|
|
//========= Copyright Valve Corporation, All rights reserved. ============// |
|
|
// |
|
|
// Purpose: |
|
|
// |
|
|
//===========================================================================// |
|
|
|
|
|
#ifndef MATH_LIB_H |
|
|
#define MATH_LIB_H |
|
|
|
|
|
#include <math.h> |
|
|
#include "minmax.h" |
|
|
#include "tier0/basetypes.h" |
|
|
#include "tier0/commonmacros.h" |
|
|
#include "mathlib/vector.h" |
|
|
#include "mathlib/vector2d.h" |
|
|
#include "tier0/dbg.h" |
|
|
|
|
|
#include "mathlib/math_pfns.h" |
|
|
|
|
|
#if defined(__i386__) || defined(_M_IX86) |
|
|
// For MMX intrinsics |
|
|
#include <xmmintrin.h> |
|
|
#endif |
|
|
|
|
|
// XXX remove me |
|
|
#undef clamp |
|
|
|
|
|
// Uncomment this to enable FP exceptions in parts of the code. |
|
|
// This can help track down FP bugs. However the code is not |
|
|
// FP exception clean so this not a turnkey operation. |
|
|
//#define FP_EXCEPTIONS_ENABLED |
|
|
|
|
|
#ifdef FP_EXCEPTIONS_ENABLED |
|
|
#include <float.h> // For _clearfp and _controlfp_s |
|
|
#endif |
|
|
|
|
|
// FPExceptionDisabler and FPExceptionEnabler taken from my blog post |
|
|
// at http://www.altdevblogaday.com/2012/04/20/exceptional-floating-point/ |
|
|
|
|
|
// Declare an object of this type in a scope in order to suppress |
|
|
// all floating-point exceptions temporarily. The old exception |
|
|
// state will be reset at the end. |
|
|
class FPExceptionDisabler |
|
|
{ |
|
|
public: |
|
|
#ifdef FP_EXCEPTIONS_ENABLED |
|
|
FPExceptionDisabler(); |
|
|
~FPExceptionDisabler(); |
|
|
|
|
|
private: |
|
|
unsigned int mOldValues; |
|
|
#else |
|
|
FPExceptionDisabler() {} |
|
|
~FPExceptionDisabler() {} |
|
|
#endif |
|
|
|
|
|
private: |
|
|
// Make the copy constructor and assignment operator private |
|
|
// and unimplemented to prohibit copying. |
|
|
FPExceptionDisabler(const FPExceptionDisabler&); |
|
|
FPExceptionDisabler& operator=(const FPExceptionDisabler&); |
|
|
}; |
|
|
|
|
|
// Declare an object of this type in a scope in order to enable a |
|
|
// specified set of floating-point exceptions temporarily. The old |
|
|
// exception state will be reset at the end. |
|
|
// This class can be nested. |
|
|
class FPExceptionEnabler |
|
|
{ |
|
|
public: |
|
|
// Overflow, divide-by-zero, and invalid-operation are the FP |
|
|
// exceptions most frequently associated with bugs. |
|
|
#ifdef FP_EXCEPTIONS_ENABLED |
|
|
FPExceptionEnabler(unsigned int enableBits = _EM_OVERFLOW | _EM_ZERODIVIDE | _EM_INVALID); |
|
|
~FPExceptionEnabler(); |
|
|
|
|
|
private: |
|
|
unsigned int mOldValues; |
|
|
#else |
|
|
FPExceptionEnabler(unsigned int enableBits = 0) |
|
|
{ |
|
|
} |
|
|
~FPExceptionEnabler() |
|
|
{ |
|
|
} |
|
|
#endif |
|
|
|
|
|
private: |
|
|
// Make the copy constructor and assignment operator private |
|
|
// and unimplemented to prohibit copying. |
|
|
FPExceptionEnabler(const FPExceptionEnabler&); |
|
|
FPExceptionEnabler& operator=(const FPExceptionEnabler&); |
|
|
}; |
|
|
|
|
|
inline float clamp( const float val, const float minVal, const float maxVal ) |
|
|
{ |
|
|
const float t = val < minVal ? minVal : val; |
|
|
return t > maxVal ? maxVal : t; |
|
|
} |
|
|
|
|
|
// |
|
|
// Returns a clamped value in the range [min, max]. |
|
|
// |
|
|
template< class T > |
|
|
inline T clamp( T const &val, T const &minVal, T const &maxVal ) |
|
|
{ |
|
|
const T t = val< minVal ? minVal : val; |
|
|
return t > maxVal ? maxVal : t; |
|
|
} |
|
|
|
|
|
// plane_t structure |
|
|
// !!! if this is changed, it must be changed in asm code too !!! |
|
|
// FIXME: does the asm code even exist anymore? |
|
|
// FIXME: this should move to a different file |
|
|
struct cplane_t |
|
|
{ |
|
|
Vector normal; |
|
|
float dist; |
|
|
byte type; // for fast side tests |
|
|
byte signbits; // signx + (signy<<1) + (signz<<1) |
|
|
byte pad[2]; |
|
|
|
|
|
#ifdef VECTOR_NO_SLOW_OPERATIONS |
|
|
cplane_t() {} |
|
|
|
|
|
private: |
|
|
// No copy constructors allowed if we're in optimal mode |
|
|
cplane_t(const cplane_t& vOther); |
|
|
#endif |
|
|
}; |
|
|
|
|
|
// structure offset for asm code |
|
|
#define CPLANE_NORMAL_X 0 |
|
|
#define CPLANE_NORMAL_Y 4 |
|
|
#define CPLANE_NORMAL_Z 8 |
|
|
#define CPLANE_DIST 12 |
|
|
#define CPLANE_TYPE 16 |
|
|
#define CPLANE_SIGNBITS 17 |
|
|
#define CPLANE_PAD0 18 |
|
|
#define CPLANE_PAD1 19 |
|
|
|
|
|
// 0-2 are axial planes |
|
|
#define PLANE_X 0 |
|
|
#define PLANE_Y 1 |
|
|
#define PLANE_Z 2 |
|
|
|
|
|
// 3-5 are non-axial planes snapped to the nearest |
|
|
#define PLANE_ANYX 3 |
|
|
#define PLANE_ANYY 4 |
|
|
#define PLANE_ANYZ 5 |
|
|
|
|
|
|
|
|
//----------------------------------------------------------------------------- |
|
|
// Frustum plane indices. |
|
|
// WARNING: there is code that depends on these values |
|
|
//----------------------------------------------------------------------------- |
|
|
|
|
|
enum |
|
|
{ |
|
|
FRUSTUM_RIGHT = 0, |
|
|
FRUSTUM_LEFT = 1, |
|
|
FRUSTUM_TOP = 2, |
|
|
FRUSTUM_BOTTOM = 3, |
|
|
FRUSTUM_NEARZ = 4, |
|
|
FRUSTUM_FARZ = 5, |
|
|
FRUSTUM_NUMPLANES = 6 |
|
|
}; |
|
|
|
|
|
extern int SignbitsForPlane( cplane_t *out ); |
|
|
|
|
|
class Frustum_t |
|
|
{ |
|
|
public: |
|
|
void SetPlane( int i, int nType, const Vector &vecNormal, float dist ) |
|
|
{ |
|
|
m_Plane[i].normal = vecNormal; |
|
|
m_Plane[i].dist = dist; |
|
|
m_Plane[i].type = nType; |
|
|
m_Plane[i].signbits = SignbitsForPlane( &m_Plane[i] ); |
|
|
m_AbsNormal[i].Init( fabs(vecNormal.x), fabs(vecNormal.y), fabs(vecNormal.z) ); |
|
|
} |
|
|
|
|
|
inline const cplane_t *GetPlane( int i ) const { return &m_Plane[i]; } |
|
|
inline const Vector &GetAbsNormal( int i ) const { return m_AbsNormal[i]; } |
|
|
|
|
|
private: |
|
|
cplane_t m_Plane[FRUSTUM_NUMPLANES]; |
|
|
Vector m_AbsNormal[FRUSTUM_NUMPLANES]; |
|
|
}; |
|
|
|
|
|
// Computes Y fov from an X fov and a screen aspect ratio + X from Y |
|
|
float CalcFovY( float flFovX, float flScreenAspect ); |
|
|
float CalcFovX( float flFovY, float flScreenAspect ); |
|
|
|
|
|
// Generate a frustum based on perspective view parameters |
|
|
// NOTE: FOV is specified in degrees, as the *full* view angle (not half-angle) |
|
|
void GeneratePerspectiveFrustum( const Vector& origin, const QAngle &angles, float flZNear, float flZFar, float flFovX, float flAspectRatio, Frustum_t &frustum ); |
|
|
void GeneratePerspectiveFrustum( const Vector& origin, const Vector &forward, const Vector &right, const Vector &up, float flZNear, float flZFar, float flFovX, float flFovY, Frustum_t &frustum ); |
|
|
|
|
|
// Cull the world-space bounding box to the specified frustum. |
|
|
bool R_CullBox( const Vector& mins, const Vector& maxs, const Frustum_t &frustum ); |
|
|
bool R_CullBoxSkipNear( const Vector& mins, const Vector& maxs, const Frustum_t &frustum ); |
|
|
|
|
|
struct matrix3x4_t |
|
|
{ |
|
|
inline matrix3x4_t() = default; |
|
|
inline matrix3x4_t( |
|
|
float m00, float m01, float m02, float m03, |
|
|
float m10, float m11, float m12, float m13, |
|
|
float m20, float m21, float m22, float m23 ) |
|
|
{ |
|
|
m_flMatVal[0][0] = m00; m_flMatVal[0][1] = m01; m_flMatVal[0][2] = m02; m_flMatVal[0][3] = m03; |
|
|
m_flMatVal[1][0] = m10; m_flMatVal[1][1] = m11; m_flMatVal[1][2] = m12; m_flMatVal[1][3] = m13; |
|
|
m_flMatVal[2][0] = m20; m_flMatVal[2][1] = m21; m_flMatVal[2][2] = m22; m_flMatVal[2][3] = m23; |
|
|
} |
|
|
|
|
|
//----------------------------------------------------------------------------- |
|
|
// Creates a matrix where the X axis = forward |
|
|
// the Y axis = left, and the Z axis = up |
|
|
//----------------------------------------------------------------------------- |
|
|
inline void Init( const Vector& xAxis, const Vector& yAxis, const Vector& zAxis, const Vector &vecOrigin ) |
|
|
{ |
|
|
m_flMatVal[0][0] = xAxis.x; m_flMatVal[0][1] = yAxis.x; m_flMatVal[0][2] = zAxis.x; m_flMatVal[0][3] = vecOrigin.x; |
|
|
m_flMatVal[1][0] = xAxis.y; m_flMatVal[1][1] = yAxis.y; m_flMatVal[1][2] = zAxis.y; m_flMatVal[1][3] = vecOrigin.y; |
|
|
m_flMatVal[2][0] = xAxis.z; m_flMatVal[2][1] = yAxis.z; m_flMatVal[2][2] = zAxis.z; m_flMatVal[2][3] = vecOrigin.z; |
|
|
} |
|
|
|
|
|
//----------------------------------------------------------------------------- |
|
|
// Creates a matrix where the X axis = forward |
|
|
// the Y axis = left, and the Z axis = up |
|
|
//----------------------------------------------------------------------------- |
|
|
inline matrix3x4_t( const Vector& xAxis, const Vector& yAxis, const Vector& zAxis, const Vector &vecOrigin ) |
|
|
{ |
|
|
Init( xAxis, yAxis, zAxis, vecOrigin ); |
|
|
} |
|
|
|
|
|
inline void Invalidate( void ) |
|
|
{ |
|
|
for( int i=0; i < 12; i++ ) |
|
|
{ |
|
|
((float*)m_flMatVal)[i] = VEC_T_NAN; |
|
|
} |
|
|
} |
|
|
|
|
|
inline float *operator[]( int i ) { Assert(( i >= 0 ) && ( i < 3 )); return m_flMatVal[i]; } |
|
|
inline const float *operator[]( int i ) const { Assert(( i >= 0 ) && ( i < 3 )); return m_flMatVal[i]; } |
|
|
inline float *Base() { return &m_flMatVal[0][0]; } |
|
|
inline const float *Base() const { return &m_flMatVal[0][0]; } |
|
|
|
|
|
float m_flMatVal[3][4]; |
|
|
}; |
|
|
|
|
|
|
|
|
#ifndef M_PI |
|
|
#define M_PI 3.14159265358979323846 // matches value in gcc v2 math.h |
|
|
#endif |
|
|
|
|
|
#define M_PI_F ((float)(M_PI)) // Shouldn't collide with anything. |
|
|
|
|
|
// NJS: Inlined to prevent floats from being autopromoted to doubles, as with the old system. |
|
|
#ifndef RAD2DEG |
|
|
#define RAD2DEG( x ) ( (float)(x) * (float)(180.f / M_PI_F) ) |
|
|
#endif |
|
|
|
|
|
#ifndef DEG2RAD |
|
|
#define DEG2RAD( x ) ( (float)(x) * (float)(M_PI_F / 180.f) ) |
|
|
#endif |
|
|
|
|
|
// Used to represent sides of things like planes. |
|
|
#define SIDE_FRONT 0 |
|
|
#define SIDE_BACK 1 |
|
|
#define SIDE_ON 2 |
|
|
#define SIDE_CROSS -2 // necessary for polylib.c |
|
|
|
|
|
#define ON_VIS_EPSILON 0.01 // necessary for vvis (flow.c) -- again look into moving later! |
|
|
#define EQUAL_EPSILON 0.001 // necessary for vbsp (faces.c) -- should look into moving it there? |
|
|
|
|
|
extern bool s_bMathlibInitialized; |
|
|
|
|
|
extern const Vector vec3_origin; |
|
|
extern const QAngle vec3_angle; |
|
|
extern const Quaternion quat_identity; |
|
|
extern const Vector vec3_invalid; |
|
|
extern const int nanmask; |
|
|
|
|
|
#define IS_NAN(x) (((*(int *)&x)&nanmask)==nanmask) |
|
|
|
|
|
FORCEINLINE vec_t DotProduct(const vec_t *v1, const vec_t *v2) |
|
|
{ |
|
|
return v1[0]*v2[0] + v1[1]*v2[1] + v1[2]*v2[2]; |
|
|
} |
|
|
FORCEINLINE void VectorSubtract(const vec_t *a, const vec_t *b, vec_t *c) |
|
|
{ |
|
|
c[0]=a[0]-b[0]; |
|
|
c[1]=a[1]-b[1]; |
|
|
c[2]=a[2]-b[2]; |
|
|
} |
|
|
FORCEINLINE void VectorAdd(const vec_t *a, const vec_t *b, vec_t *c) |
|
|
{ |
|
|
c[0]=a[0]+b[0]; |
|
|
c[1]=a[1]+b[1]; |
|
|
c[2]=a[2]+b[2]; |
|
|
} |
|
|
FORCEINLINE void VectorCopy(const vec_t *a, vec_t *b) |
|
|
{ |
|
|
b[0]=a[0]; |
|
|
b[1]=a[1]; |
|
|
b[2]=a[2]; |
|
|
} |
|
|
FORCEINLINE void VectorClear(vec_t *a) |
|
|
{ |
|
|
a[0]=a[1]=a[2]=0; |
|
|
} |
|
|
|
|
|
FORCEINLINE float VectorMaximum(const vec_t *v) |
|
|
{ |
|
|
return max( v[0], max( v[1], v[2] ) ); |
|
|
} |
|
|
|
|
|
FORCEINLINE float VectorMaximum(const Vector& v) |
|
|
{ |
|
|
return max( v.x, max( v.y, v.z ) ); |
|
|
} |
|
|
|
|
|
FORCEINLINE void VectorScale (const float* in, vec_t scale, float* out) |
|
|
{ |
|
|
out[0] = in[0]*scale; |
|
|
out[1] = in[1]*scale; |
|
|
out[2] = in[2]*scale; |
|
|
} |
|
|
|
|
|
|
|
|
// Cannot be forceinline as they have overloads: |
|
|
inline void VectorFill(vec_t *a, float b) |
|
|
{ |
|
|
a[0]=a[1]=a[2]=b; |
|
|
} |
|
|
|
|
|
inline void VectorNegate(vec_t *a) |
|
|
{ |
|
|
a[0]=-a[0]; |
|
|
a[1]=-a[1]; |
|
|
a[2]=-a[2]; |
|
|
} |
|
|
|
|
|
|
|
|
//#define VectorMaximum(a) ( max( (a)[0], max( (a)[1], (a)[2] ) ) ) |
|
|
#define Vector2Clear(x) {(x)[0]=(x)[1]=0;} |
|
|
#define Vector2Negate(x) {(x)[0]=-((x)[0]);(x)[1]=-((x)[1]);} |
|
|
#define Vector2Copy(a,b) {(b)[0]=(a)[0];(b)[1]=(a)[1];} |
|
|
#define Vector2Subtract(a,b,c) {(c)[0]=(a)[0]-(b)[0];(c)[1]=(a)[1]-(b)[1];} |
|
|
#define Vector2Add(a,b,c) {(c)[0]=(a)[0]+(b)[0];(c)[1]=(a)[1]+(b)[1];} |
|
|
#define Vector2Scale(a,b,c) {(c)[0]=(b)*(a)[0];(c)[1]=(b)*(a)[1];} |
|
|
|
|
|
// NJS: Some functions in VBSP still need to use these for dealing with mixing vec4's and shorts with vec_t's. |
|
|
// remove when no longer needed. |
|
|
#define VECTOR_COPY( A, B ) do { (B)[0] = (A)[0]; (B)[1] = (A)[1]; (B)[2]=(A)[2]; } while(0) |
|
|
#define DOT_PRODUCT( A, B ) ( (A)[0]*(B)[0] + (A)[1]*(B)[1] + (A)[2]*(B)[2] ) |
|
|
|
|
|
FORCEINLINE void VectorMAInline( const float* start, float scale, const float* direction, float* dest ) |
|
|
{ |
|
|
dest[0]=start[0]+direction[0]*scale; |
|
|
dest[1]=start[1]+direction[1]*scale; |
|
|
dest[2]=start[2]+direction[2]*scale; |
|
|
} |
|
|
|
|
|
FORCEINLINE void VectorMAInline( const Vector& start, float scale, const Vector& direction, Vector& dest ) |
|
|
{ |
|
|
dest.x=start.x+direction.x*scale; |
|
|
dest.y=start.y+direction.y*scale; |
|
|
dest.z=start.z+direction.z*scale; |
|
|
} |
|
|
|
|
|
FORCEINLINE void VectorMA( const Vector& start, float scale, const Vector& direction, Vector& dest ) |
|
|
{ |
|
|
VectorMAInline(start, scale, direction, dest); |
|
|
} |
|
|
|
|
|
FORCEINLINE void VectorMA( const float * start, float scale, const float *direction, float *dest ) |
|
|
{ |
|
|
VectorMAInline(start, scale, direction, dest); |
|
|
} |
|
|
|
|
|
|
|
|
int VectorCompare (const float *v1, const float *v2); |
|
|
|
|
|
inline float VectorLength(const float *v) |
|
|
{ |
|
|
return FastSqrt( v[0]*v[0] + v[1]*v[1] + v[2]*v[2] + FLT_EPSILON ); |
|
|
} |
|
|
|
|
|
void CrossProduct (const float *v1, const float *v2, float *cross); |
|
|
|
|
|
qboolean VectorsEqual( const float *v1, const float *v2 ); |
|
|
|
|
|
inline vec_t RoundInt (vec_t in) |
|
|
{ |
|
|
return floor(in + 0.5f); |
|
|
} |
|
|
|
|
|
int Q_log2(int val); |
|
|
|
|
|
// Math routines done in optimized assembly math package routines |
|
|
void inline SinCos( float radians, float *sine, float *cosine ) |
|
|
{ |
|
|
#if defined( _X360 ) |
|
|
XMScalarSinCos( sine, cosine, radians ); |
|
|
#elif defined( PLATFORM_WINDOWS_PC32 ) |
|
|
_asm |
|
|
{ |
|
|
fld DWORD PTR [radians] |
|
|
fsincos |
|
|
|
|
|
mov edx, DWORD PTR [cosine] |
|
|
mov eax, DWORD PTR [sine] |
|
|
|
|
|
fstp DWORD PTR [edx] |
|
|
fstp DWORD PTR [eax] |
|
|
} |
|
|
#elif defined( PLATFORM_WINDOWS_PC64 ) |
|
|
*sine = sin( radians ); |
|
|
*cosine = cos( radians ); |
|
|
#elif defined( OSX ) |
|
|
__sincosf(radians, sine, cosine); |
|
|
#elif defined( POSIX ) |
|
|
sincosf(radians, sine, cosine); |
|
|
#endif |
|
|
} |
|
|
|
|
|
#define SIN_TABLE_SIZE 256 |
|
|
#define FTOIBIAS 12582912.f |
|
|
extern float SinCosTable[SIN_TABLE_SIZE]; |
|
|
|
|
|
inline float TableCos( float theta ) |
|
|
{ |
|
|
union |
|
|
{ |
|
|
int i; |
|
|
float f; |
|
|
} ftmp; |
|
|
|
|
|
// ideally, the following should compile down to: theta * constant + constant, changing any of these constants from defines sometimes fubars this. |
|
|
ftmp.f = theta * ( float )( SIN_TABLE_SIZE / ( 2.0f * M_PI ) ) + ( FTOIBIAS + ( SIN_TABLE_SIZE / 4 ) ); |
|
|
return SinCosTable[ ftmp.i & ( SIN_TABLE_SIZE - 1 ) ]; |
|
|
} |
|
|
|
|
|
inline float TableSin( float theta ) |
|
|
{ |
|
|
union |
|
|
{ |
|
|
int i; |
|
|
float f; |
|
|
} ftmp; |
|
|
|
|
|
// ideally, the following should compile down to: theta * constant + constant |
|
|
ftmp.f = theta * ( float )( SIN_TABLE_SIZE / ( 2.0f * M_PI ) ) + FTOIBIAS; |
|
|
return SinCosTable[ ftmp.i & ( SIN_TABLE_SIZE - 1 ) ]; |
|
|
} |
|
|
|
|
|
template<class T> |
|
|
FORCEINLINE T Square( T const &a ) |
|
|
{ |
|
|
return a * a; |
|
|
} |
|
|
|
|
|
|
|
|
// return the smallest power of two >= x. |
|
|
// returns 0 if x == 0 or x > 0x80000000 (ie numbers that would be negative if x was signed) |
|
|
// NOTE: the old code took an int, and if you pass in an int of 0x80000000 casted to a uint, |
|
|
// you'll get 0x80000000, which is correct for uints, instead of 0, which was correct for ints |
|
|
FORCEINLINE uint SmallestPowerOfTwoGreaterOrEqual( uint x ) |
|
|
{ |
|
|
x -= 1; |
|
|
x |= x >> 1; |
|
|
x |= x >> 2; |
|
|
x |= x >> 4; |
|
|
x |= x >> 8; |
|
|
x |= x >> 16; |
|
|
return x + 1; |
|
|
} |
|
|
|
|
|
// return the largest power of two <= x. Will return 0 if passed 0 |
|
|
FORCEINLINE uint LargestPowerOfTwoLessThanOrEqual( uint x ) |
|
|
{ |
|
|
if ( x >= 0x80000000 ) |
|
|
return 0x80000000; |
|
|
|
|
|
return SmallestPowerOfTwoGreaterOrEqual( x + 1 ) >> 1; |
|
|
} |
|
|
|
|
|
|
|
|
// Math routines for optimizing division |
|
|
void FloorDivMod (double numer, double denom, int *quotient, int *rem); |
|
|
int GreatestCommonDivisor (int i1, int i2); |
|
|
|
|
|
// Test for FPU denormal mode |
|
|
bool IsDenormal( const float &val ); |
|
|
|
|
|
// MOVEMENT INFO |
|
|
enum |
|
|
{ |
|
|
PITCH = 0, // up / down |
|
|
YAW, // left / right |
|
|
ROLL // fall over |
|
|
}; |
|
|
|
|
|
void MatrixAngles( const matrix3x4_t & matrix, float *angles ); // !!!! |
|
|
void MatrixVectors( const matrix3x4_t &matrix, Vector* pForward, Vector *pRight, Vector *pUp ); |
|
|
void VectorTransform (const float *in1, const matrix3x4_t & in2, float *out); |
|
|
void VectorITransform (const float *in1, const matrix3x4_t & in2, float *out); |
|
|
void VectorRotate( const float *in1, const matrix3x4_t & in2, float *out); |
|
|
void VectorRotate( const Vector &in1, const QAngle &in2, Vector &out ); |
|
|
void VectorRotate( const Vector &in1, const Quaternion &in2, Vector &out ); |
|
|
void VectorIRotate( const float *in1, const matrix3x4_t & in2, float *out); |
|
|
|
|
|
#ifndef VECTOR_NO_SLOW_OPERATIONS |
|
|
|
|
|
QAngle TransformAnglesToLocalSpace( const QAngle &angles, const matrix3x4_t &parentMatrix ); |
|
|
QAngle TransformAnglesToWorldSpace( const QAngle &angles, const matrix3x4_t &parentMatrix ); |
|
|
|
|
|
#endif |
|
|
|
|
|
void MatrixInitialize( matrix3x4_t &mat, const Vector &vecOrigin, const Vector &vecXAxis, const Vector &vecYAxis, const Vector &vecZAxis ); |
|
|
void MatrixCopy( const matrix3x4_t &in, matrix3x4_t &out ); |
|
|
void MatrixInvert( const matrix3x4_t &in, matrix3x4_t &out ); |
|
|
|
|
|
// Matrix equality test |
|
|
bool MatricesAreEqual( const matrix3x4_t &src1, const matrix3x4_t &src2, float flTolerance = 1e-5 ); |
|
|
|
|
|
void MatrixGetColumn( const matrix3x4_t &in, int column, Vector &out ); |
|
|
|
|
|
inline void MatrixSetColumn( const Vector &in, int column, matrix3x4_t& out ) |
|
|
{ |
|
|
out[0][column] = in.x; |
|
|
out[1][column] = in.y; |
|
|
out[2][column] = in.z; |
|
|
} |
|
|
|
|
|
inline void MatrixGetTranslation( const matrix3x4_t &in, Vector &out ) |
|
|
{ |
|
|
MatrixGetColumn ( in, 3, out ); |
|
|
} |
|
|
|
|
|
inline void MatrixSetTranslation( const Vector &in, matrix3x4_t &out ) |
|
|
{ |
|
|
MatrixSetColumn ( in, 3, out ); |
|
|
} |
|
|
|
|
|
void MatrixScaleBy ( const float flScale, matrix3x4_t &out ); |
|
|
void MatrixScaleByZero ( matrix3x4_t &out ); |
|
|
|
|
|
//void DecomposeRotation( const matrix3x4_t &mat, float *out ); |
|
|
void ConcatRotations (const matrix3x4_t &in1, const matrix3x4_t &in2, matrix3x4_t &out); |
|
|
void ConcatTransforms (const matrix3x4_t &in1, const matrix3x4_t &in2, matrix3x4_t &out); |
|
|
|
|
|
// For identical interface w/ VMatrix |
|
|
inline void MatrixMultiply ( const matrix3x4_t &in1, const matrix3x4_t &in2, matrix3x4_t &out ) |
|
|
{ |
|
|
ConcatTransforms( in1, in2, out ); |
|
|
} |
|
|
|
|
|
void QuaternionSlerp( const Quaternion &p, const Quaternion &q, float t, Quaternion &qt ); |
|
|
void QuaternionSlerpNoAlign( const Quaternion &p, const Quaternion &q, float t, Quaternion &qt ); |
|
|
void QuaternionBlend( const Quaternion &p, const Quaternion &q, float t, Quaternion &qt ); |
|
|
void QuaternionBlendNoAlign( const Quaternion &p, const Quaternion &q, float t, Quaternion &qt ); |
|
|
void QuaternionIdentityBlend( const Quaternion &p, float t, Quaternion &qt ); |
|
|
float QuaternionAngleDiff( const Quaternion &p, const Quaternion &q ); |
|
|
void QuaternionScale( const Quaternion &p, float t, Quaternion &q ); |
|
|
void QuaternionAlign( const Quaternion &p, const Quaternion &q, Quaternion &qt ); |
|
|
float QuaternionDotProduct( const Quaternion &p, const Quaternion &q ); |
|
|
void QuaternionConjugate( const Quaternion &p, Quaternion &q ); |
|
|
void QuaternionInvert( const Quaternion &p, Quaternion &q ); |
|
|
float QuaternionNormalize( Quaternion &q ); |
|
|
void QuaternionAdd( const Quaternion &p, const Quaternion &q, Quaternion &qt ); |
|
|
void QuaternionMult( const Quaternion &p, const Quaternion &q, Quaternion &qt ); |
|
|
void QuaternionMatrix( const Quaternion &q, matrix3x4_t &matrix ); |
|
|
void QuaternionMatrix( const Quaternion &q, const Vector &pos, matrix3x4_t &matrix ); |
|
|
void QuaternionAngles( const Quaternion &q, QAngle &angles ); |
|
|
void AngleQuaternion( const QAngle& angles, Quaternion &qt ); |
|
|
void QuaternionAngles( const Quaternion &q, RadianEuler &angles ); |
|
|
void AngleQuaternion( RadianEuler const &angles, Quaternion &qt ); |
|
|
void QuaternionAxisAngle( const Quaternion &q, Vector &axis, float &angle ); |
|
|
void AxisAngleQuaternion( const Vector &axis, float angle, Quaternion &q ); |
|
|
void BasisToQuaternion( const Vector &vecForward, const Vector &vecRight, const Vector &vecUp, Quaternion &q ); |
|
|
void MatrixQuaternion( const matrix3x4_t &mat, Quaternion &q ); |
|
|
|
|
|
// A couple methods to find the dot product of a vector with a matrix row or column... |
|
|
inline float MatrixRowDotProduct( const matrix3x4_t &in1, int row, const Vector& in2 ) |
|
|
{ |
|
|
Assert( (row >= 0) && (row < 3) ); |
|
|
return DotProduct( in1[row], in2.Base() ); |
|
|
} |
|
|
|
|
|
inline float MatrixColumnDotProduct( const matrix3x4_t &in1, int col, const Vector& in2 ) |
|
|
{ |
|
|
Assert( (col >= 0) && (col < 4) ); |
|
|
return in1[0][col] * in2[0] + in1[1][col] * in2[1] + in1[2][col] * in2[2]; |
|
|
} |
|
|
|
|
|
int __cdecl BoxOnPlaneSide (const float *emins, const float *emaxs, const cplane_t *plane); |
|
|
|
|
|
inline float anglemod(float a) |
|
|
{ |
|
|
a = (360.f/65536) * ((int)(a*(65536.f/360.0f)) & 65535); |
|
|
return a; |
|
|
} |
|
|
|
|
|
// Remap a value in the range [A,B] to [C,D]. |
|
|
inline float RemapVal( float val, float A, float B, float C, float D) |
|
|
{ |
|
|
if ( A == B ) |
|
|
return val >= B ? D : C; |
|
|
return C + (D - C) * (val - A) / (B - A); |
|
|
} |
|
|
|
|
|
inline float RemapValClamped( float val, float A, float B, float C, float D) |
|
|
{ |
|
|
if ( A == B ) |
|
|
return val >= B ? D : C; |
|
|
float cVal = (val - A) / (B - A); |
|
|
cVal = clamp( cVal, 0.0f, 1.0f ); |
|
|
|
|
|
return C + (D - C) * cVal; |
|
|
} |
|
|
|
|
|
// Returns A + (B-A)*flPercent. |
|
|
// float Lerp( float flPercent, float A, float B ); |
|
|
template <class T> |
|
|
FORCEINLINE T Lerp( float flPercent, T const &A, T const &B ) |
|
|
{ |
|
|
return A + (B - A) * flPercent; |
|
|
} |
|
|
|
|
|
FORCEINLINE float Sqr( float f ) |
|
|
{ |
|
|
return f*f; |
|
|
} |
|
|
|
|
|
// 5-argument floating point linear interpolation. |
|
|
// FLerp(f1,f2,i1,i2,x)= |
|
|
// f1 at x=i1 |
|
|
// f2 at x=i2 |
|
|
// smooth lerp between f1 and f2 at x>i1 and x<i2 |
|
|
// extrapolation for x<i1 or x>i2 |
|
|
// |
|
|
// If you know a function f(x)'s value (f1) at position i1, and its value (f2) at position i2, |
|
|
// the function can be linearly interpolated with FLerp(f1,f2,i1,i2,x) |
|
|
// i2=i1 will cause a divide by zero. |
|
|
static inline float FLerp(float f1, float f2, float i1, float i2, float x) |
|
|
{ |
|
|
return f1+(f2-f1)*(x-i1)/(i2-i1); |
|
|
} |
|
|
|
|
|
|
|
|
#ifndef VECTOR_NO_SLOW_OPERATIONS |
|
|
|
|
|
// YWB: Specialization for interpolating euler angles via quaternions... |
|
|
template<> FORCEINLINE QAngle Lerp<QAngle>( float flPercent, const QAngle& q1, const QAngle& q2 ) |
|
|
{ |
|
|
// Avoid precision errors |
|
|
if ( q1 == q2 ) |
|
|
return q1; |
|
|
|
|
|
Quaternion src, dest; |
|
|
|
|
|
// Convert to quaternions |
|
|
AngleQuaternion( q1, src ); |
|
|
AngleQuaternion( q2, dest ); |
|
|
|
|
|
Quaternion result; |
|
|
|
|
|
// Slerp |
|
|
QuaternionSlerp( src, dest, flPercent, result ); |
|
|
|
|
|
// Convert to euler |
|
|
QAngle output; |
|
|
QuaternionAngles( result, output ); |
|
|
return output; |
|
|
} |
|
|
|
|
|
#else |
|
|
|
|
|
#pragma error |
|
|
|
|
|
// NOTE NOTE: I haven't tested this!! It may not work! Check out interpolatedvar.cpp in the client dll to try it |
|
|
template<> FORCEINLINE QAngleByValue Lerp<QAngleByValue>( float flPercent, const QAngleByValue& q1, const QAngleByValue& q2 ) |
|
|
{ |
|
|
// Avoid precision errors |
|
|
if ( q1 == q2 ) |
|
|
return q1; |
|
|
|
|
|
Quaternion src, dest; |
|
|
|
|
|
// Convert to quaternions |
|
|
AngleQuaternion( q1, src ); |
|
|
AngleQuaternion( q2, dest ); |
|
|
|
|
|
Quaternion result; |
|
|
|
|
|
// Slerp |
|
|
QuaternionSlerp( src, dest, flPercent, result ); |
|
|
|
|
|
// Convert to euler |
|
|
QAngleByValue output; |
|
|
QuaternionAngles( result, output ); |
|
|
return output; |
|
|
} |
|
|
|
|
|
#endif // VECTOR_NO_SLOW_OPERATIONS |
|
|
|
|
|
|
|
|
/// Same as swap(), but won't cause problems with std::swap |
|
|
template <class T> |
|
|
FORCEINLINE void V_swap( T& x, T& y ) |
|
|
{ |
|
|
T temp = x; |
|
|
x = y; |
|
|
y = temp; |
|
|
} |
|
|
|
|
|
template <class T> FORCEINLINE T AVG(T a, T b) |
|
|
{ |
|
|
return (a+b)/2; |
|
|
} |
|
|
|
|
|
// number of elements in an array of static size |
|
|
#define NELEMS(x) ARRAYSIZE(x) |
|
|
|
|
|
// XYZ macro, for printf type functions - ex printf("%f %f %f",XYZ(myvector)); |
|
|
#define XYZ(v) (v).x,(v).y,(v).z |
|
|
|
|
|
|
|
|
inline float Sign( float x ) |
|
|
{ |
|
|
return (x <0.0f) ? -1.0f : 1.0f; |
|
|
} |
|
|
|
|
|
// |
|
|
// Clamps the input integer to the given array bounds. |
|
|
// Equivalent to the following, but without using any branches: |
|
|
// |
|
|
// if( n < 0 ) return 0; |
|
|
// else if ( n > maxindex ) return maxindex; |
|
|
// else return n; |
|
|
// |
|
|
// This is not always a clear performance win, but when you have situations where a clamped |
|
|
// value is thrashing against a boundary this is a big win. (ie, valid, invalid, valid, invalid, ...) |
|
|
// |
|
|
// Note: This code has been run against all possible integers. |
|
|
// |
|
|
inline int ClampArrayBounds( int n, unsigned maxindex ) |
|
|
{ |
|
|
// mask is 0 if less than 4096, 0xFFFFFFFF if greater than |
|
|
unsigned int inrangemask = 0xFFFFFFFF + (((unsigned) n) > maxindex ); |
|
|
unsigned int lessthan0mask = 0xFFFFFFFF + ( n >= 0 ); |
|
|
|
|
|
// If the result was valid, set the result, (otherwise sets zero) |
|
|
int result = (inrangemask & n); |
|
|
|
|
|
// if the result was out of range or zero. |
|
|
result |= ((~inrangemask) & (~lessthan0mask)) & maxindex; |
|
|
|
|
|
return result; |
|
|
} |
|
|
|
|
|
|
|
|
#define BOX_ON_PLANE_SIDE(emins, emaxs, p) \ |
|
|
(((p)->type < 3)? \ |
|
|
( \ |
|
|
((p)->dist <= (emins)[(p)->type])? \ |
|
|
1 \ |
|
|
: \ |
|
|
( \ |
|
|
((p)->dist >= (emaxs)[(p)->type])?\ |
|
|
2 \ |
|
|
: \ |
|
|
3 \ |
|
|
) \ |
|
|
) \ |
|
|
: \ |
|
|
BoxOnPlaneSide( (emins), (emaxs), (p))) |
|
|
|
|
|
//----------------------------------------------------------------------------- |
|
|
// FIXME: Vector versions.... the float versions will go away hopefully soon! |
|
|
//----------------------------------------------------------------------------- |
|
|
|
|
|
void AngleVectors (const QAngle& angles, Vector *forward); |
|
|
void AngleVectors (const QAngle& angles, Vector *forward, Vector *right, Vector *up); |
|
|
void AngleVectorsTranspose (const QAngle& angles, Vector *forward, Vector *right, Vector *up); |
|
|
void AngleMatrix (const QAngle &angles, matrix3x4_t &mat ); |
|
|
void AngleMatrix( const QAngle &angles, const Vector &position, matrix3x4_t &mat ); |
|
|
void AngleMatrix (const RadianEuler &angles, matrix3x4_t &mat ); |
|
|
void AngleMatrix( RadianEuler const &angles, const Vector &position, matrix3x4_t &mat ); |
|
|
void AngleIMatrix (const QAngle &angles, matrix3x4_t &mat ); |
|
|
void AngleIMatrix (const QAngle &angles, const Vector &position, matrix3x4_t &mat ); |
|
|
void AngleIMatrix (const RadianEuler &angles, matrix3x4_t &mat ); |
|
|
void VectorAngles( const Vector &forward, QAngle &angles ); |
|
|
void VectorAngles( const Vector &forward, const Vector &pseudoup, QAngle &angles ); |
|
|
void VectorMatrix( const Vector &forward, matrix3x4_t &mat ); |
|
|
void VectorVectors( const Vector &forward, Vector &right, Vector &up ); |
|
|
void SetIdentityMatrix( matrix3x4_t &mat ); |
|
|
void SetScaleMatrix( float x, float y, float z, matrix3x4_t &dst ); |
|
|
void MatrixBuildRotationAboutAxis( const Vector &vAxisOfRot, float angleDegrees, matrix3x4_t &dst ); |
|
|
|
|
|
inline void SetScaleMatrix( float flScale, matrix3x4_t &dst ) |
|
|
{ |
|
|
SetScaleMatrix( flScale, flScale, flScale, dst ); |
|
|
} |
|
|
|
|
|
inline void SetScaleMatrix( const Vector& scale, matrix3x4_t &dst ) |
|
|
{ |
|
|
SetScaleMatrix( scale.x, scale.y, scale.z, dst ); |
|
|
} |
|
|
|
|
|
// Computes the inverse transpose |
|
|
void MatrixTranspose( matrix3x4_t& mat ); |
|
|
void MatrixTranspose( const matrix3x4_t& src, matrix3x4_t& dst ); |
|
|
void MatrixInverseTranspose( const matrix3x4_t& src, matrix3x4_t& dst ); |
|
|
|
|
|
inline void PositionMatrix( const Vector &position, matrix3x4_t &mat ) |
|
|
{ |
|
|
MatrixSetColumn( position, 3, mat ); |
|
|
} |
|
|
|
|
|
inline void MatrixPosition( const matrix3x4_t &matrix, Vector &position ) |
|
|
{ |
|
|
MatrixGetColumn( matrix, 3, position ); |
|
|
} |
|
|
|
|
|
inline void VectorRotate( const Vector& in1, const matrix3x4_t &in2, Vector &out) |
|
|
{ |
|
|
VectorRotate( &in1.x, in2, &out.x ); |
|
|
} |
|
|
|
|
|
inline void VectorIRotate( const Vector& in1, const matrix3x4_t &in2, Vector &out) |
|
|
{ |
|
|
VectorIRotate( &in1.x, in2, &out.x ); |
|
|
} |
|
|
|
|
|
inline void MatrixAngles( const matrix3x4_t &matrix, QAngle &angles ) |
|
|
{ |
|
|
MatrixAngles( matrix, &angles.x ); |
|
|
} |
|
|
|
|
|
inline void MatrixAngles( const matrix3x4_t &matrix, QAngle &angles, Vector &position ) |
|
|
{ |
|
|
MatrixAngles( matrix, angles ); |
|
|
MatrixPosition( matrix, position ); |
|
|
} |
|
|
|
|
|
inline void MatrixAngles( const matrix3x4_t &matrix, RadianEuler &angles ) |
|
|
{ |
|
|
MatrixAngles( matrix, &angles.x ); |
|
|
|
|
|
angles.Init( DEG2RAD( angles.z ), DEG2RAD( angles.x ), DEG2RAD( angles.y ) ); |
|
|
} |
|
|
|
|
|
void MatrixAngles( const matrix3x4_t &mat, RadianEuler &angles, Vector &position ); |
|
|
|
|
|
void MatrixAngles( const matrix3x4_t &mat, Quaternion &q, Vector &position ); |
|
|
|
|
|
inline int VectorCompare (const Vector& v1, const Vector& v2) |
|
|
{ |
|
|
return v1 == v2; |
|
|
} |
|
|
|
|
|
inline void VectorTransform (const Vector& in1, const matrix3x4_t &in2, Vector &out) |
|
|
{ |
|
|
VectorTransform( &in1.x, in2, &out.x ); |
|
|
} |
|
|
|
|
|
inline void VectorITransform (const Vector& in1, const matrix3x4_t &in2, Vector &out) |
|
|
{ |
|
|
VectorITransform( &in1.x, in2, &out.x ); |
|
|
} |
|
|
|
|
|
/* |
|
|
inline void DecomposeRotation( const matrix3x4_t &mat, Vector &out ) |
|
|
{ |
|
|
DecomposeRotation( mat, &out.x ); |
|
|
} |
|
|
*/ |
|
|
|
|
|
inline int BoxOnPlaneSide (const Vector& emins, const Vector& emaxs, const cplane_t *plane ) |
|
|
{ |
|
|
return BoxOnPlaneSide( &emins.x, &emaxs.x, plane ); |
|
|
} |
|
|
|
|
|
inline void VectorFill(Vector& a, float b) |
|
|
{ |
|
|
a[0]=a[1]=a[2]=b; |
|
|
} |
|
|
|
|
|
inline void VectorNegate(Vector& a) |
|
|
{ |
|
|
a[0] = -a[0]; |
|
|
a[1] = -a[1]; |
|
|
a[2] = -a[2]; |
|
|
} |
|
|
|
|
|
inline vec_t VectorAvg(Vector& a) |
|
|
{ |
|
|
return ( a[0] + a[1] + a[2] ) / 3; |
|
|
} |
|
|
|
|
|
//----------------------------------------------------------------------------- |
|
|
// Box/plane test (slow version) |
|
|
//----------------------------------------------------------------------------- |
|
|
inline int FASTCALL BoxOnPlaneSide2 (const Vector& emins, const Vector& emaxs, const cplane_t *p, float tolerance = 0.f ) |
|
|
{ |
|
|
Vector corners[2]; |
|
|
|
|
|
if (p->normal[0] < 0) |
|
|
{ |
|
|
corners[0][0] = emins[0]; |
|
|
corners[1][0] = emaxs[0]; |
|
|
} |
|
|
else |
|
|
{ |
|
|
corners[1][0] = emins[0]; |
|
|
corners[0][0] = emaxs[0]; |
|
|
} |
|
|
|
|
|
if (p->normal[1] < 0) |
|
|
{ |
|
|
corners[0][1] = emins[1]; |
|
|
corners[1][1] = emaxs[1]; |
|
|
} |
|
|
else |
|
|
{ |
|
|
corners[1][1] = emins[1]; |
|
|
corners[0][1] = emaxs[1]; |
|
|
} |
|
|
|
|
|
if (p->normal[2] < 0) |
|
|
{ |
|
|
corners[0][2] = emins[2]; |
|
|
corners[1][2] = emaxs[2]; |
|
|
} |
|
|
else |
|
|
{ |
|
|
corners[1][2] = emins[2]; |
|
|
corners[0][2] = emaxs[2]; |
|
|
} |
|
|
|
|
|
int sides = 0; |
|
|
|
|
|
float dist1 = DotProduct (p->normal, corners[0]) - p->dist; |
|
|
if (dist1 >= tolerance) |
|
|
sides = 1; |
|
|
|
|
|
float dist2 = DotProduct (p->normal, corners[1]) - p->dist; |
|
|
if (dist2 < -tolerance) |
|
|
sides |= 2; |
|
|
|
|
|
return sides; |
|
|
} |
|
|
|
|
|
//----------------------------------------------------------------------------- |
|
|
// Helpers for bounding box construction |
|
|
//----------------------------------------------------------------------------- |
|
|
|
|
|
void ClearBounds (Vector& mins, Vector& maxs); |
|
|
void AddPointToBounds (const Vector& v, Vector& mins, Vector& maxs); |
|
|
|
|
|
// |
|
|
// COLORSPACE/GAMMA CONVERSION STUFF |
|
|
// |
|
|
void BuildGammaTable( float gamma, float texGamma, float brightness, int overbright ); |
|
|
|
|
|
// convert texture to linear 0..1 value |
|
|
inline float TexLightToLinear( int c, int exponent ) |
|
|
{ |
|
|
extern float power2_n[256]; |
|
|
Assert( exponent >= -128 && exponent <= 127 ); |
|
|
return ( float )c * power2_n[exponent+128]; |
|
|
} |
|
|
|
|
|
|
|
|
// convert texture to linear 0..1 value |
|
|
int LinearToTexture( float f ); |
|
|
// converts 0..1 linear value to screen gamma (0..255) |
|
|
int LinearToScreenGamma( float f ); |
|
|
float TextureToLinear( int c ); |
|
|
|
|
|
// compressed color format |
|
|
struct ColorRGBExp32 |
|
|
{ |
|
|
byte r, g, b; |
|
|
signed char exponent; |
|
|
}; |
|
|
|
|
|
void ColorRGBExp32ToVector( const ColorRGBExp32& in, Vector& out ); |
|
|
void VectorToColorRGBExp32( const Vector& v, ColorRGBExp32 &c ); |
|
|
|
|
|
// solve for "x" where "a x^2 + b x + c = 0", return true if solution exists |
|
|
bool SolveQuadratic( float a, float b, float c, float &root1, float &root2 ); |
|
|
|
|
|
// solves for "a, b, c" where "a x^2 + b x + c = y", return true if solution exists |
|
|
bool SolveInverseQuadratic( float x1, float y1, float x2, float y2, float x3, float y3, float &a, float &b, float &c ); |
|
|
|
|
|
// solves for a,b,c specified as above, except that it always creates a monotonically increasing or |
|
|
// decreasing curve if the data is monotonically increasing or decreasing. In order to enforce the |
|
|
// monoticity condition, it is possible that the resulting quadratic will only approximate the data |
|
|
// instead of interpolating it. This code is not especially fast. |
|
|
bool SolveInverseQuadraticMonotonic( float x1, float y1, float x2, float y2, |
|
|
float x3, float y3, float &a, float &b, float &c ); |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
// solves for "a, b, c" where "1/(a x^2 + b x + c ) = y", return true if solution exists |
|
|
bool SolveInverseReciprocalQuadratic( float x1, float y1, float x2, float y2, float x3, float y3, float &a, float &b, float &c ); |
|
|
|
|
|
// rotate a vector around the Z axis (YAW) |
|
|
void VectorYawRotate( const Vector& in, float flYaw, Vector &out); |
|
|
|
|
|
|
|
|
// Bias takes an X value between 0 and 1 and returns another value between 0 and 1 |
|
|
// The curve is biased towards 0 or 1 based on biasAmt, which is between 0 and 1. |
|
|
// Lower values of biasAmt bias the curve towards 0 and higher values bias it towards 1. |
|
|
// |
|
|
// For example, with biasAmt = 0.2, the curve looks like this: |
|
|
// |
|
|
// 1 |
|
|
// | * |
|
|
// | * |
|
|
// | * |
|
|
// | ** |
|
|
// | ** |
|
|
// | **** |
|
|
// |********* |
|
|
// |___________________ |
|
|
// 0 1 |
|
|
// |
|
|
// |
|
|
// With biasAmt = 0.8, the curve looks like this: |
|
|
// |
|
|
// 1 |
|
|
// | ************** |
|
|
// | ** |
|
|
// | * |
|
|
// | * |
|
|
// |* |
|
|
// |* |
|
|
// |* |
|
|
// |___________________ |
|
|
// 0 1 |
|
|
// |
|
|
// With a biasAmt of 0.5, Bias returns X. |
|
|
inline float Bias( float x, float biasAmt ) |
|
|
{ |
|
|
// WARNING: not thread safe |
|
|
static float lastAmt = -1; |
|
|
static float lastExponent = 0; |
|
|
if( lastAmt != biasAmt ) |
|
|
{ |
|
|
lastExponent = log( biasAmt ) * -1.4427f; // (-1.4427 = 1 / log(0.5)) |
|
|
} |
|
|
float fRet = pow( x, lastExponent ); |
|
|
Assert ( !IS_NAN( fRet ) ); |
|
|
return fRet; |
|
|
} |
|
|
|
|
|
|
|
|
// Gain is similar to Bias, but biasAmt biases towards or away from 0.5. |
|
|
// Lower bias values bias towards 0.5 and higher bias values bias away from it. |
|
|
// |
|
|
// For example, with biasAmt = 0.2, the curve looks like this: |
|
|
// |
|
|
// 1 |
|
|
// | * |
|
|
// | * |
|
|
// | ** |
|
|
// | *************** |
|
|
// | ** |
|
|
// | * |
|
|
// |* |
|
|
// |___________________ |
|
|
// 0 1 |
|
|
// |
|
|
// |
|
|
// With biasAmt = 0.8, the curve looks like this: |
|
|
// |
|
|
// 1 |
|
|
// | ***** |
|
|
// | *** |
|
|
// | * |
|
|
// | * |
|
|
// | * |
|
|
// | *** |
|
|
// |***** |
|
|
// |___________________ |
|
|
// 0 1 |
|
|
inline float Gain( float x, float biasAmt ) |
|
|
{ |
|
|
// WARNING: not thread safe |
|
|
if( x < 0.5 ) |
|
|
return 0.5f * Bias( 2*x, 1-biasAmt ); |
|
|
else |
|
|
return 1 - 0.5f * Bias( 2 - 2*x, 1-biasAmt ); |
|
|
} |
|
|
// SmoothCurve maps a 0-1 value into another 0-1 value based on a cosine wave |
|
|
// where the derivatives of the function at 0 and 1 (and 0.5) are 0. This is useful for |
|
|
// any fadein/fadeout effect where it should start and end smoothly. |
|
|
// |
|
|
// The curve looks like this: |
|
|
// |
|
|
// 1 |
|
|
// | ** |
|
|
// | * * |
|
|
// | * * |
|
|
// | * * |
|
|
// | * * |
|
|
// | ** ** |
|
|
// |*** *** |
|
|
// |___________________ |
|
|
// 0 1 |
|
|
// |
|
|
float SmoothCurve( float x ); |
|
|
|
|
|
|
|
|
// This works like SmoothCurve, with two changes: |
|
|
// |
|
|
// 1. Instead of the curve peaking at 0.5, it will peak at flPeakPos. |
|
|
// (So if you specify flPeakPos=0.2, then the peak will slide to the left). |
|
|
// |
|
|
// 2. flPeakSharpness is a 0-1 value controlling the sharpness of the peak. |
|
|
// Low values blunt the peak and high values sharpen the peak. |
|
|
float SmoothCurve_Tweak( float x, float flPeakPos=0.5, float flPeakSharpness=0.5 ); |
|
|
|
|
|
|
|
|
//float ExponentialDecay( float halflife, float dt ); |
|
|
//float ExponentialDecay( float decayTo, float decayTime, float dt ); |
|
|
|
|
|
// halflife is time for value to reach 50% |
|
|
inline float ExponentialDecay( float halflife, float dt ) |
|
|
{ |
|
|
// log(0.5) == -0.69314718055994530941723212145818 |
|
|
return expf( -0.69314718f / halflife * dt); |
|
|
} |
|
|
|
|
|
// decayTo is factor the value should decay to in decayTime |
|
|
inline float ExponentialDecay( float decayTo, float decayTime, float dt ) |
|
|
{ |
|
|
return expf( logf( decayTo ) / decayTime * dt); |
|
|
} |
|
|
|
|
|
// Get the integrated distanced traveled |
|
|
// decayTo is factor the value should decay to in decayTime |
|
|
// dt is the time relative to the last velocity update |
|
|
inline float ExponentialDecayIntegral( float decayTo, float decayTime, float dt ) |
|
|
{ |
|
|
return (powf( decayTo, dt / decayTime) * decayTime - decayTime) / logf( decayTo ); |
|
|
} |
|
|
|
|
|
// hermite basis function for smooth interpolation |
|
|
// Similar to Gain() above, but very cheap to call |
|
|
// value should be between 0 & 1 inclusive |
|
|
inline float SimpleSpline( float value ) |
|
|
{ |
|
|
float valueSquared = value * value; |
|
|
|
|
|
// Nice little ease-in, ease-out spline-like curve |
|
|
return (3 * valueSquared - 2 * valueSquared * value); |
|
|
} |
|
|
|
|
|
// remaps a value in [startInterval, startInterval+rangeInterval] from linear to |
|
|
// spline using SimpleSpline |
|
|
inline float SimpleSplineRemapVal( float val, float A, float B, float C, float D) |
|
|
{ |
|
|
if ( A == B ) |
|
|
return val >= B ? D : C; |
|
|
float cVal = (val - A) / (B - A); |
|
|
return C + (D - C) * SimpleSpline( cVal ); |
|
|
} |
|
|
|
|
|
// remaps a value in [startInterval, startInterval+rangeInterval] from linear to |
|
|
// spline using SimpleSpline |
|
|
inline float SimpleSplineRemapValClamped( float val, float A, float B, float C, float D ) |
|
|
{ |
|
|
if ( A == B ) |
|
|
return val >= B ? D : C; |
|
|
float cVal = (val - A) / (B - A); |
|
|
cVal = clamp( cVal, 0.0f, 1.0f ); |
|
|
return C + (D - C) * SimpleSpline( cVal ); |
|
|
} |
|
|
|
|
|
FORCEINLINE int RoundFloatToInt(float f) |
|
|
{ |
|
|
#if defined(__i386__) || defined(_M_IX86) || defined( PLATFORM_WINDOWS_PC64 ) || defined(__x86_64__) |
|
|
return _mm_cvtss_si32(_mm_load_ss(&f)); |
|
|
#elif defined( _X360 ) |
|
|
#ifdef Assert |
|
|
Assert( IsFPUControlWordSet() ); |
|
|
#endif |
|
|
union |
|
|
{ |
|
|
double flResult; |
|
|
int pResult[2]; |
|
|
}; |
|
|
flResult = __fctiw( f ); |
|
|
return pResult[1]; |
|
|
#elif defined (__arm__) || defined (__aarch64__) |
|
|
return (int)(f + 0.5f); |
|
|
#else |
|
|
#error Unknown architecture |
|
|
#endif |
|
|
} |
|
|
|
|
|
FORCEINLINE unsigned char RoundFloatToByte(float f) |
|
|
{ |
|
|
int nResult = RoundFloatToInt(f); |
|
|
#ifdef Assert |
|
|
Assert( (nResult & ~0xFF) == 0 ); |
|
|
#endif |
|
|
return (unsigned char) nResult; |
|
|
} |
|
|
|
|
|
FORCEINLINE unsigned long RoundFloatToUnsignedLong(float f) |
|
|
{ |
|
|
#if defined( _X360 ) |
|
|
#ifdef Assert |
|
|
Assert( IsFPUControlWordSet() ); |
|
|
#endif |
|
|
union |
|
|
{ |
|
|
double flResult; |
|
|
int pIntResult[2]; |
|
|
unsigned long pResult[2]; |
|
|
}; |
|
|
flResult = __fctiw( f ); |
|
|
Assert( pIntResult[1] >= 0 ); |
|
|
return pResult[1]; |
|
|
#else // !X360 |
|
|
#if defined(__arm__) || defined(__aarch64__) |
|
|
return (unsigned long)(f + 0.5f); |
|
|
#elif defined( PLATFORM_WINDOWS_PC64 ) |
|
|
uint nRet = ( uint ) f; |
|
|
if ( nRet & 1 ) |
|
|
{ |
|
|
if ( ( f - floor( f ) >= 0.5 ) ) |
|
|
{ |
|
|
nRet++; |
|
|
} |
|
|
} |
|
|
else |
|
|
{ |
|
|
if ( ( f - floor( f ) > 0.5 ) ) |
|
|
{ |
|
|
nRet++; |
|
|
} |
|
|
} |
|
|
return nRet; |
|
|
#else // PLATFORM_WINDOWS_PC64 |
|
|
unsigned char nResult[8]; |
|
|
|
|
|
#if defined( _WIN32 ) |
|
|
__asm |
|
|
{ |
|
|
fld f |
|
|
fistp qword ptr nResult |
|
|
} |
|
|
#elif POSIX |
|
|
__asm __volatile__ ( |
|
|
"fistpl %0;": "=m" (nResult): "t" (f) : "st" |
|
|
); |
|
|
#endif |
|
|
|
|
|
return *((unsigned long*)nResult); |
|
|
#endif // PLATFORM_WINDOWS_PC64 |
|
|
#endif // !X360 |
|
|
} |
|
|
|
|
|
FORCEINLINE bool IsIntegralValue( float flValue, float flTolerance = 0.001f ) |
|
|
{ |
|
|
return fabs( RoundFloatToInt( flValue ) - flValue ) < flTolerance; |
|
|
} |
|
|
|
|
|
// Fast, accurate ftol: |
|
|
FORCEINLINE int Float2Int( float a ) |
|
|
{ |
|
|
#if defined( _X360 ) |
|
|
union |
|
|
{ |
|
|
double flResult; |
|
|
int pResult[2]; |
|
|
}; |
|
|
flResult = __fctiwz( a ); |
|
|
return pResult[1]; |
|
|
#else // !X360 |
|
|
// Rely on compiler to generate CVTTSS2SI on x86 |
|
|
return (int) a; |
|
|
#endif |
|
|
} |
|
|
|
|
|
// Over 15x faster than: (int)floor(value) |
|
|
inline int Floor2Int( float a ) |
|
|
{ |
|
|
int RetVal; |
|
|
#if defined( __i386__ ) |
|
|
// Convert to int and back, compare, subtract one if too big |
|
|
__m128 a128 = _mm_set_ss(a); |
|
|
RetVal = _mm_cvtss_si32(a128); |
|
|
__m128 rounded128 = _mm_cvt_si2ss(_mm_setzero_ps(), RetVal); |
|
|
RetVal -= _mm_comigt_ss( rounded128, a128 ); |
|
|
#else |
|
|
RetVal = static_cast<int>( floor(a) ); |
|
|
#endif |
|
|
return RetVal; |
|
|
} |
|
|
|
|
|
//----------------------------------------------------------------------------- |
|
|
// Fast color conversion from float to unsigned char |
|
|
//----------------------------------------------------------------------------- |
|
|
FORCEINLINE unsigned int FastFToC( float c ) |
|
|
{ |
|
|
#if defined( __i386__ ) |
|
|
// IEEE float bit manipulation works for values between [0, 1<<23) |
|
|
union { float f; int i; } convert = { c*255.0f + (float)(1<<23) }; |
|
|
return convert.i & 255; |
|
|
#else |
|
|
// consoles CPUs suffer from load-hit-store penalty |
|
|
return Float2Int( c * 255.0f ); |
|
|
#endif |
|
|
} |
|
|
|
|
|
//----------------------------------------------------------------------------- |
|
|
// Fast conversion from float to integer with magnitude less than 2**22 |
|
|
//----------------------------------------------------------------------------- |
|
|
FORCEINLINE int FastFloatToSmallInt( float c ) |
|
|
{ |
|
|
#if defined( __i386__ ) |
|
|
// IEEE float bit manipulation works for values between [-1<<22, 1<<22) |
|
|
union { float f; int i; } convert = { c + (float)(3<<22) }; |
|
|
return (convert.i & ((1<<23)-1)) - (1<<22); |
|
|
#else |
|
|
// consoles CPUs suffer from load-hit-store penalty |
|
|
return Float2Int( c ); |
|
|
#endif |
|
|
} |
|
|
|
|
|
//----------------------------------------------------------------------------- |
|
|
// Purpose: Bound input float to .001 (millisecond) boundary |
|
|
// Input : in - |
|
|
// Output : inline float |
|
|
//----------------------------------------------------------------------------- |
|
|
inline float ClampToMsec( float in ) |
|
|
{ |
|
|
int msec = Floor2Int( in * 1000.0f + 0.5f ); |
|
|
return 0.001f * msec; |
|
|
} |
|
|
|
|
|
// Over 15x faster than: (int)ceil(value) |
|
|
inline int Ceil2Int( float a ) |
|
|
{ |
|
|
int RetVal; |
|
|
#if defined( __i386__ ) |
|
|
// Convert to int and back, compare, add one if too small |
|
|
__m128 a128 = _mm_load_ss(&a); |
|
|
RetVal = _mm_cvtss_si32(a128); |
|
|
__m128 rounded128 = _mm_cvt_si2ss(_mm_setzero_ps(), RetVal); |
|
|
RetVal += _mm_comilt_ss( rounded128, a128 ); |
|
|
#else |
|
|
RetVal = static_cast<int>( ceil(a) ); |
|
|
#endif |
|
|
return RetVal; |
|
|
} |
|
|
|
|
|
|
|
|
// Regular signed area of triangle |
|
|
#define TriArea2D( A, B, C ) \ |
|
|
( 0.5f * ( ( B.x - A.x ) * ( C.y - A.y ) - ( B.y - A.y ) * ( C.x - A.x ) ) ) |
|
|
|
|
|
// This version doesn't premultiply by 0.5f, so it's the area of the rectangle instead |
|
|
#define TriArea2DTimesTwo( A, B, C ) \ |
|
|
( ( ( B.x - A.x ) * ( C.y - A.y ) - ( B.y - A.y ) * ( C.x - A.x ) ) ) |
|
|
|
|
|
|
|
|
// Get the barycentric coordinates of "pt" in triangle [A,B,C]. |
|
|
inline void GetBarycentricCoords2D( |
|
|
Vector2D const &A, |
|
|
Vector2D const &B, |
|
|
Vector2D const &C, |
|
|
Vector2D const &pt, |
|
|
float bcCoords[3] ) |
|
|
{ |
|
|
// Note, because to top and bottom are both x2, the issue washes out in the composite |
|
|
float invTriArea = 1.0f / TriArea2DTimesTwo( A, B, C ); |
|
|
|
|
|
// NOTE: We assume here that the lightmap coordinate vertices go counterclockwise. |
|
|
// If not, TriArea2D() is negated so this works out right. |
|
|
bcCoords[0] = TriArea2DTimesTwo( B, C, pt ) * invTriArea; |
|
|
bcCoords[1] = TriArea2DTimesTwo( C, A, pt ) * invTriArea; |
|
|
bcCoords[2] = TriArea2DTimesTwo( A, B, pt ) * invTriArea; |
|
|
} |
|
|
|
|
|
|
|
|
// Return true of the sphere might touch the box (the sphere is actually treated |
|
|
// like a box itself, so this may return true if the sphere's bounding box touches |
|
|
// a corner of the box but the sphere itself doesn't). |
|
|
inline bool QuickBoxSphereTest( |
|
|
const Vector& vOrigin, |
|
|
float flRadius, |
|
|
const Vector& bbMin, |
|
|
const Vector& bbMax ) |
|
|
{ |
|
|
return vOrigin.x - flRadius < bbMax.x && vOrigin.x + flRadius > bbMin.x && |
|
|
vOrigin.y - flRadius < bbMax.y && vOrigin.y + flRadius > bbMin.y && |
|
|
vOrigin.z - flRadius < bbMax.z && vOrigin.z + flRadius > bbMin.z; |
|
|
} |
|
|
|
|
|
|
|
|
// Return true of the boxes intersect (but not if they just touch). |
|
|
inline bool QuickBoxIntersectTest( |
|
|
const Vector& vBox1Min, |
|
|
const Vector& vBox1Max, |
|
|
const Vector& vBox2Min, |
|
|
const Vector& vBox2Max ) |
|
|
{ |
|
|
return |
|
|
vBox1Min.x < vBox2Max.x && vBox1Max.x > vBox2Min.x && |
|
|
vBox1Min.y < vBox2Max.y && vBox1Max.y > vBox2Min.y && |
|
|
vBox1Min.z < vBox2Max.z && vBox1Max.z > vBox2Min.z; |
|
|
} |
|
|
|
|
|
|
|
|
extern float GammaToLinearFullRange( float gamma ); |
|
|
extern float LinearToGammaFullRange( float linear ); |
|
|
extern float GammaToLinear( float gamma ); |
|
|
extern float LinearToGamma( float linear ); |
|
|
|
|
|
extern float SrgbGammaToLinear( float flSrgbGammaValue ); |
|
|
extern float SrgbLinearToGamma( float flLinearValue ); |
|
|
extern float X360GammaToLinear( float fl360GammaValue ); |
|
|
extern float X360LinearToGamma( float flLinearValue ); |
|
|
extern float SrgbGammaTo360Gamma( float flSrgbGammaValue ); |
|
|
|
|
|
// linear (0..4) to screen corrected vertex space (0..1?) |
|
|
FORCEINLINE float LinearToVertexLight( float f ) |
|
|
{ |
|
|
extern float lineartovertex[4096]; |
|
|
|
|
|
// Gotta clamp before the multiply; could overflow... |
|
|
// assume 0..4 range |
|
|
int i = RoundFloatToInt( f * 1024.f ); |
|
|
|
|
|
// Presumably the comman case will be not to clamp, so check that first: |
|
|
if( (unsigned)i > 4095 ) |
|
|
{ |
|
|
if ( i < 0 ) |
|
|
i = 0; // Compare to zero instead of 4095 to save 4 bytes in the instruction stream |
|
|
else |
|
|
i = 4095; |
|
|
} |
|
|
|
|
|
return lineartovertex[i]; |
|
|
} |
|
|
|
|
|
|
|
|
FORCEINLINE unsigned char LinearToLightmap( float f ) |
|
|
{ |
|
|
extern unsigned char lineartolightmap[4096]; |
|
|
|
|
|
// Gotta clamp before the multiply; could overflow... |
|
|
int i = RoundFloatToInt( f * 1024.f ); // assume 0..4 range |
|
|
|
|
|
// Presumably the comman case will be not to clamp, so check that first: |
|
|
if ( (unsigned)i > 4095 ) |
|
|
{ |
|
|
if ( i < 0 ) |
|
|
i = 0; // Compare to zero instead of 4095 to save 4 bytes in the instruction stream |
|
|
else |
|
|
i = 4095; |
|
|
} |
|
|
|
|
|
return lineartolightmap[i]; |
|
|
} |
|
|
|
|
|
FORCEINLINE void ColorClamp( Vector& color ) |
|
|
{ |
|
|
float maxc = max( color.x, max( color.y, color.z ) ); |
|
|
if ( maxc > 1.0f ) |
|
|
{ |
|
|
float ooMax = 1.0f / maxc; |
|
|
color.x *= ooMax; |
|
|
color.y *= ooMax; |
|
|
color.z *= ooMax; |
|
|
} |
|
|
|
|
|
if ( color[0] < 0.f ) color[0] = 0.f; |
|
|
if ( color[1] < 0.f ) color[1] = 0.f; |
|
|
if ( color[2] < 0.f ) color[2] = 0.f; |
|
|
} |
|
|
|
|
|
inline void ColorClampTruncate( Vector& color ) |
|
|
{ |
|
|
if (color[0] > 1.0f) color[0] = 1.0f; else if (color[0] < 0.0f) color[0] = 0.0f; |
|
|
if (color[1] > 1.0f) color[1] = 1.0f; else if (color[1] < 0.0f) color[1] = 0.0f; |
|
|
if (color[2] > 1.0f) color[2] = 1.0f; else if (color[2] < 0.0f) color[2] = 0.0f; |
|
|
} |
|
|
|
|
|
// Interpolate a Catmull-Rom spline. |
|
|
// t is a [0,1] value and interpolates a curve between p2 and p3. |
|
|
void Catmull_Rom_Spline( |
|
|
const Vector &p1, |
|
|
const Vector &p2, |
|
|
const Vector &p3, |
|
|
const Vector &p4, |
|
|
float t, |
|
|
Vector &output ); |
|
|
|
|
|
// Interpolate a Catmull-Rom spline. |
|
|
// Returns the tangent of the point at t of the spline |
|
|
void Catmull_Rom_Spline_Tangent( |
|
|
const Vector &p1, |
|
|
const Vector &p2, |
|
|
const Vector &p3, |
|
|
const Vector &p4, |
|
|
float t, |
|
|
Vector &output ); |
|
|
|
|
|
// area under the curve [0..t] |
|
|
void Catmull_Rom_Spline_Integral( |
|
|
const Vector &p1, |
|
|
const Vector &p2, |
|
|
const Vector &p3, |
|
|
const Vector &p4, |
|
|
float t, |
|
|
Vector& output ); |
|
|
|
|
|
// area under the curve [0..1] |
|
|
void Catmull_Rom_Spline_Integral( |
|
|
const Vector &p1, |
|
|
const Vector &p2, |
|
|
const Vector &p3, |
|
|
const Vector &p4, |
|
|
Vector& output ); |
|
|
|
|
|
// Interpolate a Catmull-Rom spline. |
|
|
// Normalize p2->p1 and p3->p4 to be the same length as p2->p3 |
|
|
void Catmull_Rom_Spline_Normalize( |
|
|
const Vector &p1, |
|
|
const Vector &p2, |
|
|
const Vector &p3, |
|
|
const Vector &p4, |
|
|
float t, |
|
|
Vector &output ); |
|
|
|
|
|
// area under the curve [0..t] |
|
|
// Normalize p2->p1 and p3->p4 to be the same length as p2->p3 |
|
|
void Catmull_Rom_Spline_Integral_Normalize( |
|
|
const Vector &p1, |
|
|
const Vector &p2, |
|
|
const Vector &p3, |
|
|
const Vector &p4, |
|
|
float t, |
|
|
Vector& output ); |
|
|
|
|
|
// Interpolate a Catmull-Rom spline. |
|
|
// Normalize p2.x->p1.x and p3.x->p4.x to be the same length as p2.x->p3.x |
|
|
void Catmull_Rom_Spline_NormalizeX( |
|
|
const Vector &p1, |
|
|
const Vector &p2, |
|
|
const Vector &p3, |
|
|
const Vector &p4, |
|
|
float t, |
|
|
Vector &output ); |
|
|
|
|
|
// area under the curve [0..t] |
|
|
void Catmull_Rom_Spline_NormalizeX( |
|
|
const Vector &p1, |
|
|
const Vector &p2, |
|
|
const Vector &p3, |
|
|
const Vector &p4, |
|
|
float t, |
|
|
Vector& output ); |
|
|
|
|
|
// Interpolate a Hermite spline. |
|
|
// t is a [0,1] value and interpolates a curve between p1 and p2 with the deltas d1 and d2. |
|
|
void Hermite_Spline( |
|
|
const Vector &p1, |
|
|
const Vector &p2, |
|
|
const Vector &d1, |
|
|
const Vector &d2, |
|
|
float t, |
|
|
Vector& output ); |
|
|
|
|
|
float Hermite_Spline( |
|
|
float p1, |
|
|
float p2, |
|
|
float d1, |
|
|
float d2, |
|
|
float t ); |
|
|
|
|
|
// t is a [0,1] value and interpolates a curve between p1 and p2 with the slopes p0->p1 and p1->p2 |
|
|
void Hermite_Spline( |
|
|
const Vector &p0, |
|
|
const Vector &p1, |
|
|
const Vector &p2, |
|
|
float t, |
|
|
Vector& output ); |
|
|
|
|
|
float Hermite_Spline( |
|
|
float p0, |
|
|
float p1, |
|
|
float p2, |
|
|
float t ); |
|
|
|
|
|
|
|
|
void Hermite_SplineBasis( float t, float basis[] ); |
|
|
|
|
|
void Hermite_Spline( |
|
|
const Quaternion &q0, |
|
|
const Quaternion &q1, |
|
|
const Quaternion &q2, |
|
|
float t, |
|
|
Quaternion &output ); |
|
|
|
|
|
|
|
|
// See http://en.wikipedia.org/wiki/Kochanek-Bartels_curves |
|
|
// |
|
|
// Tension: -1 = Round -> 1 = Tight |
|
|
// Bias: -1 = Pre-shoot (bias left) -> 1 = Post-shoot (bias right) |
|
|
// Continuity: -1 = Box corners -> 1 = Inverted corners |
|
|
// |
|
|
// If T=B=C=0 it's the same matrix as Catmull-Rom. |
|
|
// If T=1 & B=C=0 it's the same as Cubic. |
|
|
// If T=B=0 & C=-1 it's just linear interpolation |
|
|
// |
|
|
// See http://news.povray.org/povray.binaries.tutorials/attachment/%3CXns91B880592482seed7@povray.org%3E/Splines.bas.txt |
|
|
// for example code and descriptions of various spline types... |
|
|
// |
|
|
void Kochanek_Bartels_Spline( |
|
|
float tension, |
|
|
float bias, |
|
|
float continuity, |
|
|
const Vector &p1, |
|
|
const Vector &p2, |
|
|
const Vector &p3, |
|
|
const Vector &p4, |
|
|
float t, |
|
|
Vector& output ); |
|
|
|
|
|
void Kochanek_Bartels_Spline_NormalizeX( |
|
|
float tension, |
|
|
float bias, |
|
|
float continuity, |
|
|
const Vector &p1, |
|
|
const Vector &p2, |
|
|
const Vector &p3, |
|
|
const Vector &p4, |
|
|
float t, |
|
|
Vector& output ); |
|
|
|
|
|
// See link at Kochanek_Bartels_Spline for info on the basis matrix used |
|
|
void Cubic_Spline( |
|
|
const Vector &p1, |
|
|
const Vector &p2, |
|
|
const Vector &p3, |
|
|
const Vector &p4, |
|
|
float t, |
|
|
Vector& output ); |
|
|
|
|
|
void Cubic_Spline_NormalizeX( |
|
|
const Vector &p1, |
|
|
const Vector &p2, |
|
|
const Vector &p3, |
|
|
const Vector &p4, |
|
|
float t, |
|
|
Vector& output ); |
|
|
|
|
|
// See link at Kochanek_Bartels_Spline for info on the basis matrix used |
|
|
void BSpline( |
|
|
const Vector &p1, |
|
|
const Vector &p2, |
|
|
const Vector &p3, |
|
|
const Vector &p4, |
|
|
float t, |
|
|
Vector& output ); |
|
|
|
|
|
void BSpline_NormalizeX( |
|
|
const Vector &p1, |
|
|
const Vector &p2, |
|
|
const Vector &p3, |
|
|
const Vector &p4, |
|
|
float t, |
|
|
Vector& output ); |
|
|
|
|
|
// See link at Kochanek_Bartels_Spline for info on the basis matrix used |
|
|
void Parabolic_Spline( |
|
|
const Vector &p1, |
|
|
const Vector &p2, |
|
|
const Vector &p3, |
|
|
const Vector &p4, |
|
|
float t, |
|
|
Vector& output ); |
|
|
|
|
|
void Parabolic_Spline_NormalizeX( |
|
|
const Vector &p1, |
|
|
const Vector &p2, |
|
|
const Vector &p3, |
|
|
const Vector &p4, |
|
|
float t, |
|
|
Vector& output ); |
|
|
|
|
|
// quintic interpolating polynomial from Perlin. |
|
|
// 0->0, 1->1, smooth-in between with smooth tangents |
|
|
FORCEINLINE float QuinticInterpolatingPolynomial(float t) |
|
|
{ |
|
|
// 6t^5-15t^4+10t^3 |
|
|
return t * t * t *( t * ( t* 6.0 - 15.0 ) + 10.0 ); |
|
|
} |
|
|
|
|
|
// given a table of sorted tabulated positions, return the two indices and blendfactor to linear |
|
|
// interpolate. Does a search. Can be used to find the blend value to interpolate between |
|
|
// keyframes. |
|
|
void GetInterpolationData( float const *pKnotPositions, |
|
|
float const *pKnotValues, |
|
|
int nNumValuesinList, |
|
|
int nInterpolationRange, |
|
|
float flPositionToInterpolateAt, |
|
|
bool bWrap, |
|
|
float *pValueA, |
|
|
float *pValueB, |
|
|
float *pInterpolationValue); |
|
|
|
|
|
float RangeCompressor( float flValue, float flMin, float flMax, float flBase ); |
|
|
|
|
|
// Get the minimum distance from vOrigin to the bounding box defined by [mins,maxs] |
|
|
// using voronoi regions. |
|
|
// 0 is returned if the origin is inside the box. |
|
|
float CalcSqrDistanceToAABB( const Vector &mins, const Vector &maxs, const Vector &point ); |
|
|
void CalcClosestPointOnAABB( const Vector &mins, const Vector &maxs, const Vector &point, Vector &closestOut ); |
|
|
void CalcSqrDistAndClosestPointOnAABB( const Vector &mins, const Vector &maxs, const Vector &point, Vector &closestOut, float &distSqrOut ); |
|
|
|
|
|
inline float CalcDistanceToAABB( const Vector &mins, const Vector &maxs, const Vector &point ) |
|
|
{ |
|
|
float flDistSqr = CalcSqrDistanceToAABB( mins, maxs, point ); |
|
|
return sqrt(flDistSqr); |
|
|
} |
|
|
|
|
|
// Get the closest point from P to the (infinite) line through vLineA and vLineB and |
|
|
// calculate the shortest distance from P to the line. |
|
|
// If you pass in a value for t, it will tell you the t for (A + (B-A)t) to get the closest point. |
|
|
// If the closest point lies on the segment between A and B, then 0 <= t <= 1. |
|
|
void CalcClosestPointOnLine( const Vector &P, const Vector &vLineA, const Vector &vLineB, Vector &vClosest, float *t=0 ); |
|
|
float CalcDistanceToLine( const Vector &P, const Vector &vLineA, const Vector &vLineB, float *t=0 ); |
|
|
float CalcDistanceSqrToLine( const Vector &P, const Vector &vLineA, const Vector &vLineB, float *t=0 ); |
|
|
|
|
|
// The same three functions as above, except now the line is closed between A and B. |
|
|
void CalcClosestPointOnLineSegment( const Vector &P, const Vector &vLineA, const Vector &vLineB, Vector &vClosest, float *t=0 ); |
|
|
float CalcDistanceToLineSegment( const Vector &P, const Vector &vLineA, const Vector &vLineB, float *t=0 ); |
|
|
float CalcDistanceSqrToLineSegment( const Vector &P, const Vector &vLineA, const Vector &vLineB, float *t=0 ); |
|
|
|
|
|
// A function to compute the closes line segment connnection two lines (or false if the lines are parallel, etc.) |
|
|
bool CalcLineToLineIntersectionSegment( |
|
|
const Vector& p1,const Vector& p2,const Vector& p3,const Vector& p4,Vector *s1,Vector *s2, |
|
|
float *t1, float *t2 ); |
|
|
|
|
|
// The above functions in 2D |
|
|
void CalcClosestPointOnLine2D( Vector2D const &P, Vector2D const &vLineA, Vector2D const &vLineB, Vector2D &vClosest, float *t=0 ); |
|
|
float CalcDistanceToLine2D( Vector2D const &P, Vector2D const &vLineA, Vector2D const &vLineB, float *t=0 ); |
|
|
float CalcDistanceSqrToLine2D( Vector2D const &P, Vector2D const &vLineA, Vector2D const &vLineB, float *t=0 ); |
|
|
void CalcClosestPointOnLineSegment2D( Vector2D const &P, Vector2D const &vLineA, Vector2D const &vLineB, Vector2D &vClosest, float *t=0 ); |
|
|
float CalcDistanceToLineSegment2D( Vector2D const &P, Vector2D const &vLineA, Vector2D const &vLineB, float *t=0 ); |
|
|
float CalcDistanceSqrToLineSegment2D( Vector2D const &P, Vector2D const &vLineA, Vector2D const &vLineB, float *t=0 ); |
|
|
|
|
|
// Init the mathlib |
|
|
void MathLib_Init( float gamma = 2.2f, float texGamma = 2.2f, float brightness = 0.0f, int overbright = 2.0f, bool bAllow3DNow = true, bool bAllowSSE = true, bool bAllowSSE2 = true, bool bAllowMMX = true ); |
|
|
bool MathLib_3DNowEnabled( void ); |
|
|
bool MathLib_MMXEnabled( void ); |
|
|
bool MathLib_SSEEnabled( void ); |
|
|
bool MathLib_SSE2Enabled( void ); |
|
|
|
|
|
float Approach( float target, float value, float speed ); |
|
|
float ApproachAngle( float target, float value, float speed ); |
|
|
float AngleDiff( float destAngle, float srcAngle ); |
|
|
float AngleDistance( float next, float cur ); |
|
|
float AngleNormalize( float angle ); |
|
|
|
|
|
// ensure that 0 <= angle <= 360 |
|
|
float AngleNormalizePositive( float angle ); |
|
|
|
|
|
bool AnglesAreEqual( float a, float b, float tolerance = 0.0f ); |
|
|
|
|
|
|
|
|
void RotationDeltaAxisAngle( const QAngle &srcAngles, const QAngle &destAngles, Vector &deltaAxis, float &deltaAngle ); |
|
|
void RotationDelta( const QAngle &srcAngles, const QAngle &destAngles, QAngle *out ); |
|
|
|
|
|
void ComputeTrianglePlane( const Vector& v1, const Vector& v2, const Vector& v3, Vector& normal, float& intercept ); |
|
|
int PolyFromPlane( Vector *outVerts, const Vector& normal, float dist, float fHalfScale = 9000.0f ); |
|
|
int ClipPolyToPlane( Vector *inVerts, int vertCount, Vector *outVerts, const Vector& normal, float dist, float fOnPlaneEpsilon = 0.1f ); |
|
|
int ClipPolyToPlane_Precise( double *inVerts, int vertCount, double *outVerts, const double *normal, double dist, double fOnPlaneEpsilon = 0.1 ); |
|
|
|
|
|
//----------------------------------------------------------------------------- |
|
|
// Computes a reasonable tangent space for a triangle |
|
|
//----------------------------------------------------------------------------- |
|
|
void CalcTriangleTangentSpace( const Vector &p0, const Vector &p1, const Vector &p2, |
|
|
const Vector2D &t0, const Vector2D &t1, const Vector2D& t2, |
|
|
Vector &sVect, Vector &tVect ); |
|
|
|
|
|
//----------------------------------------------------------------------------- |
|
|
// Transforms a AABB into another space; which will inherently grow the box. |
|
|
//----------------------------------------------------------------------------- |
|
|
void TransformAABB( const matrix3x4_t &in1, const Vector &vecMinsIn, const Vector &vecMaxsIn, Vector &vecMinsOut, Vector &vecMaxsOut ); |
|
|
|
|
|
//----------------------------------------------------------------------------- |
|
|
// Uses the inverse transform of in1 |
|
|
//----------------------------------------------------------------------------- |
|
|
void ITransformAABB( const matrix3x4_t &in1, const Vector &vecMinsIn, const Vector &vecMaxsIn, Vector &vecMinsOut, Vector &vecMaxsOut ); |
|
|
|
|
|
//----------------------------------------------------------------------------- |
|
|
// Rotates a AABB into another space; which will inherently grow the box. |
|
|
// (same as TransformAABB, but doesn't take the translation into account) |
|
|
//----------------------------------------------------------------------------- |
|
|
void RotateAABB( const matrix3x4_t &in1, const Vector &vecMinsIn, const Vector &vecMaxsIn, Vector &vecMinsOut, Vector &vecMaxsOut ); |
|
|
|
|
|
//----------------------------------------------------------------------------- |
|
|
// Uses the inverse transform of in1 |
|
|
//----------------------------------------------------------------------------- |
|
|
void IRotateAABB( const matrix3x4_t &in1, const Vector &vecMinsIn, const Vector &vecMaxsIn, Vector &vecMinsOut, Vector &vecMaxsOut ); |
|
|
|
|
|
//----------------------------------------------------------------------------- |
|
|
// Transform a plane |
|
|
//----------------------------------------------------------------------------- |
|
|
inline void MatrixTransformPlane( const matrix3x4_t &src, const cplane_t &inPlane, cplane_t &outPlane ) |
|
|
{ |
|
|
// What we want to do is the following: |
|
|
// 1) transform the normal into the new space. |
|
|
// 2) Determine a point on the old plane given by plane dist * plane normal |
|
|
// 3) Transform that point into the new space |
|
|
// 4) Plane dist = DotProduct( new normal, new point ) |
|
|
|
|
|
// An optimized version, which works if the plane is orthogonal. |
|
|
// 1) Transform the normal into the new space |
|
|
// 2) Realize that transforming the old plane point into the new space |
|
|
// is given by [ d * n'x + Tx, d * n'y + Ty, d * n'z + Tz ] |
|
|
// where d = old plane dist, n' = transformed normal, Tn = translational component of transform |
|
|
// 3) Compute the new plane dist using the dot product of the normal result of #2 |
|
|
|
|
|
// For a correct result, this should be an inverse-transpose matrix |
|
|
// but that only matters if there are nonuniform scale or skew factors in this matrix. |
|
|
VectorRotate( inPlane.normal, src, outPlane.normal ); |
|
|
outPlane.dist = inPlane.dist * DotProduct( outPlane.normal, outPlane.normal ); |
|
|
outPlane.dist += outPlane.normal.x * src[0][3] + outPlane.normal.y * src[1][3] + outPlane.normal.z * src[2][3]; |
|
|
} |
|
|
|
|
|
inline void MatrixITransformPlane( const matrix3x4_t &src, const cplane_t &inPlane, cplane_t &outPlane ) |
|
|
{ |
|
|
// The trick here is that Tn = translational component of transform, |
|
|
// but for an inverse transform, Tn = - R^-1 * T |
|
|
Vector vecTranslation; |
|
|
MatrixGetColumn( src, 3, vecTranslation ); |
|
|
|
|
|
Vector vecInvTranslation; |
|
|
VectorIRotate( vecTranslation, src, vecInvTranslation ); |
|
|
|
|
|
VectorIRotate( inPlane.normal, src, outPlane.normal ); |
|
|
outPlane.dist = inPlane.dist * DotProduct( outPlane.normal, outPlane.normal ); |
|
|
outPlane.dist -= outPlane.normal.x * vecInvTranslation[0] + outPlane.normal.y * vecInvTranslation[1] + outPlane.normal.z * vecInvTranslation[2]; |
|
|
} |
|
|
|
|
|
int CeilPow2( int in ); |
|
|
int FloorPow2( int in ); |
|
|
|
|
|
FORCEINLINE float * UnpackNormal_HEND3N( const unsigned int *pPackedNormal, float *pNormal ) |
|
|
{ |
|
|
int temp[3]; |
|
|
temp[0] = ((*pPackedNormal >> 0L) & 0x7ff); |
|
|
if ( temp[0] & 0x400 ) |
|
|
{ |
|
|
temp[0] = 2048 - temp[0]; |
|
|
} |
|
|
temp[1] = ((*pPackedNormal >> 11L) & 0x7ff); |
|
|
if ( temp[1] & 0x400 ) |
|
|
{ |
|
|
temp[1] = 2048 - temp[1]; |
|
|
} |
|
|
temp[2] = ((*pPackedNormal >> 22L) & 0x3ff); |
|
|
if ( temp[2] & 0x200 ) |
|
|
{ |
|
|
temp[2] = 1024 - temp[2]; |
|
|
} |
|
|
pNormal[0] = (float)temp[0] * 1.0f/1023.0f; |
|
|
pNormal[1] = (float)temp[1] * 1.0f/1023.0f; |
|
|
pNormal[2] = (float)temp[2] * 1.0f/511.0f; |
|
|
return pNormal; |
|
|
} |
|
|
|
|
|
FORCEINLINE unsigned int * PackNormal_HEND3N( const float *pNormal, unsigned int *pPackedNormal ) |
|
|
{ |
|
|
int temp[3]; |
|
|
|
|
|
temp[0] = Float2Int( pNormal[0] * 1023.0f ); |
|
|
temp[1] = Float2Int( pNormal[1] * 1023.0f ); |
|
|
temp[2] = Float2Int( pNormal[2] * 511.0f ); |
|
|
|
|
|
// the normal is out of bounds, determine the source and fix |
|
|
// clamping would be even more of a slowdown here |
|
|
Assert( temp[0] >= -1023 && temp[0] <= 1023 ); |
|
|
Assert( temp[1] >= -1023 && temp[1] <= 1023 ); |
|
|
Assert( temp[2] >= -511 && temp[2] <= 511 ); |
|
|
|
|
|
*pPackedNormal = ( ( temp[2] & 0x3ff ) << 22L ) | |
|
|
( ( temp[1] & 0x7ff ) << 11L ) | |
|
|
( ( temp[0] & 0x7ff ) << 0L ); |
|
|
return pPackedNormal; |
|
|
} |
|
|
|
|
|
FORCEINLINE unsigned int * PackNormal_HEND3N( float nx, float ny, float nz, unsigned int *pPackedNormal ) |
|
|
{ |
|
|
int temp[3]; |
|
|
|
|
|
temp[0] = Float2Int( nx * 1023.0f ); |
|
|
temp[1] = Float2Int( ny * 1023.0f ); |
|
|
temp[2] = Float2Int( nz * 511.0f ); |
|
|
|
|
|
// the normal is out of bounds, determine the source and fix |
|
|
// clamping would be even more of a slowdown here |
|
|
Assert( temp[0] >= -1023 && temp[0] <= 1023 ); |
|
|
Assert( temp[1] >= -1023 && temp[1] <= 1023 ); |
|
|
Assert( temp[2] >= -511 && temp[2] <= 511 ); |
|
|
|
|
|
*pPackedNormal = ( ( temp[2] & 0x3ff ) << 22L ) | |
|
|
( ( temp[1] & 0x7ff ) << 11L ) | |
|
|
( ( temp[0] & 0x7ff ) << 0L ); |
|
|
return pPackedNormal; |
|
|
} |
|
|
|
|
|
FORCEINLINE float * UnpackNormal_SHORT2( const unsigned int *pPackedNormal, float *pNormal, bool bIsTangent = FALSE ) |
|
|
{ |
|
|
// Unpacks from Jason's 2-short format (fills in a 4th binormal-sign (+1/-1) value, if this is a tangent vector) |
|
|
|
|
|
// FIXME: short math is slow on 360 - use ints here instead (bit-twiddle to deal w/ the sign bits) |
|
|
short iX = (*pPackedNormal & 0x0000FFFF); |
|
|
short iY = (*pPackedNormal & 0xFFFF0000) >> 16; |
|
|
|
|
|
float zSign = +1; |
|
|
if ( iX < 0 ) |
|
|
{ |
|
|
zSign = -1; |
|
|
iX = -iX; |
|
|
} |
|
|
float tSign = +1; |
|
|
if ( iY < 0 ) |
|
|
{ |
|
|
tSign = -1; |
|
|
iY = -iY; |
|
|
} |
|
|
|
|
|
pNormal[0] = ( iX - 16384.0f ) / 16384.0f; |
|
|
pNormal[1] = ( iY - 16384.0f ) / 16384.0f; |
|
|
pNormal[2] = zSign*sqrtf( 1.0f - ( pNormal[0]*pNormal[0] + pNormal[1]*pNormal[1] ) ); |
|
|
if ( bIsTangent ) |
|
|
{ |
|
|
pNormal[3] = tSign; |
|
|
} |
|
|
|
|
|
return pNormal; |
|
|
} |
|
|
|
|
|
FORCEINLINE unsigned int * PackNormal_SHORT2( float nx, float ny, float nz, unsigned int *pPackedNormal, float binormalSign = +1.0f ) |
|
|
{ |
|
|
// Pack a vector (ASSUMED TO BE NORMALIZED) into Jason's 4-byte (SHORT2) format. |
|
|
// This simply reconstructs Z from X & Y. It uses the sign bits of the X & Y coords |
|
|
// to reconstruct the sign of Z and, if this is a tangent vector, the sign of the |
|
|
// binormal (this is needed because tangent/binormal vectors are supposed to follow |
|
|
// UV gradients, but shaders reconstruct the binormal from the tangent and normal |
|
|
// assuming that they form a right-handed basis). |
|
|
|
|
|
nx += 1; // [-1,+1] -> [0,2] |
|
|
ny += 1; |
|
|
nx *= 16384.0f; // [ 0, 2] -> [0,32768] |
|
|
ny *= 16384.0f; |
|
|
|
|
|
// '0' and '32768' values are invalid encodings |
|
|
nx = max( nx, 1.0f ); // Make sure there are no zero values |
|
|
ny = max( ny, 1.0f ); |
|
|
nx = min( nx, 32767.0f ); // Make sure there are no 32768 values |
|
|
ny = min( ny, 32767.0f ); |
|
|
|
|
|
if ( nz < 0.0f ) |
|
|
nx = -nx; // Set the sign bit for z |
|
|
|
|
|
ny *= binormalSign; // Set the sign bit for the binormal (use when encoding a tangent vector) |
|
|
|
|
|
// FIXME: short math is slow on 360 - use ints here instead (bit-twiddle to deal w/ the sign bits), also use Float2Int() |
|
|
short sX = (short)nx; // signed short [1,32767] |
|
|
short sY = (short)ny; |
|
|
|
|
|
*pPackedNormal = ( sX & 0x0000FFFF ) | ( sY << 16 ); // NOTE: The mask is necessary (if sX is negative and cast to an int...) |
|
|
|
|
|
return pPackedNormal; |
|
|
} |
|
|
|
|
|
FORCEINLINE unsigned int * PackNormal_SHORT2( const float *pNormal, unsigned int *pPackedNormal, float binormalSign = +1.0f ) |
|
|
{ |
|
|
return PackNormal_SHORT2( pNormal[0], pNormal[1], pNormal[2], pPackedNormal, binormalSign ); |
|
|
} |
|
|
|
|
|
// Unpacks a UBYTE4 normal (for a tangent, the result's fourth component receives the binormal 'sign') |
|
|
FORCEINLINE float * UnpackNormal_UBYTE4( const unsigned int *pPackedNormal, float *pNormal, bool bIsTangent = FALSE ) |
|
|
{ |
|
|
unsigned char cX, cY; |
|
|
if ( bIsTangent ) |
|
|
{ |
|
|
cX = *pPackedNormal >> 16; // Unpack Z |
|
|
cY = *pPackedNormal >> 24; // Unpack W |
|
|
} |
|
|
else |
|
|
{ |
|
|
cX = *pPackedNormal >> 0; // Unpack X |
|
|
cY = *pPackedNormal >> 8; // Unpack Y |
|
|
} |
|
|
|
|
|
float x = cX - 128.0f; |
|
|
float y = cY - 128.0f; |
|
|
float z; |
|
|
|
|
|
float zSignBit = x < 0 ? 1.0f : 0.0f; // z and t negative bits (like slt asm instruction) |
|
|
float tSignBit = y < 0 ? 1.0f : 0.0f; |
|
|
float zSign = -( 2*zSignBit - 1 ); // z and t signs |
|
|
float tSign = -( 2*tSignBit - 1 ); |
|
|
|
|
|
x = x*zSign - zSignBit; // 0..127 |
|
|
y = y*tSign - tSignBit; |
|
|
x = x - 64; // -64..63 |
|
|
y = y - 64; |
|
|
|
|
|
float xSignBit = x < 0 ? 1.0f : 0.0f; // x and y negative bits (like slt asm instruction) |
|
|
float ySignBit = y < 0 ? 1.0f : 0.0f; |
|
|
float xSign = -( 2*xSignBit - 1 ); // x and y signs |
|
|
float ySign = -( 2*ySignBit - 1 ); |
|
|
|
|
|
x = ( x*xSign - xSignBit ) / 63.0f; // 0..1 range |
|
|
y = ( y*ySign - ySignBit ) / 63.0f; |
|
|
z = 1.0f - x - y; |
|
|
|
|
|
float oolen = 1.0f / sqrt( x*x + y*y + z*z ); // Normalize and |
|
|
x *= oolen * xSign; // Recover signs |
|
|
y *= oolen * ySign; |
|
|
z *= oolen * zSign; |
|
|
|
|
|
pNormal[0] = x; |
|
|
pNormal[1] = y; |
|
|
pNormal[2] = z; |
|
|
if ( bIsTangent ) |
|
|
{ |
|
|
pNormal[3] = tSign; |
|
|
} |
|
|
|
|
|
return pNormal; |
|
|
} |
|
|
|
|
|
////////////////////////////////////////////////////////////////////////////// |
|
|
// See: http://www.oroboro.com/rafael/docserv.php/index/programming/article/unitv2 |
|
|
// |
|
|
// UBYTE4 encoding, using per-octant projection onto x+y+z=1 |
|
|
// Assume input vector is already unit length |
|
|
// |
|
|
// binormalSign specifies 'sign' of binormal, stored in t sign bit of tangent |
|
|
// (lets the shader know whether norm/tan/bin form a right-handed basis) |
|
|
// |
|
|
// bIsTangent is used to specify which WORD of the output to store the data |
|
|
// The expected usage is to call once with the normal and once with |
|
|
// the tangent and binormal sign flag, bitwise OR'ing the returned DWORDs |
|
|
FORCEINLINE unsigned int * PackNormal_UBYTE4( float nx, float ny, float nz, unsigned int *pPackedNormal, bool bIsTangent = false, float binormalSign = +1.0f ) |
|
|
{ |
|
|
float xSign = nx < 0.0f ? -1.0f : 1.0f; // -1 or 1 sign |
|
|
float ySign = ny < 0.0f ? -1.0f : 1.0f; |
|
|
float zSign = nz < 0.0f ? -1.0f : 1.0f; |
|
|
float tSign = binormalSign; |
|
|
Assert( ( binormalSign == +1.0f ) || ( binormalSign == -1.0f ) ); |
|
|
|
|
|
float xSignBit = 0.5f*( 1 - xSign ); // [-1,+1] -> [1,0] |
|
|
float ySignBit = 0.5f*( 1 - ySign ); // 1 is negative bit (like slt instruction) |
|
|
float zSignBit = 0.5f*( 1 - zSign ); |
|
|
float tSignBit = 0.5f*( 1 - binormalSign ); |
|
|
|
|
|
float absX = xSign*nx; // 0..1 range (abs) |
|
|
float absY = ySign*ny; |
|
|
float absZ = zSign*nz; |
|
|
|
|
|
float xbits = absX / ( absX + absY + absZ ); // Project onto x+y+z=1 plane |
|
|
float ybits = absY / ( absX + absY + absZ ); |
|
|
|
|
|
xbits *= 63; // 0..63 |
|
|
ybits *= 63; |
|
|
|
|
|
xbits = xbits * xSign - xSignBit; // -64..63 range |
|
|
ybits = ybits * ySign - ySignBit; |
|
|
xbits += 64.0f; // 0..127 range |
|
|
ybits += 64.0f; |
|
|
|
|
|
xbits = xbits * zSign - zSignBit; // Negate based on z and t |
|
|
ybits = ybits * tSign - tSignBit; // -128..127 range |
|
|
|
|
|
xbits += 128.0f; // 0..255 range |
|
|
ybits += 128.0f; |
|
|
|
|
|
unsigned char cX = (unsigned char) xbits; |
|
|
unsigned char cY = (unsigned char) ybits; |
|
|
|
|
|
if ( !bIsTangent ) |
|
|
*pPackedNormal = (cX << 0) | (cY << 8); // xy for normal |
|
|
else |
|
|
*pPackedNormal = (cX << 16) | (cY << 24); // zw for tangent |
|
|
|
|
|
return pPackedNormal; |
|
|
} |
|
|
|
|
|
FORCEINLINE unsigned int * PackNormal_UBYTE4( const float *pNormal, unsigned int *pPackedNormal, bool bIsTangent = false, float binormalSign = +1.0f ) |
|
|
{ |
|
|
return PackNormal_UBYTE4( pNormal[0], pNormal[1], pNormal[2], pPackedNormal, bIsTangent, binormalSign ); |
|
|
} |
|
|
|
|
|
|
|
|
//----------------------------------------------------------------------------- |
|
|
// Convert RGB to HSV |
|
|
//----------------------------------------------------------------------------- |
|
|
void RGBtoHSV( const Vector &rgb, Vector &hsv ); |
|
|
|
|
|
|
|
|
//----------------------------------------------------------------------------- |
|
|
// Convert HSV to RGB |
|
|
//----------------------------------------------------------------------------- |
|
|
void HSVtoRGB( const Vector &hsv, Vector &rgb ); |
|
|
|
|
|
|
|
|
//----------------------------------------------------------------------------- |
|
|
// Fast version of pow and log |
|
|
//----------------------------------------------------------------------------- |
|
|
|
|
|
float FastLog2(float i); // log2( i ) |
|
|
float FastPow2(float i); // 2^i |
|
|
float FastPow(float a, float b); // a^b |
|
|
float FastPow10( float i ); // 10^i |
|
|
|
|
|
//----------------------------------------------------------------------------- |
|
|
// For testing float equality |
|
|
//----------------------------------------------------------------------------- |
|
|
|
|
|
inline bool CloseEnough( float a, float b, float epsilon = EQUAL_EPSILON ) |
|
|
{ |
|
|
return fabs( a - b ) <= epsilon; |
|
|
} |
|
|
|
|
|
inline bool CloseEnough( const Vector &a, const Vector &b, float epsilon = EQUAL_EPSILON ) |
|
|
{ |
|
|
return fabs( a.x - b.x ) <= epsilon && |
|
|
fabs( a.y - b.y ) <= epsilon && |
|
|
fabs( a.z - b.z ) <= epsilon; |
|
|
} |
|
|
|
|
|
// Fast compare |
|
|
// maxUlps is the maximum error in terms of Units in the Last Place. This |
|
|
// specifies how big an error we are willing to accept in terms of the value |
|
|
// of the least significant digit of the floating point number<EFBFBD>s |
|
|
// representation. maxUlps can also be interpreted in terms of how many |
|
|
// representable floats we are willing to accept between A and B. |
|
|
// This function will allow maxUlps-1 floats between A and B. |
|
|
bool AlmostEqual(float a, float b, int maxUlps = 10); |
|
|
|
|
|
inline bool AlmostEqual( const Vector &a, const Vector &b, int maxUlps = 10) |
|
|
{ |
|
|
return AlmostEqual( a.x, b.x, maxUlps ) && |
|
|
AlmostEqual( a.y, b.y, maxUlps ) && |
|
|
AlmostEqual( a.z, b.z, maxUlps ); |
|
|
} |
|
|
|
|
|
|
|
|
#endif // MATH_BASE_H |
|
|
|
|
|
|