You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
478 lines
17 KiB
478 lines
17 KiB
// cham_simd.cpp - written and placed in the public domain by Jeffrey Walton |
|
// |
|
// This source file uses intrinsics and built-ins to gain access to |
|
// SSSE3, ARM NEON and ARMv8a, and Power7 Altivec instructions. A separate |
|
// source file is needed because additional CXXFLAGS are required to enable |
|
// the appropriate instructions sets in some build configurations. |
|
|
|
#include "pch.h" |
|
#include "config.h" |
|
|
|
#include "cham.h" |
|
#include "misc.h" |
|
|
|
// Uncomment for benchmarking C++ against SSE or NEON. |
|
// Do so in both simon.cpp and simon_simd.cpp. |
|
// #undef CRYPTOPP_SSSE3_AVAILABLE |
|
// #undef CRYPTOPP_ARM_NEON_AVAILABLE |
|
|
|
#if (CRYPTOPP_SSSE3_AVAILABLE) |
|
#include "adv_simd.h" |
|
# include <pmmintrin.h> |
|
# include <tmmintrin.h> |
|
#endif |
|
|
|
#if defined(__XOP__) |
|
# include <ammintrin.h> |
|
# if defined(__GNUC__) |
|
# include <x86intrin.h> |
|
# endif |
|
#endif |
|
|
|
// Clang intrinsic casts, http://bugs.llvm.org/show_bug.cgi?id=20670 |
|
#define DOUBLE_CAST(x) ((double*)(void*)(x)) |
|
#define CONST_DOUBLE_CAST(x) ((const double*)(const void*)(x)) |
|
|
|
// Squash MS LNK4221 and libtool warnings |
|
extern const char CHAM_SIMD_FNAME[] = __FILE__; |
|
|
|
ANONYMOUS_NAMESPACE_BEGIN |
|
|
|
using CryptoPP::word16; |
|
using CryptoPP::word32; |
|
|
|
#if (CRYPTOPP_SSSE3_AVAILABLE) |
|
|
|
////////////////////////////////////////////////////////////////////////// |
|
|
|
NAMESPACE_BEGIN(W32) // CHAM128, 32-bit word size |
|
|
|
template <unsigned int R> |
|
inline __m128i RotateLeft32(const __m128i& val) |
|
{ |
|
#if defined(__XOP__) |
|
return _mm_roti_epi32(val, R); |
|
#else |
|
return _mm_or_si128( |
|
_mm_slli_epi32(val, R), _mm_srli_epi32(val, 32-R)); |
|
#endif |
|
} |
|
|
|
template <unsigned int R> |
|
inline __m128i RotateRight32(const __m128i& val) |
|
{ |
|
#if defined(__XOP__) |
|
return _mm_roti_epi32(val, 32-R); |
|
#else |
|
return _mm_or_si128( |
|
_mm_slli_epi32(val, 32-R), _mm_srli_epi32(val, R)); |
|
#endif |
|
} |
|
|
|
// Faster than two Shifts and an Or. Thanks to Louis Wingers and Bryan Weeks. |
|
template <> |
|
inline __m128i RotateLeft32<8>(const __m128i& val) |
|
{ |
|
#if defined(__XOP__) |
|
return _mm_roti_epi32(val, 8); |
|
#else |
|
const __m128i mask = _mm_set_epi8(14,13,12,15, 10,9,8,11, 6,5,4,7, 2,1,0,3); |
|
return _mm_shuffle_epi8(val, mask); |
|
#endif |
|
} |
|
|
|
// Faster than two Shifts and an Or. Thanks to Louis Wingers and Bryan Weeks. |
|
template <> |
|
inline __m128i RotateRight32<8>(const __m128i& val) |
|
{ |
|
#if defined(__XOP__) |
|
return _mm_roti_epi32(val, 32-8); |
|
#else |
|
const __m128i mask = _mm_set_epi8(12,15,14,13, 8,11,10,9, 4,7,6,5, 0,3,2,1); |
|
return _mm_shuffle_epi8(val, mask); |
|
#endif |
|
} |
|
|
|
template <unsigned int IDX> |
|
inline __m128i UnpackXMM(const __m128i& a, const __m128i& b, const __m128i& c, const __m128i& d) |
|
{ |
|
// Should not be instantiated |
|
CRYPTOPP_UNUSED(a); CRYPTOPP_UNUSED(b); |
|
CRYPTOPP_UNUSED(c); CRYPTOPP_UNUSED(d); |
|
CRYPTOPP_ASSERT(0); |
|
return _mm_setzero_si128(); |
|
} |
|
|
|
template <> |
|
inline __m128i UnpackXMM<0>(const __m128i& a, const __m128i& b, const __m128i& c, const __m128i& d) |
|
{ |
|
// The shuffle converts to and from little-endian for SSE. A specialized |
|
// CHAM implementation can avoid the shuffle by framing the data for |
|
// encryption, decryption and benchmarks. The library cannot take the |
|
// speed-up because of the byte oriented API. |
|
const __m128i r1 = _mm_unpacklo_epi32(a, b); |
|
const __m128i r2 = _mm_unpacklo_epi32(c, d); |
|
return _mm_shuffle_epi8(_mm_unpacklo_epi64(r1, r2), |
|
_mm_set_epi8(12,13,14,15, 8,9,10,11, 4,5,6,7, 0,1,2,3)); |
|
} |
|
|
|
template <> |
|
inline __m128i UnpackXMM<1>(const __m128i& a, const __m128i& b, const __m128i& c, const __m128i& d) |
|
{ |
|
// The shuffle converts to and from little-endian for SSE. A specialized |
|
// CHAM implementation can avoid the shuffle by framing the data for |
|
// encryption, decryption and benchmarks. The library cannot take the |
|
// speed-up because of the byte oriented API. |
|
const __m128i r1 = _mm_unpacklo_epi32(a, b); |
|
const __m128i r2 = _mm_unpacklo_epi32(c, d); |
|
return _mm_shuffle_epi8(_mm_unpackhi_epi64(r1, r2), |
|
_mm_set_epi8(12,13,14,15, 8,9,10,11, 4,5,6,7, 0,1,2,3)); |
|
} |
|
|
|
template <> |
|
inline __m128i UnpackXMM<2>(const __m128i& a, const __m128i& b, const __m128i& c, const __m128i& d) |
|
{ |
|
// The shuffle converts to and from little-endian for SSE. A specialized |
|
// CHAM implementation can avoid the shuffle by framing the data for |
|
// encryption, decryption and benchmarks. The library cannot take the |
|
// speed-up because of the byte oriented API. |
|
const __m128i r1 = _mm_unpackhi_epi32(a, b); |
|
const __m128i r2 = _mm_unpackhi_epi32(c, d); |
|
return _mm_shuffle_epi8(_mm_unpacklo_epi64(r1, r2), |
|
_mm_set_epi8(12,13,14,15, 8,9,10,11, 4,5,6,7, 0,1,2,3)); |
|
} |
|
|
|
template <> |
|
inline __m128i UnpackXMM<3>(const __m128i& a, const __m128i& b, const __m128i& c, const __m128i& d) |
|
{ |
|
// The shuffle converts to and from little-endian for SSE. A specialized |
|
// CHAM implementation can avoid the shuffle by framing the data for |
|
// encryption, decryption and benchmarks. The library cannot take the |
|
// speed-up because of the byte oriented API. |
|
const __m128i r1 = _mm_unpackhi_epi32(a, b); |
|
const __m128i r2 = _mm_unpackhi_epi32(c, d); |
|
return _mm_shuffle_epi8(_mm_unpackhi_epi64(r1, r2), |
|
_mm_set_epi8(12,13,14,15, 8,9,10,11, 4,5,6,7, 0,1,2,3)); |
|
} |
|
|
|
template <unsigned int IDX> |
|
inline __m128i UnpackXMM(const __m128i& v) |
|
{ |
|
// Should not be instantiated |
|
CRYPTOPP_UNUSED(v); CRYPTOPP_ASSERT(0); |
|
return _mm_setzero_si128(); |
|
} |
|
|
|
template <> |
|
inline __m128i UnpackXMM<0>(const __m128i& v) |
|
{ |
|
return _mm_shuffle_epi8(v, _mm_set_epi8(0,1,2,3, 0,1,2,3, 0,1,2,3, 0,1,2,3)); |
|
} |
|
|
|
template <> |
|
inline __m128i UnpackXMM<1>(const __m128i& v) |
|
{ |
|
return _mm_shuffle_epi8(v, _mm_set_epi8(4,5,6,7, 4,5,6,7, 4,5,6,7, 4,5,6,7)); |
|
} |
|
|
|
template <> |
|
inline __m128i UnpackXMM<2>(const __m128i& v) |
|
{ |
|
return _mm_shuffle_epi8(v, _mm_set_epi8(8,9,10,11, 8,9,10,11, 8,9,10,11, 8,9,10,11)); |
|
} |
|
|
|
template <> |
|
inline __m128i UnpackXMM<3>(const __m128i& v) |
|
{ |
|
return _mm_shuffle_epi8(v, _mm_set_epi8(12,13,14,15, 12,13,14,15, 12,13,14,15, 12,13,14,15)); |
|
} |
|
|
|
template <unsigned int IDX> |
|
inline __m128i RepackXMM(const __m128i& a, const __m128i& b, const __m128i& c, const __m128i& d) |
|
{ |
|
return UnpackXMM<IDX>(a, b, c, d); |
|
} |
|
|
|
template <unsigned int IDX> |
|
inline __m128i RepackXMM(const __m128i& v) |
|
{ |
|
return UnpackXMM<IDX>(v); |
|
} |
|
|
|
inline void CHAM128_Enc_Block(__m128i &block0, |
|
const word32 *subkeys, unsigned int rounds) |
|
{ |
|
// Rearrange the data for vectorization. UnpackXMM includes a |
|
// little-endian swap for SSE. Thanks to Peter Cordes for help |
|
// with packing and unpacking. |
|
// [A1 A2 A3 A4][B1 B2 B3 B4] ... => [A1 B1 C1 D1][A2 B2 C2 D2] ... |
|
__m128i a = UnpackXMM<0>(block0); |
|
__m128i b = UnpackXMM<1>(block0); |
|
__m128i c = UnpackXMM<2>(block0); |
|
__m128i d = UnpackXMM<3>(block0); |
|
|
|
__m128i counter = _mm_set_epi32(0,0,0,0); |
|
__m128i increment = _mm_set_epi32(1,1,1,1); |
|
|
|
const unsigned int MASK = (rounds == 80 ? 7 : 15); |
|
for (int i=0; i<static_cast<int>(rounds); i+=4) |
|
{ |
|
__m128i k, k1, k2, t1, t2; |
|
k = _mm_castpd_si128(_mm_load_sd(CONST_DOUBLE_CAST(&subkeys[(i+0) & MASK]))); |
|
|
|
// Shuffle out two subkeys |
|
k1 = _mm_shuffle_epi8(k, _mm_set_epi8(3,2,1,0, 3,2,1,0, 3,2,1,0, 3,2,1,0)); |
|
k2 = _mm_shuffle_epi8(k, _mm_set_epi8(7,6,5,4, 7,6,5,4, 7,6,5,4, 7,6,5,4)); |
|
|
|
t1 = _mm_xor_si128(a, counter); |
|
t2 = _mm_xor_si128(RotateLeft32<1>(b), k1); |
|
a = RotateLeft32<8>(_mm_add_epi32(t1, t2)); |
|
|
|
counter = _mm_add_epi32(counter, increment); |
|
|
|
t1 = _mm_xor_si128(b, counter); |
|
t2 = _mm_xor_si128(RotateLeft32<8>(c), k2); |
|
b = RotateLeft32<1>(_mm_add_epi32(t1, t2)); |
|
|
|
counter = _mm_add_epi32(counter, increment); |
|
k = _mm_castpd_si128(_mm_load_sd(CONST_DOUBLE_CAST(&subkeys[(i+2) & MASK]))); |
|
|
|
// Shuffle out two subkeys |
|
k1 = _mm_shuffle_epi8(k, _mm_set_epi8(3,2,1,0, 3,2,1,0, 3,2,1,0, 3,2,1,0)); |
|
k2 = _mm_shuffle_epi8(k, _mm_set_epi8(7,6,5,4, 7,6,5,4, 7,6,5,4, 7,6,5,4)); |
|
|
|
t1 = _mm_xor_si128(c, counter); |
|
t2 = _mm_xor_si128(RotateLeft32<1>(d), k1); |
|
c = RotateLeft32<8>(_mm_add_epi32(t1, t2)); |
|
|
|
counter = _mm_add_epi32(counter, increment); |
|
|
|
t1 = _mm_xor_si128(d, counter); |
|
t2 = _mm_xor_si128(RotateLeft32<8>(a), k2); |
|
d = RotateLeft32<1>(_mm_add_epi32(t1, t2)); |
|
|
|
counter = _mm_add_epi32(counter, increment); |
|
} |
|
|
|
// [A1 B1 C1 D1][A2 B2 C2 D2] ... => [A1 A2 A3 A4][B1 B2 B3 B4] ... |
|
block0 = RepackXMM<0>(a,b,c,d); |
|
} |
|
|
|
inline void CHAM128_Dec_Block(__m128i &block0, |
|
const word32 *subkeys, unsigned int rounds) |
|
{ |
|
// Rearrange the data for vectorization. UnpackXMM includes a |
|
// little-endian swap for SSE. Thanks to Peter Cordes for help |
|
// with packing and unpacking. |
|
// [A1 A2 A3 A4][B1 B2 B3 B4] ... => [A1 B1 C1 D1][A2 B2 C2 D2] ... |
|
__m128i a = UnpackXMM<0>(block0); |
|
__m128i b = UnpackXMM<1>(block0); |
|
__m128i c = UnpackXMM<2>(block0); |
|
__m128i d = UnpackXMM<3>(block0); |
|
|
|
__m128i counter = _mm_set_epi32(rounds-1,rounds-1,rounds-1,rounds-1); |
|
__m128i decrement = _mm_set_epi32(1,1,1,1); |
|
|
|
const unsigned int MASK = (rounds == 80 ? 7 : 15); |
|
for (int i = static_cast<int>(rounds)-1; i >= 0; i-=4) |
|
{ |
|
__m128i k, k1, k2, t1, t2; |
|
k = _mm_castpd_si128(_mm_load_sd(CONST_DOUBLE_CAST(&subkeys[(i-1) & MASK]))); |
|
|
|
// Shuffle out two subkeys |
|
k1 = _mm_shuffle_epi8(k, _mm_set_epi8(7,6,5,4, 7,6,5,4, 7,6,5,4, 7,6,5,4)); |
|
k2 = _mm_shuffle_epi8(k, _mm_set_epi8(3,2,1,0, 3,2,1,0, 3,2,1,0, 3,2,1,0)); |
|
|
|
// Odd round |
|
t1 = RotateRight32<1>(d); |
|
t2 = _mm_xor_si128(RotateLeft32<8>(a), k1); |
|
d = _mm_xor_si128(_mm_sub_epi32(t1, t2), counter); |
|
|
|
counter = _mm_sub_epi32(counter, decrement); |
|
|
|
// Even round |
|
t1 = RotateRight32<8>(c); |
|
t2 = _mm_xor_si128(RotateLeft32<1>(d), k2); |
|
c = _mm_xor_si128(_mm_sub_epi32(t1, t2), counter); |
|
|
|
counter = _mm_sub_epi32(counter, decrement); |
|
k = _mm_castpd_si128(_mm_load_sd(CONST_DOUBLE_CAST(&subkeys[(i-3) & MASK]))); |
|
|
|
// Shuffle out two subkeys |
|
k1 = _mm_shuffle_epi8(k, _mm_set_epi8(7,6,5,4, 7,6,5,4, 7,6,5,4, 7,6,5,4)); |
|
k2 = _mm_shuffle_epi8(k, _mm_set_epi8(3,2,1,0, 3,2,1,0, 3,2,1,0, 3,2,1,0)); |
|
|
|
// Odd round |
|
t1 = RotateRight32<1>(b); |
|
t2 = _mm_xor_si128(RotateLeft32<8>(c), k1); |
|
b = _mm_xor_si128(_mm_sub_epi32(t1, t2), counter); |
|
|
|
counter = _mm_sub_epi32(counter, decrement); |
|
|
|
// Even round |
|
t1 = RotateRight32<8>(a); |
|
t2 = _mm_xor_si128(RotateLeft32<1>(b), k2); |
|
a = _mm_xor_si128(_mm_sub_epi32(t1, t2), counter); |
|
|
|
counter = _mm_sub_epi32(counter, decrement); |
|
} |
|
|
|
// [A1 B1 C1 D1][A2 B2 C2 D2] ... => [A1 A2 A3 A4][B1 B2 B3 B4] ... |
|
block0 = RepackXMM<0>(a,b,c,d); |
|
} |
|
|
|
inline void CHAM128_Enc_4_Blocks(__m128i &block0, __m128i &block1, |
|
__m128i &block2, __m128i &block3, const word32 *subkeys, unsigned int rounds) |
|
{ |
|
// Rearrange the data for vectorization. UnpackXMM includes a |
|
// little-endian swap for SSE. Thanks to Peter Cordes for help |
|
// with packing and unpacking. |
|
// [A1 A2 A3 A4][B1 B2 B3 B4] ... => [A1 B1 C1 D1][A2 B2 C2 D2] ... |
|
__m128i a = UnpackXMM<0>(block0, block1, block2, block3); |
|
__m128i b = UnpackXMM<1>(block0, block1, block2, block3); |
|
__m128i c = UnpackXMM<2>(block0, block1, block2, block3); |
|
__m128i d = UnpackXMM<3>(block0, block1, block2, block3); |
|
|
|
__m128i counter = _mm_set_epi32(0,0,0,0); |
|
__m128i increment = _mm_set_epi32(1,1,1,1); |
|
|
|
const unsigned int MASK = (rounds == 80 ? 7 : 15); |
|
for (int i=0; i<static_cast<int>(rounds); i+=4) |
|
{ |
|
__m128i k, k1, k2, t1, t2; |
|
k = _mm_castpd_si128(_mm_load_sd(CONST_DOUBLE_CAST(&subkeys[(i+0) & MASK]))); |
|
|
|
// Shuffle out two subkeys |
|
k1 = _mm_shuffle_epi8(k, _mm_set_epi8(3,2,1,0, 3,2,1,0, 3,2,1,0, 3,2,1,0)); |
|
k2 = _mm_shuffle_epi8(k, _mm_set_epi8(7,6,5,4, 7,6,5,4, 7,6,5,4, 7,6,5,4)); |
|
|
|
t1 = _mm_xor_si128(a, counter); |
|
t2 = _mm_xor_si128(RotateLeft32<1>(b), k1); |
|
a = RotateLeft32<8>(_mm_add_epi32(t1, t2)); |
|
|
|
counter = _mm_add_epi32(counter, increment); |
|
|
|
t1 = _mm_xor_si128(b, counter); |
|
t2 = _mm_xor_si128(RotateLeft32<8>(c), k2); |
|
b = RotateLeft32<1>(_mm_add_epi32(t1, t2)); |
|
|
|
counter = _mm_add_epi32(counter, increment); |
|
k = _mm_castpd_si128(_mm_load_sd(CONST_DOUBLE_CAST(&subkeys[(i+2) & MASK]))); |
|
|
|
// Shuffle out two subkeys |
|
k1 = _mm_shuffle_epi8(k, _mm_set_epi8(3,2,1,0, 3,2,1,0, 3,2,1,0, 3,2,1,0)); |
|
k2 = _mm_shuffle_epi8(k, _mm_set_epi8(7,6,5,4, 7,6,5,4, 7,6,5,4, 7,6,5,4)); |
|
|
|
t1 = _mm_xor_si128(c, counter); |
|
t2 = _mm_xor_si128(RotateLeft32<1>(d), k1); |
|
c = RotateLeft32<8>(_mm_add_epi32(t1, t2)); |
|
|
|
counter = _mm_add_epi32(counter, increment); |
|
|
|
t1 = _mm_xor_si128(d, counter); |
|
t2 = _mm_xor_si128(RotateLeft32<8>(a), k2); |
|
d = RotateLeft32<1>(_mm_add_epi32(t1, t2)); |
|
|
|
counter = _mm_add_epi32(counter, increment); |
|
} |
|
|
|
// [A1 B1 C1 D1][A2 B2 C2 D2] ... => [A1 A2 A3 A4][B1 B2 B3 B4] ... |
|
block0 = RepackXMM<0>(a,b,c,d); |
|
block1 = RepackXMM<1>(a,b,c,d); |
|
block2 = RepackXMM<2>(a,b,c,d); |
|
block3 = RepackXMM<3>(a,b,c,d); |
|
} |
|
|
|
inline void CHAM128_Dec_4_Blocks(__m128i &block0, __m128i &block1, |
|
__m128i &block2, __m128i &block3, const word32 *subkeys, unsigned int rounds) |
|
{ |
|
// Rearrange the data for vectorization. UnpackXMM includes a |
|
// little-endian swap for SSE. Thanks to Peter Cordes for help |
|
// with packing and unpacking. |
|
// [A1 A2 A3 A4][B1 B2 B3 B4] ... => [A1 B1 C1 D1][A2 B2 C2 D2] ... |
|
__m128i a = UnpackXMM<0>(block0, block1, block2, block3); |
|
__m128i b = UnpackXMM<1>(block0, block1, block2, block3); |
|
__m128i c = UnpackXMM<2>(block0, block1, block2, block3); |
|
__m128i d = UnpackXMM<3>(block0, block1, block2, block3); |
|
|
|
__m128i counter = _mm_set_epi32(rounds-1,rounds-1,rounds-1,rounds-1); |
|
__m128i decrement = _mm_set_epi32(1,1,1,1); |
|
|
|
const unsigned int MASK = (rounds == 80 ? 7 : 15); |
|
for (int i = static_cast<int>(rounds)-1; i >= 0; i-=4) |
|
{ |
|
__m128i k, k1, k2, t1, t2; |
|
k = _mm_castpd_si128(_mm_load_sd(CONST_DOUBLE_CAST(&subkeys[(i-1) & MASK]))); |
|
|
|
// Shuffle out two subkeys |
|
k1 = _mm_shuffle_epi8(k, _mm_set_epi8(7,6,5,4, 7,6,5,4, 7,6,5,4, 7,6,5,4)); |
|
k2 = _mm_shuffle_epi8(k, _mm_set_epi8(3,2,1,0, 3,2,1,0, 3,2,1,0, 3,2,1,0)); |
|
|
|
// Odd round |
|
t1 = RotateRight32<1>(d); |
|
t2 = _mm_xor_si128(RotateLeft32<8>(a), k1); |
|
d = _mm_xor_si128(_mm_sub_epi32(t1, t2), counter); |
|
|
|
counter = _mm_sub_epi32(counter, decrement); |
|
|
|
// Even round |
|
t1 = RotateRight32<8>(c); |
|
t2 = _mm_xor_si128(RotateLeft32<1>(d), k2); |
|
c = _mm_xor_si128(_mm_sub_epi32(t1, t2), counter); |
|
|
|
counter = _mm_sub_epi32(counter, decrement); |
|
k = _mm_castpd_si128(_mm_load_sd(CONST_DOUBLE_CAST(&subkeys[(i-3) & MASK]))); |
|
|
|
// Shuffle out two subkeys |
|
k1 = _mm_shuffle_epi8(k, _mm_set_epi8(7,6,5,4, 7,6,5,4, 7,6,5,4, 7,6,5,4)); |
|
k2 = _mm_shuffle_epi8(k, _mm_set_epi8(3,2,1,0, 3,2,1,0, 3,2,1,0, 3,2,1,0)); |
|
|
|
// Odd round |
|
t1 = RotateRight32<1>(b); |
|
t2 = _mm_xor_si128(RotateLeft32<8>(c), k1); |
|
b = _mm_xor_si128(_mm_sub_epi32(t1, t2), counter); |
|
|
|
counter = _mm_sub_epi32(counter, decrement); |
|
|
|
// Even round |
|
t1 = RotateRight32<8>(a); |
|
t2 = _mm_xor_si128(RotateLeft32<1>(b), k2); |
|
a = _mm_xor_si128(_mm_sub_epi32(t1, t2), counter); |
|
|
|
counter = _mm_sub_epi32(counter, decrement); |
|
} |
|
|
|
// [A1 B1 C1 D1][A2 B2 C2 D2] ... => [A1 A2 A3 A4][B1 B2 B3 B4] ... |
|
block0 = RepackXMM<0>(a,b,c,d); |
|
block1 = RepackXMM<1>(a,b,c,d); |
|
block2 = RepackXMM<2>(a,b,c,d); |
|
block3 = RepackXMM<3>(a,b,c,d); |
|
} |
|
|
|
////////////////////////////////////////////////////////////////////////// |
|
|
|
NAMESPACE_END // W32 |
|
|
|
#endif // CRYPTOPP_SSSE3_AVAILABLE |
|
|
|
ANONYMOUS_NAMESPACE_END |
|
|
|
NAMESPACE_BEGIN(CryptoPP) |
|
|
|
#if defined(CRYPTOPP_SSSE3_AVAILABLE) |
|
size_t CHAM128_Enc_AdvancedProcessBlocks_SSSE3(const word32* subKeys, size_t rounds, |
|
const byte *inBlocks, const byte *xorBlocks, byte *outBlocks, size_t length, word32 flags) |
|
{ |
|
return AdvancedProcessBlocks128_4x1_SSE(W32::CHAM128_Enc_Block, W32::CHAM128_Enc_4_Blocks, |
|
subKeys, rounds, inBlocks, xorBlocks, outBlocks, length, flags); |
|
} |
|
|
|
size_t CHAM128_Dec_AdvancedProcessBlocks_SSSE3(const word32* subKeys, size_t rounds, |
|
const byte *inBlocks, const byte *xorBlocks, byte *outBlocks, size_t length, word32 flags) |
|
{ |
|
return AdvancedProcessBlocks128_4x1_SSE(W32::CHAM128_Dec_Block, W32::CHAM128_Dec_4_Blocks, |
|
subKeys, rounds, inBlocks, xorBlocks, outBlocks, length, flags); |
|
} |
|
#endif // CRYPTOPP_SSSE3_AVAILABLE |
|
|
|
NAMESPACE_END
|
|
|