|
|
aep_dso = DSO_load(NULL, get_AEP_LIBNAME(), NULL, 0); |
|
|
|
if (aep_dso == NULL) { |
|
AEPHKerr(AEPHK_F_AEP_INIT, AEPHK_R_NOT_LOADED); |
|
goto err; |
|
} |
|
|
|
if (!(p1 = (t_AEP_ModExp *) DSO_bind_func(aep_dso, AEP_F1)) || |
|
!(p2 = (t_AEP_ModExpCrt *) DSO_bind_func(aep_dso, AEP_F2)) || |
|
# ifdef AEPRAND |
|
!(p3 = (t_AEP_GenRandom *) DSO_bind_func(aep_dso, AEP_F3)) || |
|
# endif |
|
!(p4 = (t_AEP_Finalize *) DSO_bind_func(aep_dso, AEP_F4)) || |
|
!(p5 = (t_AEP_Initialize *) DSO_bind_func(aep_dso, AEP_F5)) || |
|
!(p6 = (t_AEP_OpenConnection *) DSO_bind_func(aep_dso, AEP_F6)) || |
|
!(p7 = (t_AEP_SetBNCallBacks *) DSO_bind_func(aep_dso, AEP_F7)) || |
|
!(p8 = (t_AEP_CloseConnection *) DSO_bind_func(aep_dso, AEP_F8))) { |
|
AEPHKerr(AEPHK_F_AEP_INIT, AEPHK_R_NOT_LOADED); |
|
goto err; |
|
} |
|
|
|
/* Copy the pointers */ |
|
|
|
p_AEP_ModExp = p1; |
|
p_AEP_ModExpCrt = p2; |
|
# ifdef AEPRAND |
|
p_AEP_GenRandom = p3; |
|
# endif |
|
p_AEP_Finalize = p4; |
|
p_AEP_Initialize = p5; |
|
p_AEP_OpenConnection = p6; |
|
p_AEP_SetBNCallBacks = p7; |
|
p_AEP_CloseConnection = p8; |
|
|
|
to_return = 1; |
|
|
|
return to_return; |
|
|
|
err: |
|
|
|
if (aep_dso) |
|
DSO_free(aep_dso); |
|
aep_dso = NULL; |
|
|
|
p_AEP_OpenConnection = NULL; |
|
p_AEP_ModExp = NULL; |
|
p_AEP_ModExpCrt = NULL; |
|
# ifdef AEPRAND |
|
p_AEP_GenRandom = NULL; |
|
# endif |
|
p_AEP_Initialize = NULL; |
|
p_AEP_Finalize = NULL; |
|
p_AEP_SetBNCallBacks = NULL; |
|
p_AEP_CloseConnection = NULL; |
|
|
|
return to_return; |
|
} |
|
|
|
/* Destructor (complements the "ENGINE_aep()" constructor) */ |
|
static int aep_destroy(ENGINE *e) |
|
{ |
|
free_AEP_LIBNAME(); |
|
ERR_unload_AEPHK_strings(); |
|
return 1; |
|
} |
|
|
|
static int aep_finish(ENGINE *e) |
|
{ |
|
int to_return = 0, in_use; |
|
AEP_RV rv; |
|
|
|
if (aep_dso == NULL) { |
|
AEPHKerr(AEPHK_F_AEP_FINISH, AEPHK_R_NOT_LOADED); |
|
goto err; |
|
} |
|
|
|
rv = aep_close_all_connections(0, &in_use); |
|
if (rv != AEP_R_OK) { |
|
AEPHKerr(AEPHK_F_AEP_FINISH, AEPHK_R_CLOSE_HANDLES_FAILED); |
|
goto err; |
|
} |
|
if (in_use) { |
|
AEPHKerr(AEPHK_F_AEP_FINISH, AEPHK_R_CONNECTIONS_IN_USE); |
|
goto err; |
|
} |
|
|
|
rv = p_AEP_Finalize(); |
|
if (rv != AEP_R_OK) { |
|
AEPHKerr(AEPHK_F_AEP_FINISH, AEPHK_R_FINALIZE_FAILED); |
|
goto err; |
|
} |
|
|
|
if (!DSO_free(aep_dso)) { |
|
AEPHKerr(AEPHK_F_AEP_FINISH, AEPHK_R_UNIT_FAILURE); |
|
goto err; |
|
} |
|
|
|
aep_dso = NULL; |
|
p_AEP_CloseConnection = NULL; |
|
p_AEP_OpenConnection = NULL; |
|
p_AEP_ModExp = NULL; |
|
p_AEP_ModExpCrt = NULL; |
|
# ifdef AEPRAND |
|
p_AEP_GenRandom = NULL; |
|
# endif |
|
p_AEP_Initialize = NULL; |
|
p_AEP_Finalize = NULL; |
|
p_AEP_SetBNCallBacks = NULL; |
|
|
|
to_return = 1; |
|
err: |
|
return to_return; |
|
} |
|
|
|
static int aep_ctrl(ENGINE *e, int cmd, long i, void *p, void (*f) (void)) |
|
{ |
|
int initialised = ((aep_dso == NULL) ? 0 : 1); |
|
switch (cmd) { |
|
case AEP_CMD_SO_PATH: |
|
if (p == NULL) { |
|
AEPHKerr(AEPHK_F_AEP_CTRL, ERR_R_PASSED_NULL_PARAMETER); |
|
return 0; |
|
} |
|
if (initialised) { |
|
AEPHKerr(AEPHK_F_AEP_CTRL, AEPHK_R_ALREADY_LOADED); |
|
return 0; |
|
} |
|
return set_AEP_LIBNAME((const char *)p); |
|
default: |
|
break; |
|
} |
|
AEPHKerr(AEPHK_F_AEP_CTRL, AEPHK_R_CTRL_COMMAND_NOT_IMPLEMENTED); |
|
return 0; |
|
} |
|
|
|
static int aep_mod_exp(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, |
|
const BIGNUM *m, BN_CTX *ctx) |
|
{ |
|
int to_return = 0; |
|
int r_len = 0; |
|
AEP_CONNECTION_HNDL hConnection; |
|
AEP_RV rv; |
|
|
|
r_len = BN_num_bits(m); |
|
|
|
/* Perform in software if modulus is too large for hardware. */ |
|
|
|
if (r_len > max_key_len) { |
|
AEPHKerr(AEPHK_F_AEP_MOD_EXP, AEPHK_R_SIZE_TOO_LARGE_OR_TOO_SMALL); |
|
return BN_mod_exp(r, a, p, m, ctx); |
|
} |
|
|
|
/* |
|
* Grab a connection from the pool |
|
*/ |
|
rv = aep_get_connection(&hConnection); |
|
if (rv != AEP_R_OK) { |
|
AEPHKerr(AEPHK_F_AEP_MOD_EXP, AEPHK_R_GET_HANDLE_FAILED); |
|
return BN_mod_exp(r, a, p, m, ctx); |
|
} |
|
|
|
/* |
|
* To the card with the mod exp |
|
*/ |
|
rv = p_AEP_ModExp(hConnection, (void *)a, (void *)p, (void *)m, (void *)r, |
|
NULL); |
|
|
|
if (rv != AEP_R_OK) { |
|
AEPHKerr(AEPHK_F_AEP_MOD_EXP, AEPHK_R_MOD_EXP_FAILED); |
|
rv = aep_close_connection(hConnection); |
|
return BN_mod_exp(r, a, p, m, ctx); |
|
} |
|
|
|
/* |
|
* Return the connection to the pool |
|
*/ |
|
rv = aep_return_connection(hConnection); |
|
if (rv != AEP_R_OK) { |
|
AEPHKerr(AEPHK_F_AEP_MOD_EXP, AEPHK_R_RETURN_CONNECTION_FAILED); |
|
goto err; |
|
} |
|
|
|
to_return = 1; |
|
err: |
|
return to_return; |
|
} |
|
|
|
# ifndef OPENSSL_NO_RSA |
|
static AEP_RV aep_mod_exp_crt(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, |
|
const BIGNUM *q, const BIGNUM *dmp1, |
|
const BIGNUM *dmq1, const BIGNUM *iqmp, |
|
BN_CTX *ctx) |
|
{ |
|
AEP_RV rv = AEP_R_OK; |
|
AEP_CONNECTION_HNDL hConnection; |
|
|
|
/* |
|
* Grab a connection from the pool |
|
*/ |
|
rv = aep_get_connection(&hConnection); |
|
if (rv != AEP_R_OK) { |
|
AEPHKerr(AEPHK_F_AEP_MOD_EXP_CRT, AEPHK_R_GET_HANDLE_FAILED); |
|
return FAIL_TO_SW; |
|
} |
|
|
|
/* |
|
* To the card with the mod exp |
|
*/ |
|
rv = p_AEP_ModExpCrt(hConnection, (void *)a, (void *)p, (void *)q, |
|
(void *)dmp1, (void *)dmq1, (void *)iqmp, (void *)r, |
|
NULL); |
|
if (rv != AEP_R_OK) { |
|
AEPHKerr(AEPHK_F_AEP_MOD_EXP_CRT, AEPHK_R_MOD_EXP_CRT_FAILED); |
|
rv = aep_close_connection(hConnection); |
|
return FAIL_TO_SW; |
|
} |
|
|
|
/* |
|
* Return the connection to the pool |
|
*/ |
|
rv = aep_return_connection(hConnection); |
|
if (rv != AEP_R_OK) { |
|
AEPHKerr(AEPHK_F_AEP_MOD_EXP_CRT, AEPHK_R_RETURN_CONNECTION_FAILED); |
|
goto err; |
|
} |
|
|
|
err: |
|
return rv; |
|
} |
|
# endif |
|
|
|
# ifdef AEPRAND |
|
static int aep_rand(unsigned char *buf, int len) |
|
{ |
|
AEP_RV rv = AEP_R_OK; |
|
AEP_CONNECTION_HNDL hConnection; |
|
|
|
CRYPTO_w_lock(CRYPTO_LOCK_RAND); |
|
|
|
/* |
|
* Can the request be serviced with what's already in the buffer? |
|
*/ |
|
if (len <= rand_block_bytes) { |
|
memcpy(buf, &rand_block[RAND_BLK_SIZE - rand_block_bytes], len); |
|
rand_block_bytes -= len; |
|
CRYPTO_w_unlock(CRYPTO_LOCK_RAND); |
|
} else |
|
/* |
|
* If not the get another block of random bytes |
|
*/ |
|
{ |
|
CRYPTO_w_unlock(CRYPTO_LOCK_RAND); |
|
|
|
rv = aep_get_connection(&hConnection); |
|
if (rv != AEP_R_OK) { |
|
AEPHKerr(AEPHK_F_AEP_RAND, AEPHK_R_GET_HANDLE_FAILED); |
|
goto err_nounlock; |
|
} |
|
|
|
if (len > RAND_BLK_SIZE) { |
|
rv = p_AEP_GenRandom(hConnection, len, 2, buf, NULL); |
|
if (rv != AEP_R_OK) { |
|
AEPHKerr(AEPHK_F_AEP_RAND, AEPHK_R_GET_RANDOM_FAILED); |
|
goto err_nounlock; |
|
} |
|
} else { |
|
CRYPTO_w_lock(CRYPTO_LOCK_RAND); |
|
|
|
rv = p_AEP_GenRandom(hConnection, RAND_BLK_SIZE, 2, |
|
&rand_block[0], NULL); |
|
if (rv != AEP_R_OK) { |
|
AEPHKerr(AEPHK_F_AEP_RAND, AEPHK_R_GET_RANDOM_FAILED); |
|
|
|
goto err; |
|
} |
|
|
|
rand_block_bytes = RAND_BLK_SIZE; |
|
|
|
memcpy(buf, &rand_block[RAND_BLK_SIZE - rand_block_bytes], len); |
|
rand_block_bytes -= len; |
|
|
|
CRYPTO_w_unlock(CRYPTO_LOCK_RAND); |
|
} |
|
|
|
rv = aep_return_connection(hConnection); |
|
if (rv != AEP_R_OK) { |
|
AEPHKerr(AEPHK_F_AEP_RAND, AEPHK_R_RETURN_CONNECTION_FAILED); |
|
|
|
goto err_nounlock; |
|
} |
|
} |
|
|
|
return 1; |
|
err: |
|
CRYPTO_w_unlock(CRYPTO_LOCK_RAND); |
|
err_nounlock: |
|
return 0; |
|
} |
|
|
|
static int aep_rand_status(void) |
|
{ |
|
return 1; |
|
} |
|
# endif |
|
|
|
# ifndef OPENSSL_NO_RSA |
|
static int aep_rsa_mod_exp(BIGNUM *r0, const BIGNUM *I, RSA *rsa, BN_CTX *ctx) |
|
{ |
|
int to_return = 0; |
|
AEP_RV rv = AEP_R_OK; |
|
|
|
if (!aep_dso) { |
|
AEPHKerr(AEPHK_F_AEP_RSA_MOD_EXP, AEPHK_R_NOT_LOADED); |
|
goto err; |
|
} |
|
|
|
/* |
|
* See if we have all the necessary bits for a crt |
|
*/ |
|
if (rsa->q && rsa->dmp1 && rsa->dmq1 && rsa->iqmp) { |
|
rv = aep_mod_exp_crt(r0, I, rsa->p, rsa->q, rsa->dmp1, rsa->dmq1, |
|
rsa->iqmp, ctx); |
|
|
|
if (rv == FAIL_TO_SW) { |
|
const RSA_METHOD *meth = RSA_PKCS1_SSLeay(); |
|
to_return = (*meth->rsa_mod_exp) (r0, I, rsa, ctx); |
|
goto err; |
|
} else if (rv != AEP_R_OK) |
|
goto err; |
|
} else { |
|
if (!rsa->d || !rsa->n) { |
|
AEPHKerr(AEPHK_F_AEP_RSA_MOD_EXP, AEPHK_R_MISSING_KEY_COMPONENTS); |
|
goto err; |
|
} |
|
|
|
rv = aep_mod_exp(r0, I, rsa->d, rsa->n, ctx); |
|
if (rv != AEP_R_OK) |
|
goto err; |
|
|
|
} |
|
|
|
to_return = 1; |
|
|
|
err: |
|
return to_return; |
|
} |
|
# endif |
|
|
|
# ifndef OPENSSL_NO_DSA |
|
static int aep_dsa_mod_exp(DSA *dsa, BIGNUM *rr, BIGNUM *a1, |
|
BIGNUM *p1, BIGNUM *a2, BIGNUM *p2, BIGNUM *m, |
|
BN_CTX *ctx, BN_MONT_CTX *in_mont) |
|
{ |
|
BIGNUM t; |
|
int to_return = 0; |
|
BN_init(&t); |
|
|
|
/* let rr = a1 ^ p1 mod m */ |
|
if (!aep_mod_exp(rr, a1, p1, m, ctx)) |
|
goto end; |
|
/* let t = a2 ^ p2 mod m */ |
|
if (!aep_mod_exp(&t, a2, p2, m, ctx)) |
|
goto end; |
|
/* let rr = rr * t mod m */ |
|
if (!BN_mod_mul(rr, rr, &t, m, ctx)) |
|
goto end; |
|
to_return = 1; |
|
end: |
|
BN_free(&t); |
|
return to_return; |
|
} |
|
|
|
static int aep_mod_exp_dsa(DSA *dsa, BIGNUM *r, BIGNUM *a, |
|
const BIGNUM *p, const BIGNUM *m, BN_CTX *ctx, |
|
BN_MONT_CTX *m_ctx) |
|
{ |
|
return aep_mod_exp(r, a, p, m, ctx); |
|
} |
|
# endif |
|
|
|
# ifndef OPENSSL_NO_RSA |
|
/* This function is aliased to mod_exp (with the mont stuff dropped). */ |
|
static int aep_mod_exp_mont(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, |
|
const BIGNUM *m, BN_CTX *ctx, BN_MONT_CTX *m_ctx) |
|
{ |
|
return aep_mod_exp(r, a, p, m, ctx); |
|
} |
|
# endif |
|
|
|
# ifndef OPENSSL_NO_DH |
|
/* This function is aliased to mod_exp (with the dh and mont dropped). */ |
|
static int aep_mod_exp_dh(const DH *dh, BIGNUM *r, const BIGNUM *a, |
|
const BIGNUM *p, const BIGNUM *m, BN_CTX *ctx, |
|
BN_MONT_CTX *m_ctx) |
|
{ |
|
return aep_mod_exp(r, a, p, m, ctx); |
|
} |
|
# endif |
|
|
|
static AEP_RV aep_get_connection(AEP_CONNECTION_HNDL_PTR phConnection) |
|
{ |
|
int count; |
|
AEP_RV rv = AEP_R_OK; |
|
|
|
/* |
|
* Get the current process id |
|
*/ |
|
pid_t curr_pid; |
|
|
|
CRYPTO_w_lock(CRYPTO_LOCK_ENGINE); |
|
|
|
curr_pid = getpid(); |
|
|
|
/* |
|
* Check if this is the first time this is being called from the current |
|
* process |
|
*/ |
|
if (recorded_pid != curr_pid) { |
|
/* |
|
* Remember our pid so we can check if we're in a new process |
|
*/ |
|
recorded_pid = curr_pid; |
|
|
|
/* |
|
* Call Finalize to make sure we have not inherited some data from a |
|
* parent process |
|
*/ |
|
p_AEP_Finalize(); |
|
|
|
/* |
|
* Initialise the AEP API |
|
*/ |
|
rv = p_AEP_Initialize(NULL); |
|
|
|
if (rv != AEP_R_OK) { |
|
AEPHKerr(AEPHK_F_AEP_GET_CONNECTION, AEPHK_R_INIT_FAILURE); |
|
recorded_pid = 0; |
|
goto end; |
|
} |
|
|
|
/* |
|
* Set the AEP big num call back functions |
|
*/ |
|
rv = p_AEP_SetBNCallBacks(&GetBigNumSize, &MakeAEPBigNum, |
|
&ConvertAEPBigNum); |
|
|
|
if (rv != AEP_R_OK) { |
|
AEPHKerr(AEPHK_F_AEP_GET_CONNECTION, |
|
AEPHK_R_SETBNCALLBACK_FAILURE); |
|
recorded_pid = 0; |
|
goto end; |
|
} |
|
# ifdef AEPRAND |
|
/* |
|
* Reset the rand byte count |
|
*/ |
|
rand_block_bytes = 0; |
|
# endif |
|
|
|
/* |
|
* Init the structures |
|
*/ |
|
for (count = 0; count < MAX_PROCESS_CONNECTIONS; count++) { |
|
aep_app_conn_table[count].conn_state = NotConnected; |
|
aep_app_conn_table[count].conn_hndl = 0; |
|
} |
|
|
|
/* |
|
* Open a connection |
|
*/ |
|
rv = p_AEP_OpenConnection(phConnection); |
|
|
|
if (rv != AEP_R_OK) { |
|
AEPHKerr(AEPHK_F_AEP_GET_CONNECTION, AEPHK_R_UNIT_FAILURE); |
|
recorded_pid = 0; |
|
goto end; |
|
} |
|
|
|
aep_app_conn_table[0].conn_state = InUse; |
|
aep_app_conn_table[0].conn_hndl = *phConnection; |
|
goto end; |
|
} |
|
/* |
|
* Check the existing connections to see if we can find a free one |
|
*/ |
|
for (count = 0; count < MAX_PROCESS_CONNECTIONS; count++) { |
|
if (aep_app_conn_table[count].conn_state == Connected) { |
|
aep_app_conn_table[count].conn_state = InUse; |
|
*phConnection = aep_app_conn_table[count].conn_hndl; |
|
goto end; |
|
} |
|
} |
|
/* |
|
* If no connections available, we're going to have to try to open a new |
|
* one |
|
*/ |
|
for (count = 0; count < MAX_PROCESS_CONNECTIONS; count++) { |
|
if (aep_app_conn_table[count].conn_state == NotConnected) { |
|
/* |
|
* Open a connection |
|
*/ |
|
rv = p_AEP_OpenConnection(phConnection); |
|
|
|
if (rv != AEP_R_OK) { |
|
AEPHKerr(AEPHK_F_AEP_GET_CONNECTION, AEPHK_R_UNIT_FAILURE); |
|
goto end; |
|
} |
|
|
|
aep_app_conn_table[count].conn_state = InUse; |
|
aep_app_conn_table[count].conn_hndl = *phConnection; |
|
goto end; |
|
} |
|
} |
|
rv = AEP_R_GENERAL_ERROR; |
|
end: |
|
CRYPTO_w_unlock(CRYPTO_LOCK_ENGINE); |
|
return rv; |
|
} |
|
|
|
static AEP_RV aep_return_connection(AEP_CONNECTION_HNDL hConnection) |
|
{ |
|
int count; |
|
|
|
CRYPTO_w_lock(CRYPTO_LOCK_ENGINE); |
|
|
|
/* |
|
* Find the connection item that matches this connection handle |
|
*/ |
|
for (count = 0; count < MAX_PROCESS_CONNECTIONS; count++) { |
|
if (aep_app_conn_table[count].conn_hndl == hConnection) { |
|
aep_app_conn_table[count].conn_state = Connected; |
|
break; |
|
} |
|
} |
|
|
|
CRYPTO_w_unlock(CRYPTO_LOCK_ENGINE); |
|
|
|
return AEP_R_OK; |
|
} |
|
|
|
static AEP_RV aep_close_connection(AEP_CONNECTION_HNDL hConnection) |
|
{ |
|
int count; |
|
AEP_RV rv = AEP_R_OK; |
|
|
|
CRYPTO_w_lock(CRYPTO_LOCK_ENGINE); |
|
|
|
/* |
|
* Find the connection item that matches this connection handle |
|
*/ |
|
for (count = 0; count < MAX_PROCESS_CONNECTIONS; count++) { |
|
if (aep_app_conn_table[count].conn_hndl == hConnection) { |
|
rv = p_AEP_CloseConnection(aep_app_conn_table[count].conn_hndl); |
|
if (rv != AEP_R_OK) |
|
goto end; |
|
aep_app_conn_table[count].conn_state = NotConnected; |
|
aep_app_conn_table[count].conn_hndl = 0; |
|
break; |
|
} |
|
} |
|
|
|
end: |
|
CRYPTO_w_unlock(CRYPTO_LOCK_ENGINE); |
|
return rv; |
|
} |
|
|
|
static AEP_RV aep_close_all_connections(int use_engine_lock, int *in_use) |
|
{ |
|
int count; |
|
AEP_RV rv = AEP_R_OK; |
|
|
|
*in_use = 0; |
|
if (use_engine_lock) |
|
CRYPTO_w_lock(CRYPTO_LOCK_ENGINE); |
|
for (count = 0; count < MAX_PROCESS_CONNECTIONS; count++) { |
|
switch (aep_app_conn_table[count].conn_state) { |
|
case Connected: |
|
rv = p_AEP_CloseConnection(aep_app_conn_table[count].conn_hndl); |
|
if (rv != AEP_R_OK) |
|
goto end; |
|
aep_app_conn_table[count].conn_state = NotConnected; |
|
aep_app_conn_table[count].conn_hndl = 0; |
|
break; |
|
case InUse: |
|
(*in_use)++; |
|
break; |
|
case NotConnected: |
|
break; |
|
} |
|
} |
|
end: |
|
if (use_engine_lock) |
|
CRYPTO_w_unlock(CRYPTO_LOCK_ENGINE); |
|
return rv; |
|
} |
|
|
|
/* |
|
* BigNum call back functions, used to convert OpenSSL bignums into AEP |
|
* bignums. Note only 32bit Openssl build support |
|
*/ |
|
|
|
static AEP_RV GetBigNumSize(AEP_VOID_PTR ArbBigNum, AEP_U32 *BigNumSize) |
|
{ |
|
BIGNUM *bn; |
|
|
|
/* |
|
* Cast the ArbBigNum pointer to our BIGNUM struct |
|
*/ |
|
bn = (BIGNUM *)ArbBigNum; |
|
|
|
# ifdef SIXTY_FOUR_BIT_LONG |
|
*BigNumSize = bn->top << 3; |
|
# else |
|
/* |
|
* Size of the bignum in bytes is equal to the bn->top (no of 32 bit |
|
* words) multiplies by 4 |
|
*/ |
|
*BigNumSize = bn->top << 2; |
|
# endif |
|
|
|
return AEP_R_OK; |
|
} |
|
|
|
static AEP_RV MakeAEPBigNum(AEP_VOID_PTR ArbBigNum, AEP_U32 BigNumSize, |
|
unsigned char *AEP_BigNum) |
|
{ |
|
BIGNUM *bn; |
|
|
|
# ifndef SIXTY_FOUR_BIT_LONG |
|
unsigned char *buf; |
|
int i; |
|
# endif |
|
|
|
/* |
|
* Cast the ArbBigNum pointer to our BIGNUM struct |
|
*/ |
|
bn = (BIGNUM *)ArbBigNum; |
|
|
|
# ifdef SIXTY_FOUR_BIT_LONG |
|
memcpy(AEP_BigNum, bn->d, BigNumSize); |
|
# else |
|
/* |
|
* Must copy data into a (monotone) least significant byte first format |
|
* performing endian conversion if necessary |
|
*/ |
|
for (i = 0; i < bn->top; i++) { |
|
buf = (unsigned char *)&bn->d[i]; |
|
|
|
*((AEP_U32 *)AEP_BigNum) = (AEP_U32) |
|
((unsigned)buf[1] << 8 | buf[0]) | |
|
((unsigned)buf[3] << 8 | buf[2]) << 16; |
|
|
|
AEP_BigNum += 4; |
|
} |
|
# endif |
|
|
|
return AEP_R_OK; |
|
} |
|
|
|
/* |
|
* Turn an AEP Big Num back to a user big num |
|
*/ |
|
static AEP_RV ConvertAEPBigNum(void *ArbBigNum, AEP_U32 BigNumSize, |
|
unsigned char *AEP_BigNum) |
|
{ |
|
BIGNUM *bn; |
|
# ifndef SIXTY_FOUR_BIT_LONG |
|
int i; |
|
# endif |
|
|
|
bn = (BIGNUM *)ArbBigNum; |
|
|
|
/* |
|
* Expand the result bn so that it can hold our big num. Size is in bits |
|
*/ |
|
bn_expand(bn, (int)(BigNumSize << 3)); |
|
|
|
# ifdef SIXTY_FOUR_BIT_LONG |
|
bn->top = BigNumSize >> 3; |
|
|
|
if ((BigNumSize & 7) != 0) |
|
bn->top++; |
|
|
|
memset(bn->d, 0, bn->top << 3); |
|
|
|
memcpy(bn->d, AEP_BigNum, BigNumSize); |
|
# else |
|
bn->top = BigNumSize >> 2; |
|
|
|
for (i = 0; i < bn->top; i++) { |
|
bn->d[i] = (AEP_U32) |
|
((unsigned)AEP_BigNum[3] << 8 | AEP_BigNum[2]) << 16 | |
|
((unsigned)AEP_BigNum[1] << 8 | AEP_BigNum[0]); |
|
AEP_BigNum += 4; |
|
} |
|
# endif |
|
|
|
return AEP_R_OK; |
|
} |
|
|
|
# endif /* !OPENSSL_NO_HW_AEP */ |
|
#endif /* !OPENSSL_NO_HW */
|
|
|