Modified source engine (2017) developed by valve and leaked in 2020. Not for commercial purporses
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

742 lines
25 KiB

// gcm_simd.cpp - written and placed in the public domain by
// Jeffrey Walton, Uri Blumenthal and Marcel Raad.
// Original x86 CLMUL by Wei Dai. ARM and POWER8
// PMULL and VMULL by JW, UB and MR.
//
// This source file uses intrinsics to gain access to SSE4.2 and
// ARMv8a CRC-32 and CRC-32C instructions. A separate source file
// is needed because additional CXXFLAGS are required to enable
// the appropriate instructions sets in some build configurations.
#include "pch.h"
#include "config.h"
#include "misc.h"
#if defined(CRYPTOPP_DISABLE_GCM_ASM)
# undef CRYPTOPP_X86_ASM_AVAILABLE
# undef CRYPTOPP_X32_ASM_AVAILABLE
# undef CRYPTOPP_X64_ASM_AVAILABLE
# undef CRYPTOPP_SSE2_ASM_AVAILABLE
#endif
#if (CRYPTOPP_SSE2_INTRIN_AVAILABLE)
# include <emmintrin.h>
# include <xmmintrin.h>
#endif
#if (CRYPTOPP_CLMUL_AVAILABLE)
# include <tmmintrin.h>
# include <wmmintrin.h>
#endif
#if (CRYPTOPP_ARM_NEON_HEADER)
# include <arm_neon.h>
#endif
#if (CRYPTOPP_ARM_ACLE_HEADER)
# include <stdint.h>
# include <arm_acle.h>
#endif
#if defined(CRYPTOPP_ARM_PMULL_AVAILABLE)
# include "arm_simd.h"
#endif
#if defined(CRYPTOPP_ALTIVEC_AVAILABLE)
# include "ppc_simd.h"
#endif
#ifdef CRYPTOPP_GNU_STYLE_INLINE_ASSEMBLY
# include <signal.h>
# include <setjmp.h>
#endif
#ifndef EXCEPTION_EXECUTE_HANDLER
# define EXCEPTION_EXECUTE_HANDLER 1
#endif
// Clang intrinsic casts, http://bugs.llvm.org/show_bug.cgi?id=20670
#define M128_CAST(x) ((__m128i *)(void *)(x))
#define CONST_M128_CAST(x) ((const __m128i *)(const void *)(x))
// Squash MS LNK4221 and libtool warnings
extern const char GCM_SIMD_FNAME[] = __FILE__;
NAMESPACE_BEGIN(CryptoPP)
// ************************* Feature Probes ************************* //
#ifdef CRYPTOPP_GNU_STYLE_INLINE_ASSEMBLY
extern "C" {
typedef void (*SigHandler)(int);
static jmp_buf s_jmpSIGILL;
static void SigIllHandler(int)
{
longjmp(s_jmpSIGILL, 1);
}
}
#endif // Not CRYPTOPP_MS_STYLE_INLINE_ASSEMBLY
#if (CRYPTOPP_BOOL_ARM32 || CRYPTOPP_BOOL_ARMV8)
bool CPU_ProbePMULL()
{
#if defined(CRYPTOPP_NO_CPU_FEATURE_PROBES)
return false;
#elif (CRYPTOPP_ARM_PMULL_AVAILABLE)
# if defined(CRYPTOPP_MS_STYLE_INLINE_ASSEMBLY)
volatile bool result = true;
__try
{
// Linaro is missing a lot of pmull gear. Also see http://github.com/weidai11/cryptopp/issues/233.
const uint64_t wa1[]={0,0x9090909090909090}, wb1[]={0,0xb0b0b0b0b0b0b0b0};
const uint64x2_t a1=vld1q_u64(wa1), b1=vld1q_u64(wb1);
const uint8_t wa2[]={0x80,0x80,0x80,0x80,0x80,0x80,0x80,0x80,
0xa0,0xa0,0xa0,0xa0,0xa0,0xa0,0xa0,0xa0},
wb2[]={0xc0,0xc0,0xc0,0xc0,0xc0,0xc0,0xc0,0xc0,
0xe0,0xe0,0xe0,0xe0,0xe0,0xe0,0xe0,0xe0};
const uint8x16_t a2=vld1q_u8(wa2), b2=vld1q_u8(wb2);
const uint64x2_t r1 = PMULL_00(a1, b1);
const uint64x2_t r2 = PMULL_11(vreinterpretq_u64_u8(a2),
vreinterpretq_u64_u8(b2));
result = !!(vgetq_lane_u64(r1,0) == 0x5300530053005300 &&
vgetq_lane_u64(r1,1) == 0x5300530053005300 &&
vgetq_lane_u64(r2,0) == 0x6c006c006c006c00 &&
vgetq_lane_u64(r2,1) == 0x6c006c006c006c00);
}
__except (EXCEPTION_EXECUTE_HANDLER)
{
return false;
}
return result;
# else
// longjmp and clobber warnings. Volatile is required.
volatile bool result = true;
volatile SigHandler oldHandler = signal(SIGILL, SigIllHandler);
if (oldHandler == SIG_ERR)
return false;
volatile sigset_t oldMask;
if (sigprocmask(0, NULLPTR, (sigset_t*)&oldMask))
{
signal(SIGILL, oldHandler);
return false;
}
if (setjmp(s_jmpSIGILL))
result = false;
else
{
// Linaro is missing a lot of pmull gear. Also see http://github.com/weidai11/cryptopp/issues/233.
const uint64_t wa1[]={0,0x9090909090909090}, wb1[]={0,0xb0b0b0b0b0b0b0b0};
const uint64x2_t a1=vld1q_u64(wa1), b1=vld1q_u64(wb1);
const uint8_t wa2[]={0x80,0x80,0x80,0x80,0x80,0x80,0x80,0x80,
0xa0,0xa0,0xa0,0xa0,0xa0,0xa0,0xa0,0xa0},
wb2[]={0xc0,0xc0,0xc0,0xc0,0xc0,0xc0,0xc0,0xc0,
0xe0,0xe0,0xe0,0xe0,0xe0,0xe0,0xe0,0xe0};
const uint8x16_t a2=vld1q_u8(wa2), b2=vld1q_u8(wb2);
const uint64x2_t r1 = PMULL_00(a1, b1);
const uint64x2_t r2 = PMULL_11(vreinterpretq_u64_u8(a2),
vreinterpretq_u64_u8(b2));
result = !!(vgetq_lane_u64(r1,0) == 0x5300530053005300 &&
vgetq_lane_u64(r1,1) == 0x5300530053005300 &&
vgetq_lane_u64(r2,0) == 0x6c006c006c006c00 &&
vgetq_lane_u64(r2,1) == 0x6c006c006c006c00);
}
sigprocmask(SIG_SETMASK, (sigset_t*)&oldMask, NULLPTR);
signal(SIGILL, oldHandler);
return result;
# endif
#else
return false;
#endif // CRYPTOPP_ARM_PMULL_AVAILABLE
}
#endif // ARM32 or ARM64
#if (CRYPTOPP_BOOL_PPC32 || CRYPTOPP_BOOL_PPC64)
bool CPU_ProbePMULL()
{
#if defined(CRYPTOPP_NO_CPU_FEATURE_PROBES)
return false;
#elif (CRYPTOPP_POWER8_VMULL_AVAILABLE)
// longjmp and clobber warnings. Volatile is required.
volatile bool result = true;
volatile SigHandler oldHandler = signal(SIGILL, SigIllHandler);
if (oldHandler == SIG_ERR)
return false;
volatile sigset_t oldMask;
if (sigprocmask(0, NULLPTR, (sigset_t*)&oldMask))
{
signal(SIGILL, oldHandler);
return false;
}
if (setjmp(s_jmpSIGILL))
result = false;
else
{
const uint64_t wa1[]={0,W64LIT(0x9090909090909090)},
wb1[]={0,W64LIT(0xb0b0b0b0b0b0b0b0)};
const uint64x2_p a1=VecLoad(wa1), b1=VecLoad(wb1);
const uint8_t wa2[]={0x80,0x80,0x80,0x80,0x80,0x80,0x80,0x80,
0xa0,0xa0,0xa0,0xa0,0xa0,0xa0,0xa0,0xa0},
wb2[]={0xc0,0xc0,0xc0,0xc0,0xc0,0xc0,0xc0,0xc0,
0xe0,0xe0,0xe0,0xe0,0xe0,0xe0,0xe0,0xe0};
const uint32x4_p a2=VecLoad(wa2), b2=VecLoad(wb2);
const uint64x2_p r1 = VecIntelMultiply11(a1, b1);
const uint64x2_p r2 = VecIntelMultiply11((uint64x2_p)a2, (uint64x2_p)b2);
const uint64_t wc1[]={W64LIT(0x5300530053005300), W64LIT(0x5300530053005300)},
wc2[]={W64LIT(0x6c006c006c006c00), W64LIT(0x6c006c006c006c00)};
const uint64x2_p c1=VecLoad(wc1), c2=VecLoad(wc2);
result = !!(VecEqual(r1, c1) && VecEqual(r2, c2));
}
sigprocmask(SIG_SETMASK, (sigset_t*)&oldMask, NULLPTR);
signal(SIGILL, oldHandler);
return result;
#else
return false;
#endif // CRYPTOPP_POWER8_VMULL_AVAILABLE
}
#endif // PPC32 or PPC64
// *************************** ARM NEON *************************** //
#if CRYPTOPP_ARM_NEON_AVAILABLE
void GCM_Xor16_NEON(byte *a, const byte *b, const byte *c)
{
vst1q_u8(a, veorq_u8(vld1q_u8(b), vld1q_u8(c)));
}
#endif // CRYPTOPP_ARM_NEON_AVAILABLE
#if CRYPTOPP_ARM_PMULL_AVAILABLE
// Swaps high and low 64-bit words
inline uint64x2_t SwapWords(const uint64x2_t& data)
{
return (uint64x2_t)vcombine_u64(
vget_high_u64(data), vget_low_u64(data));
}
uint64x2_t GCM_Reduce_PMULL(uint64x2_t c0, uint64x2_t c1, uint64x2_t c2, const uint64x2_t &r)
{
c1 = veorq_u64(c1, VEXT_U8<8>(vdupq_n_u64(0), c0));
c1 = veorq_u64(c1, PMULL_01(c0, r));
c0 = VEXT_U8<8>(c0, vdupq_n_u64(0));
c0 = vshlq_n_u64(veorq_u64(c0, c1), 1);
c0 = PMULL_00(c0, r);
c2 = veorq_u64(c2, c0);
c2 = veorq_u64(c2, VEXT_U8<8>(c1, vdupq_n_u64(0)));
c1 = vshrq_n_u64(vcombine_u64(vget_low_u64(c1), vget_low_u64(c2)), 63);
c2 = vshlq_n_u64(c2, 1);
return veorq_u64(c2, c1);
}
uint64x2_t GCM_Multiply_PMULL(const uint64x2_t &x, const uint64x2_t &h, const uint64x2_t &r)
{
const uint64x2_t c0 = PMULL_00(x, h);
const uint64x2_t c1 = veorq_u64(PMULL_10(x, h), PMULL_01(x, h));
const uint64x2_t c2 = PMULL_11(x, h);
return GCM_Reduce_PMULL(c0, c1, c2, r);
}
void GCM_SetKeyWithoutResync_PMULL(const byte *hashKey, byte *mulTable, unsigned int tableSize)
{
const uint64x2_t r = {0xe100000000000000ull, 0xc200000000000000ull};
const uint64x2_t t = vreinterpretq_u64_u8(vrev64q_u8(vld1q_u8(hashKey)));
const uint64x2_t h0 = vextq_u64(t, t, 1);
uint64x2_t h = h0;
unsigned int i;
for (i=0; i<tableSize-32; i+=32)
{
const uint64x2_t h1 = GCM_Multiply_PMULL(h, h0, r);
vst1_u64((uint64_t *)(mulTable+i), vget_low_u64(h));
vst1q_u64((uint64_t *)(mulTable+i+16), h1);
vst1q_u64((uint64_t *)(mulTable+i+8), h);
vst1_u64((uint64_t *)(mulTable+i+8), vget_low_u64(h1));
h = GCM_Multiply_PMULL(h1, h0, r);
}
const uint64x2_t h1 = GCM_Multiply_PMULL(h, h0, r);
vst1_u64((uint64_t *)(mulTable+i), vget_low_u64(h));
vst1q_u64((uint64_t *)(mulTable+i+16), h1);
vst1q_u64((uint64_t *)(mulTable+i+8), h);
vst1_u64((uint64_t *)(mulTable+i+8), vget_low_u64(h1));
}
size_t GCM_AuthenticateBlocks_PMULL(const byte *data, size_t len, const byte *mtable, byte *hbuffer)
{
const uint64x2_t r = {0xe100000000000000ull, 0xc200000000000000ull};
uint64x2_t x = vreinterpretq_u64_u8(vld1q_u8(hbuffer));
while (len >= 16)
{
size_t i=0, s = UnsignedMin(len/16U, 8U);
uint64x2_t d1, d2 = vreinterpretq_u64_u8(vrev64q_u8(vld1q_u8(data+(s-1)*16U)));
uint64x2_t c0 = vdupq_n_u64(0);
uint64x2_t c1 = vdupq_n_u64(0);
uint64x2_t c2 = vdupq_n_u64(0);
while (true)
{
const uint64x2_t h0 = vld1q_u64((const uint64_t*)(mtable+(i+0)*16));
const uint64x2_t h1 = vld1q_u64((const uint64_t*)(mtable+(i+1)*16));
const uint64x2_t h2 = veorq_u64(h0, h1);
if (++i == s)
{
const uint64x2_t t1 = vreinterpretq_u64_u8(vrev64q_u8(vld1q_u8(data)));
d1 = veorq_u64(vextq_u64(t1, t1, 1), x);
c0 = veorq_u64(c0, PMULL_00(d1, h0));
c2 = veorq_u64(c2, PMULL_10(d1, h1));
d1 = veorq_u64(d1, SwapWords(d1));
c1 = veorq_u64(c1, PMULL_00(d1, h2));
break;
}
d1 = vreinterpretq_u64_u8(vrev64q_u8(vld1q_u8(data+(s-i)*16-8)));
c0 = veorq_u64(c0, PMULL_10(d2, h0));
c2 = veorq_u64(c2, PMULL_10(d1, h1));
d2 = veorq_u64(d2, d1);
c1 = veorq_u64(c1, PMULL_10(d2, h2));
if (++i == s)
{
const uint64x2_t t2 = vreinterpretq_u64_u8(vrev64q_u8(vld1q_u8(data)));
d1 = veorq_u64(vextq_u64(t2, t2, 1), x);
c0 = veorq_u64(c0, PMULL_01(d1, h0));
c2 = veorq_u64(c2, PMULL_11(d1, h1));
d1 = veorq_u64(d1, SwapWords(d1));
c1 = veorq_u64(c1, PMULL_01(d1, h2));
break;
}
const uint64x2_t t3 = vreinterpretq_u64_u8(vrev64q_u8(vld1q_u8(data+(s-i)*16-8)));
d2 = vextq_u64(t3, t3, 1);
c0 = veorq_u64(c0, PMULL_01(d1, h0));
c2 = veorq_u64(c2, PMULL_01(d2, h1));
d1 = veorq_u64(d1, d2);
c1 = veorq_u64(c1, PMULL_01(d1, h2));
}
data += s*16;
len -= s*16;
c1 = veorq_u64(veorq_u64(c1, c0), c2);
x = GCM_Reduce_PMULL(c0, c1, c2, r);
}
vst1q_u64(reinterpret_cast<uint64_t *>(hbuffer), x);
return len;
}
void GCM_ReverseHashBufferIfNeeded_PMULL(byte *hashBuffer)
{
if (GetNativeByteOrder() != BIG_ENDIAN_ORDER)
{
const uint8x16_t x = vrev64q_u8(vld1q_u8(hashBuffer));
vst1q_u8(hashBuffer, vextq_u8(x, x, 8));
}
}
#endif // CRYPTOPP_ARM_PMULL_AVAILABLE
// ***************************** SSE ***************************** //
#if CRYPTOPP_SSE2_INTRIN_AVAILABLE || CRYPTOPP_SSE2_ASM_AVAILABLE
// SunCC 5.10-5.11 compiler crash. Move GCM_Xor16_SSE2 out-of-line, and place in
// a source file with a SSE architecture switch. Also see GH #226 and GH #284.
void GCM_Xor16_SSE2(byte *a, const byte *b, const byte *c)
{
# if CRYPTOPP_SSE2_ASM_AVAILABLE && defined(__GNUC__)
asm ("movdqa %1, %%xmm0; pxor %2, %%xmm0; movdqa %%xmm0, %0;"
: "=m" (a[0]) : "m"(b[0]), "m"(c[0]));
# else // CRYPTOPP_SSE2_INTRIN_AVAILABLE
_mm_store_si128(M128_CAST(a), _mm_xor_si128(
_mm_load_si128(CONST_M128_CAST(b)),
_mm_load_si128(CONST_M128_CAST(c))));
# endif
}
#endif // CRYPTOPP_SSE2_ASM_AVAILABLE
#if CRYPTOPP_CLMUL_AVAILABLE
#if 0
// preserved for testing
void gcm_gf_mult(const unsigned char *a, const unsigned char *b, unsigned char *c)
{
word64 Z0=0, Z1=0, V0, V1;
typedef BlockGetAndPut<word64, BigEndian> Block;
Block::Get(a)(V0)(V1);
for (int i=0; i<16; i++)
{
for (int j=0x80; j!=0; j>>=1)
{
int x = b[i] & j;
Z0 ^= x ? V0 : 0;
Z1 ^= x ? V1 : 0;
x = (int)V1 & 1;
V1 = (V1>>1) | (V0<<63);
V0 = (V0>>1) ^ (x ? W64LIT(0xe1) << 56 : 0);
}
}
Block::Put(NULLPTR, c)(Z0)(Z1);
}
__m128i _mm_clmulepi64_si128(const __m128i &a, const __m128i &b, int i)
{
word64 A[1] = {ByteReverse(((word64*)&a)[i&1])};
word64 B[1] = {ByteReverse(((word64*)&b)[i>>4])};
PolynomialMod2 pa((byte *)A, 8);
PolynomialMod2 pb((byte *)B, 8);
PolynomialMod2 c = pa*pb;
__m128i output;
for (int i=0; i<16; i++)
((byte *)&output)[i] = c.GetByte(i);
return output;
}
#endif // Testing
// Swaps high and low 64-bit words
inline __m128i SwapWords(const __m128i& val)
{
return _mm_shuffle_epi32(val, _MM_SHUFFLE(1, 0, 3, 2));
}
// SunCC 5.11-5.15 compiler crash. Make the function inline
// and parameters non-const. Also see GH #188 and GH #224.
inline __m128i GCM_Reduce_CLMUL(__m128i c0, __m128i c1, __m128i c2, const __m128i& r)
{
/*
The polynomial to be reduced is c0 * x^128 + c1 * x^64 + c2. c0t below refers to the most
significant half of c0 as a polynomial, which, due to GCM's bit reflection, are in the
rightmost bit positions, and the lowest byte addresses.
c1 ^= c0t * 0xc200000000000000
c2t ^= c0t
t = shift (c1t ^ c0b) left 1 bit
c2 ^= t * 0xe100000000000000
c2t ^= c1b
shift c2 left 1 bit and xor in lowest bit of c1t
*/
c1 = _mm_xor_si128(c1, _mm_slli_si128(c0, 8));
c1 = _mm_xor_si128(c1, _mm_clmulepi64_si128(c0, r, 0x10));
c0 = _mm_xor_si128(c1, _mm_srli_si128(c0, 8));
c0 = _mm_slli_epi64(c0, 1);
c0 = _mm_clmulepi64_si128(c0, r, 0);
c2 = _mm_xor_si128(c2, c0);
c2 = _mm_xor_si128(c2, _mm_srli_si128(c1, 8));
c1 = _mm_unpacklo_epi64(c1, c2);
c1 = _mm_srli_epi64(c1, 63);
c2 = _mm_slli_epi64(c2, 1);
return _mm_xor_si128(c2, c1);
}
// SunCC 5.13-5.14 compiler crash. Don't make the function inline.
// This is in contrast to GCM_Reduce_CLMUL, which must be inline.
__m128i GCM_Multiply_CLMUL(const __m128i &x, const __m128i &h, const __m128i &r)
{
const __m128i c0 = _mm_clmulepi64_si128(x,h,0);
const __m128i c1 = _mm_xor_si128(_mm_clmulepi64_si128(x,h,1), _mm_clmulepi64_si128(x,h,0x10));
const __m128i c2 = _mm_clmulepi64_si128(x,h,0x11);
return GCM_Reduce_CLMUL(c0, c1, c2, r);
}
void GCM_SetKeyWithoutResync_CLMUL(const byte *hashKey, byte *mulTable, unsigned int tableSize)
{
const __m128i r = _mm_set_epi32(0xc2000000, 0x00000000, 0xe1000000, 0x00000000);
const __m128i m = _mm_set_epi32(0x00010203, 0x04050607, 0x08090a0b, 0x0c0d0e0f);
__m128i h0 = _mm_shuffle_epi8(_mm_load_si128(CONST_M128_CAST(hashKey)), m), h = h0;
unsigned int i;
for (i=0; i<tableSize-32; i+=32)
{
const __m128i h1 = GCM_Multiply_CLMUL(h, h0, r);
_mm_storel_epi64(M128_CAST(mulTable+i), h);
_mm_storeu_si128(M128_CAST(mulTable+i+16), h1);
_mm_storeu_si128(M128_CAST(mulTable+i+8), h);
_mm_storel_epi64(M128_CAST(mulTable+i+8), h1);
h = GCM_Multiply_CLMUL(h1, h0, r);
}
const __m128i h1 = GCM_Multiply_CLMUL(h, h0, r);
_mm_storel_epi64(M128_CAST(mulTable+i), h);
_mm_storeu_si128(M128_CAST(mulTable+i+16), h1);
_mm_storeu_si128(M128_CAST(mulTable+i+8), h);
_mm_storel_epi64(M128_CAST(mulTable+i+8), h1);
}
size_t GCM_AuthenticateBlocks_CLMUL(const byte *data, size_t len, const byte *mtable, byte *hbuffer)
{
const __m128i r = _mm_set_epi32(0xc2000000, 0x00000000, 0xe1000000, 0x00000000);
const __m128i m1 = _mm_set_epi32(0x00010203, 0x04050607, 0x08090a0b, 0x0c0d0e0f);
const __m128i m2 = _mm_set_epi32(0x08090a0b, 0x0c0d0e0f, 0x00010203, 0x04050607);
__m128i x = _mm_load_si128(M128_CAST(hbuffer));
while (len >= 16)
{
size_t i=0, s = UnsignedMin(len/16, 8U);
__m128i d1 = _mm_loadu_si128(CONST_M128_CAST(data+(s-1)*16));
__m128i d2 = _mm_shuffle_epi8(d1, m2);
__m128i c0 = _mm_setzero_si128();
__m128i c1 = _mm_setzero_si128();
__m128i c2 = _mm_setzero_si128();
while (true)
{
const __m128i h0 = _mm_load_si128(CONST_M128_CAST(mtable+(i+0)*16));
const __m128i h1 = _mm_load_si128(CONST_M128_CAST(mtable+(i+1)*16));
const __m128i h2 = _mm_xor_si128(h0, h1);
if (++i == s)
{
d1 = _mm_shuffle_epi8(_mm_loadu_si128(CONST_M128_CAST(data)), m1);
d1 = _mm_xor_si128(d1, x);
c0 = _mm_xor_si128(c0, _mm_clmulepi64_si128(d1, h0, 0));
c2 = _mm_xor_si128(c2, _mm_clmulepi64_si128(d1, h1, 1));
d1 = _mm_xor_si128(d1, SwapWords(d1));
c1 = _mm_xor_si128(c1, _mm_clmulepi64_si128(d1, h2, 0));
break;
}
d1 = _mm_shuffle_epi8(_mm_loadu_si128(CONST_M128_CAST(data+(s-i)*16-8)), m2);
c0 = _mm_xor_si128(c0, _mm_clmulepi64_si128(d2, h0, 1));
c2 = _mm_xor_si128(c2, _mm_clmulepi64_si128(d1, h1, 1));
d2 = _mm_xor_si128(d2, d1);
c1 = _mm_xor_si128(c1, _mm_clmulepi64_si128(d2, h2, 1));
if (++i == s)
{
d1 = _mm_shuffle_epi8(_mm_loadu_si128(CONST_M128_CAST(data)), m1);
d1 = _mm_xor_si128(d1, x);
c0 = _mm_xor_si128(c0, _mm_clmulepi64_si128(d1, h0, 0x10));
c2 = _mm_xor_si128(c2, _mm_clmulepi64_si128(d1, h1, 0x11));
d1 = _mm_xor_si128(d1, SwapWords(d1));
c1 = _mm_xor_si128(c1, _mm_clmulepi64_si128(d1, h2, 0x10));
break;
}
d2 = _mm_shuffle_epi8(_mm_loadu_si128(CONST_M128_CAST(data+(s-i)*16-8)), m1);
c0 = _mm_xor_si128(c0, _mm_clmulepi64_si128(d1, h0, 0x10));
c2 = _mm_xor_si128(c2, _mm_clmulepi64_si128(d2, h1, 0x10));
d1 = _mm_xor_si128(d1, d2);
c1 = _mm_xor_si128(c1, _mm_clmulepi64_si128(d1, h2, 0x10));
}
data += s*16;
len -= s*16;
c1 = _mm_xor_si128(_mm_xor_si128(c1, c0), c2);
x = GCM_Reduce_CLMUL(c0, c1, c2, r);
}
_mm_store_si128(M128_CAST(hbuffer), x);
return len;
}
void GCM_ReverseHashBufferIfNeeded_CLMUL(byte *hashBuffer)
{
// SSSE3 instruction, but only used with CLMUL
const __m128i mask = _mm_set_epi32(0x00010203, 0x04050607, 0x08090a0b, 0x0c0d0e0f);
_mm_storeu_si128(M128_CAST(hashBuffer), _mm_shuffle_epi8(
_mm_loadu_si128(CONST_M128_CAST(hashBuffer)), mask));
}
#endif // CRYPTOPP_CLMUL_AVAILABLE
// ***************************** POWER8 ***************************** //
#if CRYPTOPP_POWER8_AVAILABLE
void GCM_Xor16_POWER8(byte *a, const byte *b, const byte *c)
{
VecStore(VecXor(VecLoad(b), VecLoad(c)), a);
}
#endif // CRYPTOPP_POWER8_AVAILABLE
#if CRYPTOPP_POWER8_VMULL_AVAILABLE
uint64x2_p GCM_Reduce_VMULL(uint64x2_p c0, uint64x2_p c1, uint64x2_p c2, uint64x2_p r)
{
const uint64x2_p m1 = {1,1}, m63 = {63,63};
c1 = VecXor(c1, VecShiftRightOctet<8>(c0));
c1 = VecXor(c1, VecIntelMultiply10(c0, r));
c0 = VecXor(c1, VecShiftLeftOctet<8>(c0));
c0 = VecIntelMultiply00(vec_sl(c0, m1), r);
c2 = VecXor(c2, c0);
c2 = VecXor(c2, VecShiftLeftOctet<8>(c1));
c1 = vec_sr(vec_mergeh(c1, c2), m63);
c2 = vec_sl(c2, m1);
return VecXor(c2, c1);
}
inline uint64x2_p GCM_Multiply_VMULL(uint64x2_p x, uint64x2_p h, uint64x2_p r)
{
const uint64x2_p c0 = VecIntelMultiply00(x, h);
const uint64x2_p c1 = VecXor(VecIntelMultiply01(x, h), VecIntelMultiply10(x, h));
const uint64x2_p c2 = VecIntelMultiply11(x, h);
return GCM_Reduce_VMULL(c0, c1, c2, r);
}
inline uint64x2_p LoadHashKey(const byte *hashKey)
{
#if (CRYPTOPP_BIG_ENDIAN)
const uint64x2_p key = (uint64x2_p)VecLoad(hashKey);
const uint8x16_p mask = {8,9,10,11, 12,13,14,15, 0,1,2,3, 4,5,6,7};
return VecPermute(key, key, mask);
#else
const uint64x2_p key = (uint64x2_p)VecLoad(hashKey);
const uint8x16_p mask = {15,14,13,12, 11,10,9,8, 7,6,5,4, 3,2,1,0};
return VecPermute(key, key, mask);
#endif
}
void GCM_SetKeyWithoutResync_VMULL(const byte *hashKey, byte *mulTable, unsigned int tableSize)
{
const uint64x2_p r = {0xe100000000000000ull, 0xc200000000000000ull};
uint64x2_p h = LoadHashKey(hashKey), h0 = h;
unsigned int i;
uint64_t temp[2];
for (i=0; i<tableSize-32; i+=32)
{
const uint64x2_p h1 = GCM_Multiply_VMULL(h, h0, r);
VecStore(h, (byte*)temp);
std::memcpy(mulTable+i, temp+0, 8);
VecStore(h1, mulTable+i+16);
VecStore(h, mulTable+i+8);
VecStore(h1, (byte*)temp);
std::memcpy(mulTable+i+8, temp+0, 8);
h = GCM_Multiply_VMULL(h1, h0, r);
}
const uint64x2_p h1 = GCM_Multiply_VMULL(h, h0, r);
VecStore(h, (byte*)temp);
std::memcpy(mulTable+i, temp+0, 8);
VecStore(h1, mulTable+i+16);
VecStore(h, mulTable+i+8);
VecStore(h1, (byte*)temp);
std::memcpy(mulTable+i+8, temp+0, 8);
}
// Swaps high and low 64-bit words
template <class T>
inline T SwapWords(const T& data)
{
return (T)VecRotateLeftOctet<8>(data);
}
inline uint64x2_p LoadBuffer1(const byte *dataBuffer)
{
#if (CRYPTOPP_BIG_ENDIAN)
return (uint64x2_p)VecLoad(dataBuffer);
#else
const uint64x2_p data = (uint64x2_p)VecLoad(dataBuffer);
const uint8x16_p mask = {7,6,5,4, 3,2,1,0, 15,14,13,12, 11,10,9,8};
return VecPermute(data, data, mask);
#endif
}
inline uint64x2_p LoadBuffer2(const byte *dataBuffer)
{
#if (CRYPTOPP_BIG_ENDIAN)
return (uint64x2_p)SwapWords(VecLoadBE(dataBuffer));
#else
return (uint64x2_p)VecLoadBE(dataBuffer);
#endif
}
size_t GCM_AuthenticateBlocks_VMULL(const byte *data, size_t len, const byte *mtable, byte *hbuffer)
{
const uint64x2_p r = {0xe100000000000000ull, 0xc200000000000000ull};
uint64x2_p x = (uint64x2_p)VecLoad(hbuffer);
while (len >= 16)
{
size_t i=0, s = UnsignedMin(len/16, 8U);
uint64x2_p d1, d2 = LoadBuffer1(data+(s-1)*16);
uint64x2_p c0 = {0}, c1 = {0}, c2 = {0};
while (true)
{
const uint64x2_p h0 = (uint64x2_p)VecLoad(mtable+(i+0)*16);
const uint64x2_p h1 = (uint64x2_p)VecLoad(mtable+(i+1)*16);
const uint64x2_p h2 = (uint64x2_p)VecXor(h0, h1);
if (++i == s)
{
d1 = LoadBuffer2(data);
d1 = VecXor(d1, x);
c0 = VecXor(c0, VecIntelMultiply00(d1, h0));
c2 = VecXor(c2, VecIntelMultiply01(d1, h1));
d1 = VecXor(d1, SwapWords(d1));
c1 = VecXor(c1, VecIntelMultiply00(d1, h2));
break;
}
d1 = LoadBuffer1(data+(s-i)*16-8);
c0 = VecXor(c0, VecIntelMultiply01(d2, h0));
c2 = VecXor(c2, VecIntelMultiply01(d1, h1));
d2 = VecXor(d2, d1);
c1 = VecXor(c1, VecIntelMultiply01(d2, h2));
if (++i == s)
{
d1 = LoadBuffer2(data);
d1 = VecXor(d1, x);
c0 = VecXor(c0, VecIntelMultiply10(d1, h0));
c2 = VecXor(c2, VecIntelMultiply11(d1, h1));
d1 = VecXor(d1, SwapWords(d1));
c1 = VecXor(c1, VecIntelMultiply10(d1, h2));
break;
}
d2 = LoadBuffer2(data+(s-i)*16-8);
c0 = VecXor(c0, VecIntelMultiply10(d1, h0));
c2 = VecXor(c2, VecIntelMultiply10(d2, h1));
d1 = VecXor(d1, d2);
c1 = VecXor(c1, VecIntelMultiply10(d1, h2));
}
data += s*16;
len -= s*16;
c1 = VecXor(VecXor(c1, c0), c2);
x = GCM_Reduce_VMULL(c0, c1, c2, r);
}
VecStore(x, hbuffer);
return len;
}
void GCM_ReverseHashBufferIfNeeded_VMULL(byte *hashBuffer)
{
const uint64x2_p mask = {0x08090a0b0c0d0e0full, 0x0001020304050607ull};
VecStore(VecPermute(VecLoad(hashBuffer), mask), hashBuffer);
}
#endif // CRYPTOPP_POWER8_VMULL_AVAILABLE
NAMESPACE_END