You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
442 lines
14 KiB
442 lines
14 KiB
/* crc32.c -- compute the CRC-32 of a data stream |
|
* Copyright (C) 1995-2006, 2010, 2011, 2012, 2016 Mark Adler |
|
* For conditions of distribution and use, see copyright notice in zlib.h |
|
* |
|
* Thanks to Rodney Brown <rbrown64@csc.com.au> for his contribution of faster |
|
* CRC methods: exclusive-oring 32 bits of data at a time, and pre-computing |
|
* tables for updating the shift register in one step with three exclusive-ors |
|
* instead of four steps with four exclusive-ors. This results in about a |
|
* factor of two increase in speed on a Power PC G4 (PPC7455) using gcc -O3. |
|
*/ |
|
|
|
/* @(#) $Id$ */ |
|
|
|
/* |
|
Note on the use of DYNAMIC_CRC_TABLE: there is no mutex or semaphore |
|
protection on the static variables used to control the first-use generation |
|
of the crc tables. Therefore, if you #define DYNAMIC_CRC_TABLE, you should |
|
first call get_crc_table() to initialize the tables before allowing more than |
|
one thread to use crc32(). |
|
|
|
DYNAMIC_CRC_TABLE and MAKECRCH can be #defined to write out crc32.h. |
|
*/ |
|
|
|
#ifdef MAKECRCH |
|
# include <stdio.h> |
|
# ifndef DYNAMIC_CRC_TABLE |
|
# define DYNAMIC_CRC_TABLE |
|
# endif /* !DYNAMIC_CRC_TABLE */ |
|
#endif /* MAKECRCH */ |
|
|
|
#include "zutil.h" /* for STDC and FAR definitions */ |
|
|
|
/* Definitions for doing the crc four data bytes at a time. */ |
|
#if !defined(NOBYFOUR) && defined(Z_U4) |
|
# define BYFOUR |
|
#endif |
|
#ifdef BYFOUR |
|
local unsigned long crc32_little OF((unsigned long, |
|
const unsigned char FAR *, z_size_t)); |
|
local unsigned long crc32_big OF((unsigned long, |
|
const unsigned char FAR *, z_size_t)); |
|
# define TBLS 8 |
|
#else |
|
# define TBLS 1 |
|
#endif /* BYFOUR */ |
|
|
|
/* Local functions for crc concatenation */ |
|
local unsigned long gf2_matrix_times OF((unsigned long *mat, |
|
unsigned long vec)); |
|
local void gf2_matrix_square OF((unsigned long *square, unsigned long *mat)); |
|
local uLong crc32_combine_ OF((uLong crc1, uLong crc2, z_off64_t len2)); |
|
|
|
|
|
#ifdef DYNAMIC_CRC_TABLE |
|
|
|
local volatile int crc_table_empty = 1; |
|
local z_crc_t FAR crc_table[TBLS][256]; |
|
local void make_crc_table OF((void)); |
|
#ifdef MAKECRCH |
|
local void write_table OF((FILE *, const z_crc_t FAR *)); |
|
#endif /* MAKECRCH */ |
|
/* |
|
Generate tables for a byte-wise 32-bit CRC calculation on the polynomial: |
|
x^32+x^26+x^23+x^22+x^16+x^12+x^11+x^10+x^8+x^7+x^5+x^4+x^2+x+1. |
|
|
|
Polynomials over GF(2) are represented in binary, one bit per coefficient, |
|
with the lowest powers in the most significant bit. Then adding polynomials |
|
is just exclusive-or, and multiplying a polynomial by x is a right shift by |
|
one. If we call the above polynomial p, and represent a byte as the |
|
polynomial q, also with the lowest power in the most significant bit (so the |
|
byte 0xb1 is the polynomial x^7+x^3+x+1), then the CRC is (q*x^32) mod p, |
|
where a mod b means the remainder after dividing a by b. |
|
|
|
This calculation is done using the shift-register method of multiplying and |
|
taking the remainder. The register is initialized to zero, and for each |
|
incoming bit, x^32 is added mod p to the register if the bit is a one (where |
|
x^32 mod p is p+x^32 = x^26+...+1), and the register is multiplied mod p by |
|
x (which is shifting right by one and adding x^32 mod p if the bit shifted |
|
out is a one). We start with the highest power (least significant bit) of |
|
q and repeat for all eight bits of q. |
|
|
|
The first table is simply the CRC of all possible eight bit values. This is |
|
all the information needed to generate CRCs on data a byte at a time for all |
|
combinations of CRC register values and incoming bytes. The remaining tables |
|
allow for word-at-a-time CRC calculation for both big-endian and little- |
|
endian machines, where a word is four bytes. |
|
*/ |
|
local void make_crc_table() |
|
{ |
|
z_crc_t c; |
|
int n, k; |
|
z_crc_t poly; /* polynomial exclusive-or pattern */ |
|
/* terms of polynomial defining this crc (except x^32): */ |
|
static volatile int first = 1; /* flag to limit concurrent making */ |
|
static const unsigned char p[] = {0,1,2,4,5,7,8,10,11,12,16,22,23,26}; |
|
|
|
/* See if another task is already doing this (not thread-safe, but better |
|
than nothing -- significantly reduces duration of vulnerability in |
|
case the advice about DYNAMIC_CRC_TABLE is ignored) */ |
|
if (first) { |
|
first = 0; |
|
|
|
/* make exclusive-or pattern from polynomial (0xedb88320UL) */ |
|
poly = 0; |
|
for (n = 0; n < (int)(sizeof(p)/sizeof(unsigned char)); n++) |
|
poly |= (z_crc_t)1 << (31 - p[n]); |
|
|
|
/* generate a crc for every 8-bit value */ |
|
for (n = 0; n < 256; n++) { |
|
c = (z_crc_t)n; |
|
for (k = 0; k < 8; k++) |
|
c = c & 1 ? poly ^ (c >> 1) : c >> 1; |
|
crc_table[0][n] = c; |
|
} |
|
|
|
#ifdef BYFOUR |
|
/* generate crc for each value followed by one, two, and three zeros, |
|
and then the byte reversal of those as well as the first table */ |
|
for (n = 0; n < 256; n++) { |
|
c = crc_table[0][n]; |
|
crc_table[4][n] = ZSWAP32(c); |
|
for (k = 1; k < 4; k++) { |
|
c = crc_table[0][c & 0xff] ^ (c >> 8); |
|
crc_table[k][n] = c; |
|
crc_table[k + 4][n] = ZSWAP32(c); |
|
} |
|
} |
|
#endif /* BYFOUR */ |
|
|
|
crc_table_empty = 0; |
|
} |
|
else { /* not first */ |
|
/* wait for the other guy to finish (not efficient, but rare) */ |
|
while (crc_table_empty) |
|
; |
|
} |
|
|
|
#ifdef MAKECRCH |
|
/* write out CRC tables to crc32.h */ |
|
{ |
|
FILE *out; |
|
|
|
out = fopen("crc32.h", "w"); |
|
if (out == NULL) return; |
|
fprintf(out, "/* crc32.h -- tables for rapid CRC calculation\n"); |
|
fprintf(out, " * Generated automatically by crc32.c\n */\n\n"); |
|
fprintf(out, "local const z_crc_t FAR "); |
|
fprintf(out, "crc_table[TBLS][256] =\n{\n {\n"); |
|
write_table(out, crc_table[0]); |
|
# ifdef BYFOUR |
|
fprintf(out, "#ifdef BYFOUR\n"); |
|
for (k = 1; k < 8; k++) { |
|
fprintf(out, " },\n {\n"); |
|
write_table(out, crc_table[k]); |
|
} |
|
fprintf(out, "#endif\n"); |
|
# endif /* BYFOUR */ |
|
fprintf(out, " }\n};\n"); |
|
fclose(out); |
|
} |
|
#endif /* MAKECRCH */ |
|
} |
|
|
|
#ifdef MAKECRCH |
|
local void write_table(out, table) |
|
FILE *out; |
|
const z_crc_t FAR *table; |
|
{ |
|
int n; |
|
|
|
for (n = 0; n < 256; n++) |
|
fprintf(out, "%s0x%08lxUL%s", n % 5 ? "" : " ", |
|
(unsigned long)(table[n]), |
|
n == 255 ? "\n" : (n % 5 == 4 ? ",\n" : ", ")); |
|
} |
|
#endif /* MAKECRCH */ |
|
|
|
#else /* !DYNAMIC_CRC_TABLE */ |
|
/* ======================================================================== |
|
* Tables of CRC-32s of all single-byte values, made by make_crc_table(). |
|
*/ |
|
#include "crc32.h" |
|
#endif /* DYNAMIC_CRC_TABLE */ |
|
|
|
/* ========================================================================= |
|
* This function can be used by asm versions of crc32() |
|
*/ |
|
const z_crc_t FAR * ZEXPORT get_crc_table() |
|
{ |
|
#ifdef DYNAMIC_CRC_TABLE |
|
if (crc_table_empty) |
|
make_crc_table(); |
|
#endif /* DYNAMIC_CRC_TABLE */ |
|
return (const z_crc_t FAR *)crc_table; |
|
} |
|
|
|
/* ========================================================================= */ |
|
#define DO1 crc = crc_table[0][((int)crc ^ (*buf++)) & 0xff] ^ (crc >> 8) |
|
#define DO8 DO1; DO1; DO1; DO1; DO1; DO1; DO1; DO1 |
|
|
|
/* ========================================================================= */ |
|
unsigned long ZEXPORT crc32_z(crc, buf, len) |
|
unsigned long crc; |
|
const unsigned char FAR *buf; |
|
z_size_t len; |
|
{ |
|
if (buf == Z_NULL) return 0UL; |
|
|
|
#ifdef DYNAMIC_CRC_TABLE |
|
if (crc_table_empty) |
|
make_crc_table(); |
|
#endif /* DYNAMIC_CRC_TABLE */ |
|
|
|
#ifdef BYFOUR |
|
if (sizeof(void *) == sizeof(ptrdiff_t)) { |
|
z_crc_t endian; |
|
|
|
endian = 1; |
|
if (*((unsigned char *)(&endian))) |
|
return crc32_little(crc, buf, len); |
|
else |
|
return crc32_big(crc, buf, len); |
|
} |
|
#endif /* BYFOUR */ |
|
crc = crc ^ 0xffffffffUL; |
|
while (len >= 8) { |
|
DO8; |
|
len -= 8; |
|
} |
|
if (len) do { |
|
DO1; |
|
} while (--len); |
|
return crc ^ 0xffffffffUL; |
|
} |
|
|
|
/* ========================================================================= */ |
|
unsigned long ZEXPORT crc32(crc, buf, len) |
|
unsigned long crc; |
|
const unsigned char FAR *buf; |
|
uInt len; |
|
{ |
|
return crc32_z(crc, buf, len); |
|
} |
|
|
|
#ifdef BYFOUR |
|
|
|
/* |
|
This BYFOUR code accesses the passed unsigned char * buffer with a 32-bit |
|
integer pointer type. This violates the strict aliasing rule, where a |
|
compiler can assume, for optimization purposes, that two pointers to |
|
fundamentally different types won't ever point to the same memory. This can |
|
manifest as a problem only if one of the pointers is written to. This code |
|
only reads from those pointers. So long as this code remains isolated in |
|
this compilation unit, there won't be a problem. For this reason, this code |
|
should not be copied and pasted into a compilation unit in which other code |
|
writes to the buffer that is passed to these routines. |
|
*/ |
|
|
|
/* ========================================================================= */ |
|
#define DOLIT4 c ^= *buf4++; \ |
|
c = crc_table[3][c & 0xff] ^ crc_table[2][(c >> 8) & 0xff] ^ \ |
|
crc_table[1][(c >> 16) & 0xff] ^ crc_table[0][c >> 24] |
|
#define DOLIT32 DOLIT4; DOLIT4; DOLIT4; DOLIT4; DOLIT4; DOLIT4; DOLIT4; DOLIT4 |
|
|
|
/* ========================================================================= */ |
|
local unsigned long crc32_little(crc, buf, len) |
|
unsigned long crc; |
|
const unsigned char FAR *buf; |
|
z_size_t len; |
|
{ |
|
register z_crc_t c; |
|
register const z_crc_t FAR *buf4; |
|
|
|
c = (z_crc_t)crc; |
|
c = ~c; |
|
while (len && ((ptrdiff_t)buf & 3)) { |
|
c = crc_table[0][(c ^ *buf++) & 0xff] ^ (c >> 8); |
|
len--; |
|
} |
|
|
|
buf4 = (const z_crc_t FAR *)(const void FAR *)buf; |
|
while (len >= 32) { |
|
DOLIT32; |
|
len -= 32; |
|
} |
|
while (len >= 4) { |
|
DOLIT4; |
|
len -= 4; |
|
} |
|
buf = (const unsigned char FAR *)buf4; |
|
|
|
if (len) do { |
|
c = crc_table[0][(c ^ *buf++) & 0xff] ^ (c >> 8); |
|
} while (--len); |
|
c = ~c; |
|
return (unsigned long)c; |
|
} |
|
|
|
/* ========================================================================= */ |
|
#define DOBIG4 c ^= *buf4++; \ |
|
c = crc_table[4][c & 0xff] ^ crc_table[5][(c >> 8) & 0xff] ^ \ |
|
crc_table[6][(c >> 16) & 0xff] ^ crc_table[7][c >> 24] |
|
#define DOBIG32 DOBIG4; DOBIG4; DOBIG4; DOBIG4; DOBIG4; DOBIG4; DOBIG4; DOBIG4 |
|
|
|
/* ========================================================================= */ |
|
local unsigned long crc32_big(crc, buf, len) |
|
unsigned long crc; |
|
const unsigned char FAR *buf; |
|
z_size_t len; |
|
{ |
|
register z_crc_t c; |
|
register const z_crc_t FAR *buf4; |
|
|
|
c = ZSWAP32((z_crc_t)crc); |
|
c = ~c; |
|
while (len && ((ptrdiff_t)buf & 3)) { |
|
c = crc_table[4][(c >> 24) ^ *buf++] ^ (c << 8); |
|
len--; |
|
} |
|
|
|
buf4 = (const z_crc_t FAR *)(const void FAR *)buf; |
|
while (len >= 32) { |
|
DOBIG32; |
|
len -= 32; |
|
} |
|
while (len >= 4) { |
|
DOBIG4; |
|
len -= 4; |
|
} |
|
buf = (const unsigned char FAR *)buf4; |
|
|
|
if (len) do { |
|
c = crc_table[4][(c >> 24) ^ *buf++] ^ (c << 8); |
|
} while (--len); |
|
c = ~c; |
|
return (unsigned long)(ZSWAP32(c)); |
|
} |
|
|
|
#endif /* BYFOUR */ |
|
|
|
#define GF2_DIM 32 /* dimension of GF(2) vectors (length of CRC) */ |
|
|
|
/* ========================================================================= */ |
|
local unsigned long gf2_matrix_times(mat, vec) |
|
unsigned long *mat; |
|
unsigned long vec; |
|
{ |
|
unsigned long sum; |
|
|
|
sum = 0; |
|
while (vec) { |
|
if (vec & 1) |
|
sum ^= *mat; |
|
vec >>= 1; |
|
mat++; |
|
} |
|
return sum; |
|
} |
|
|
|
/* ========================================================================= */ |
|
local void gf2_matrix_square(square, mat) |
|
unsigned long *square; |
|
unsigned long *mat; |
|
{ |
|
int n; |
|
|
|
for (n = 0; n < GF2_DIM; n++) |
|
square[n] = gf2_matrix_times(mat, mat[n]); |
|
} |
|
|
|
/* ========================================================================= */ |
|
local uLong crc32_combine_(crc1, crc2, len2) |
|
uLong crc1; |
|
uLong crc2; |
|
z_off64_t len2; |
|
{ |
|
int n; |
|
unsigned long row; |
|
unsigned long even[GF2_DIM]; /* even-power-of-two zeros operator */ |
|
unsigned long odd[GF2_DIM]; /* odd-power-of-two zeros operator */ |
|
|
|
/* degenerate case (also disallow negative lengths) */ |
|
if (len2 <= 0) |
|
return crc1; |
|
|
|
/* put operator for one zero bit in odd */ |
|
odd[0] = 0xedb88320UL; /* CRC-32 polynomial */ |
|
row = 1; |
|
for (n = 1; n < GF2_DIM; n++) { |
|
odd[n] = row; |
|
row <<= 1; |
|
} |
|
|
|
/* put operator for two zero bits in even */ |
|
gf2_matrix_square(even, odd); |
|
|
|
/* put operator for four zero bits in odd */ |
|
gf2_matrix_square(odd, even); |
|
|
|
/* apply len2 zeros to crc1 (first square will put the operator for one |
|
zero byte, eight zero bits, in even) */ |
|
do { |
|
/* apply zeros operator for this bit of len2 */ |
|
gf2_matrix_square(even, odd); |
|
if (len2 & 1) |
|
crc1 = gf2_matrix_times(even, crc1); |
|
len2 >>= 1; |
|
|
|
/* if no more bits set, then done */ |
|
if (len2 == 0) |
|
break; |
|
|
|
/* another iteration of the loop with odd and even swapped */ |
|
gf2_matrix_square(odd, even); |
|
if (len2 & 1) |
|
crc1 = gf2_matrix_times(odd, crc1); |
|
len2 >>= 1; |
|
|
|
/* if no more bits set, then done */ |
|
} while (len2 != 0); |
|
|
|
/* return combined crc */ |
|
crc1 ^= crc2; |
|
return crc1; |
|
} |
|
|
|
/* ========================================================================= */ |
|
uLong ZEXPORT crc32_combine(crc1, crc2, len2) |
|
uLong crc1; |
|
uLong crc2; |
|
z_off_t len2; |
|
{ |
|
return crc32_combine_(crc1, crc2, len2); |
|
} |
|
|
|
uLong ZEXPORT crc32_combine64(crc1, crc2, len2) |
|
uLong crc1; |
|
uLong crc2; |
|
z_off64_t len2; |
|
{ |
|
return crc32_combine_(crc1, crc2, len2); |
|
}
|
|
|