You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
820 lines
30 KiB
820 lines
30 KiB
/* ssl/s3_cbc.c */ |
|
/* ==================================================================== |
|
* Copyright (c) 2012 The OpenSSL Project. All rights reserved. |
|
* |
|
* Redistribution and use in source and binary forms, with or without |
|
* modification, are permitted provided that the following conditions |
|
* are met: |
|
* |
|
* 1. Redistributions of source code must retain the above copyright |
|
* notice, this list of conditions and the following disclaimer. |
|
* |
|
* 2. Redistributions in binary form must reproduce the above copyright |
|
* notice, this list of conditions and the following disclaimer in |
|
* the documentation and/or other materials provided with the |
|
* distribution. |
|
* |
|
* 3. All advertising materials mentioning features or use of this |
|
* software must display the following acknowledgment: |
|
* "This product includes software developed by the OpenSSL Project |
|
* for use in the OpenSSL Toolkit. (http://www.openssl.org/)" |
|
* |
|
* 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to |
|
* endorse or promote products derived from this software without |
|
* prior written permission. For written permission, please contact |
|
* openssl-core@openssl.org. |
|
* |
|
* 5. Products derived from this software may not be called "OpenSSL" |
|
* nor may "OpenSSL" appear in their names without prior written |
|
* permission of the OpenSSL Project. |
|
* |
|
* 6. Redistributions of any form whatsoever must retain the following |
|
* acknowledgment: |
|
* "This product includes software developed by the OpenSSL Project |
|
* for use in the OpenSSL Toolkit (http://www.openssl.org/)" |
|
* |
|
* THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY |
|
* EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR |
|
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR |
|
* ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
|
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT |
|
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; |
|
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, |
|
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
|
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED |
|
* OF THE POSSIBILITY OF SUCH DAMAGE. |
|
* ==================================================================== |
|
* |
|
* This product includes cryptographic software written by Eric Young |
|
* (eay@cryptsoft.com). This product includes software written by Tim |
|
* Hudson (tjh@cryptsoft.com). |
|
* |
|
*/ |
|
|
|
#include "../crypto/constant_time_locl.h" |
|
#include "ssl_locl.h" |
|
|
|
#include <openssl/md5.h> |
|
#include <openssl/sha.h> |
|
|
|
/* |
|
* MAX_HASH_BIT_COUNT_BYTES is the maximum number of bytes in the hash's |
|
* length field. (SHA-384/512 have 128-bit length.) |
|
*/ |
|
#define MAX_HASH_BIT_COUNT_BYTES 16 |
|
|
|
/* |
|
* MAX_HASH_BLOCK_SIZE is the maximum hash block size that we'll support. |
|
* Currently SHA-384/512 has a 128-byte block size and that's the largest |
|
* supported by TLS.) |
|
*/ |
|
#define MAX_HASH_BLOCK_SIZE 128 |
|
|
|
/*- |
|
* ssl3_cbc_remove_padding removes padding from the decrypted, SSLv3, CBC |
|
* record in |rec| by updating |rec->length| in constant time. |
|
* |
|
* block_size: the block size of the cipher used to encrypt the record. |
|
* returns: |
|
* 0: (in non-constant time) if the record is publicly invalid. |
|
* 1: if the padding was valid |
|
* -1: otherwise. |
|
*/ |
|
int ssl3_cbc_remove_padding(const SSL *s, |
|
SSL3_RECORD *rec, |
|
unsigned block_size, unsigned mac_size) |
|
{ |
|
unsigned padding_length, good; |
|
const unsigned overhead = 1 /* padding length byte */ + mac_size; |
|
|
|
/* |
|
* These lengths are all public so we can test them in non-constant time. |
|
*/ |
|
if (overhead > rec->length) |
|
return 0; |
|
|
|
padding_length = rec->data[rec->length - 1]; |
|
good = constant_time_ge(rec->length, padding_length + overhead); |
|
/* SSLv3 requires that the padding is minimal. */ |
|
good &= constant_time_ge(block_size, padding_length + 1); |
|
padding_length = good & (padding_length + 1); |
|
rec->length -= padding_length; |
|
rec->type |= padding_length << 8; /* kludge: pass padding length */ |
|
return constant_time_select_int(good, 1, -1); |
|
} |
|
|
|
/*- |
|
* tls1_cbc_remove_padding removes the CBC padding from the decrypted, TLS, CBC |
|
* record in |rec| in constant time and returns 1 if the padding is valid and |
|
* -1 otherwise. It also removes any explicit IV from the start of the record |
|
* without leaking any timing about whether there was enough space after the |
|
* padding was removed. |
|
* |
|
* block_size: the block size of the cipher used to encrypt the record. |
|
* returns: |
|
* 0: (in non-constant time) if the record is publicly invalid. |
|
* 1: if the padding was valid |
|
* -1: otherwise. |
|
*/ |
|
int tls1_cbc_remove_padding(const SSL *s, |
|
SSL3_RECORD *rec, |
|
unsigned block_size, unsigned mac_size) |
|
{ |
|
unsigned padding_length, good, to_check, i; |
|
const unsigned overhead = 1 /* padding length byte */ + mac_size; |
|
/* Check if version requires explicit IV */ |
|
if (s->version >= TLS1_1_VERSION || s->version == DTLS1_BAD_VER) { |
|
/* |
|
* These lengths are all public so we can test them in non-constant |
|
* time. |
|
*/ |
|
if (overhead + block_size > rec->length) |
|
return 0; |
|
/* We can now safely skip explicit IV */ |
|
rec->data += block_size; |
|
rec->input += block_size; |
|
rec->length -= block_size; |
|
} else if (overhead > rec->length) |
|
return 0; |
|
|
|
padding_length = rec->data[rec->length - 1]; |
|
|
|
/* |
|
* NB: if compression is in operation the first packet may not be of even |
|
* length so the padding bug check cannot be performed. This bug |
|
* workaround has been around since SSLeay so hopefully it is either |
|
* fixed now or no buggy implementation supports compression [steve] |
|
*/ |
|
if ((s->options & SSL_OP_TLS_BLOCK_PADDING_BUG) && !s->expand) { |
|
/* First packet is even in size, so check */ |
|
if ((CRYPTO_memcmp(s->s3->read_sequence, "\0\0\0\0\0\0\0\0", 8) == 0) && |
|
!(padding_length & 1)) { |
|
s->s3->flags |= TLS1_FLAGS_TLS_PADDING_BUG; |
|
} |
|
if ((s->s3->flags & TLS1_FLAGS_TLS_PADDING_BUG) && padding_length > 0) { |
|
padding_length--; |
|
} |
|
} |
|
|
|
if (EVP_CIPHER_flags(s->enc_read_ctx->cipher) & EVP_CIPH_FLAG_AEAD_CIPHER) { |
|
/* padding is already verified */ |
|
rec->length -= padding_length + 1; |
|
return 1; |
|
} |
|
|
|
good = constant_time_ge(rec->length, overhead + padding_length); |
|
/* |
|
* The padding consists of a length byte at the end of the record and |
|
* then that many bytes of padding, all with the same value as the length |
|
* byte. Thus, with the length byte included, there are i+1 bytes of |
|
* padding. We can't check just |padding_length+1| bytes because that |
|
* leaks decrypted information. Therefore we always have to check the |
|
* maximum amount of padding possible. (Again, the length of the record |
|
* is public information so we can use it.) |
|
*/ |
|
to_check = 255; /* maximum amount of padding. */ |
|
if (to_check > rec->length - 1) |
|
to_check = rec->length - 1; |
|
|
|
for (i = 0; i < to_check; i++) { |
|
unsigned char mask = constant_time_ge_8(padding_length, i); |
|
unsigned char b = rec->data[rec->length - 1 - i]; |
|
/* |
|
* The final |padding_length+1| bytes should all have the value |
|
* |padding_length|. Therefore the XOR should be zero. |
|
*/ |
|
good &= ~(mask & (padding_length ^ b)); |
|
} |
|
|
|
/* |
|
* If any of the final |padding_length+1| bytes had the wrong value, one |
|
* or more of the lower eight bits of |good| will be cleared. |
|
*/ |
|
good = constant_time_eq(0xff, good & 0xff); |
|
padding_length = good & (padding_length + 1); |
|
rec->length -= padding_length; |
|
rec->type |= padding_length << 8; /* kludge: pass padding length */ |
|
|
|
return constant_time_select_int(good, 1, -1); |
|
} |
|
|
|
/*- |
|
* ssl3_cbc_copy_mac copies |md_size| bytes from the end of |rec| to |out| in |
|
* constant time (independent of the concrete value of rec->length, which may |
|
* vary within a 256-byte window). |
|
* |
|
* ssl3_cbc_remove_padding or tls1_cbc_remove_padding must be called prior to |
|
* this function. |
|
* |
|
* On entry: |
|
* rec->orig_len >= md_size |
|
* md_size <= EVP_MAX_MD_SIZE |
|
* |
|
* If CBC_MAC_ROTATE_IN_PLACE is defined then the rotation is performed with |
|
* variable accesses in a 64-byte-aligned buffer. Assuming that this fits into |
|
* a single or pair of cache-lines, then the variable memory accesses don't |
|
* actually affect the timing. CPUs with smaller cache-lines [if any] are |
|
* not multi-core and are not considered vulnerable to cache-timing attacks. |
|
*/ |
|
#define CBC_MAC_ROTATE_IN_PLACE |
|
|
|
void ssl3_cbc_copy_mac(unsigned char *out, |
|
const SSL3_RECORD *rec, |
|
unsigned md_size, unsigned orig_len) |
|
{ |
|
#if defined(CBC_MAC_ROTATE_IN_PLACE) |
|
unsigned char rotated_mac_buf[64 + EVP_MAX_MD_SIZE]; |
|
unsigned char *rotated_mac; |
|
#else |
|
unsigned char rotated_mac[EVP_MAX_MD_SIZE]; |
|
#endif |
|
|
|
/* |
|
* mac_end is the index of |rec->data| just after the end of the MAC. |
|
*/ |
|
unsigned mac_end = rec->length; |
|
unsigned mac_start = mac_end - md_size; |
|
/* |
|
* scan_start contains the number of bytes that we can ignore because the |
|
* MAC's position can only vary by 255 bytes. |
|
*/ |
|
unsigned scan_start = 0; |
|
unsigned i, j; |
|
unsigned div_spoiler; |
|
unsigned rotate_offset; |
|
|
|
OPENSSL_assert(orig_len >= md_size); |
|
OPENSSL_assert(md_size <= EVP_MAX_MD_SIZE); |
|
|
|
#if defined(CBC_MAC_ROTATE_IN_PLACE) |
|
rotated_mac = rotated_mac_buf + ((0 - (size_t)rotated_mac_buf) & 63); |
|
#endif |
|
|
|
/* This information is public so it's safe to branch based on it. */ |
|
if (orig_len > md_size + 255 + 1) |
|
scan_start = orig_len - (md_size + 255 + 1); |
|
/* |
|
* div_spoiler contains a multiple of md_size that is used to cause the |
|
* modulo operation to be constant time. Without this, the time varies |
|
* based on the amount of padding when running on Intel chips at least. |
|
* The aim of right-shifting md_size is so that the compiler doesn't |
|
* figure out that it can remove div_spoiler as that would require it to |
|
* prove that md_size is always even, which I hope is beyond it. |
|
*/ |
|
div_spoiler = md_size >> 1; |
|
div_spoiler <<= (sizeof(div_spoiler) - 1) * 8; |
|
rotate_offset = (div_spoiler + mac_start - scan_start) % md_size; |
|
|
|
memset(rotated_mac, 0, md_size); |
|
for (i = scan_start, j = 0; i < orig_len; i++) { |
|
unsigned char mac_started = constant_time_ge_8(i, mac_start); |
|
unsigned char mac_ended = constant_time_ge_8(i, mac_end); |
|
unsigned char b = rec->data[i]; |
|
rotated_mac[j++] |= b & mac_started & ~mac_ended; |
|
j &= constant_time_lt(j, md_size); |
|
} |
|
|
|
/* Now rotate the MAC */ |
|
#if defined(CBC_MAC_ROTATE_IN_PLACE) |
|
j = 0; |
|
for (i = 0; i < md_size; i++) { |
|
/* in case cache-line is 32 bytes, touch second line */ |
|
((volatile unsigned char *)rotated_mac)[rotate_offset ^ 32]; |
|
out[j++] = rotated_mac[rotate_offset++]; |
|
rotate_offset &= constant_time_lt(rotate_offset, md_size); |
|
} |
|
#else |
|
memset(out, 0, md_size); |
|
rotate_offset = md_size - rotate_offset; |
|
rotate_offset &= constant_time_lt(rotate_offset, md_size); |
|
for (i = 0; i < md_size; i++) { |
|
for (j = 0; j < md_size; j++) |
|
out[j] |= rotated_mac[i] & constant_time_eq_8(j, rotate_offset); |
|
rotate_offset++; |
|
rotate_offset &= constant_time_lt(rotate_offset, md_size); |
|
} |
|
#endif |
|
} |
|
|
|
/* |
|
* u32toLE serialises an unsigned, 32-bit number (n) as four bytes at (p) in |
|
* little-endian order. The value of p is advanced by four. |
|
*/ |
|
#define u32toLE(n, p) \ |
|
(*((p)++)=(unsigned char)(n), \ |
|
*((p)++)=(unsigned char)(n>>8), \ |
|
*((p)++)=(unsigned char)(n>>16), \ |
|
*((p)++)=(unsigned char)(n>>24)) |
|
|
|
/* |
|
* These functions serialize the state of a hash and thus perform the |
|
* standard "final" operation without adding the padding and length that such |
|
* a function typically does. |
|
*/ |
|
static void tls1_md5_final_raw(void *ctx, unsigned char *md_out) |
|
{ |
|
MD5_CTX *md5 = ctx; |
|
u32toLE(md5->A, md_out); |
|
u32toLE(md5->B, md_out); |
|
u32toLE(md5->C, md_out); |
|
u32toLE(md5->D, md_out); |
|
} |
|
|
|
static void tls1_sha1_final_raw(void *ctx, unsigned char *md_out) |
|
{ |
|
SHA_CTX *sha1 = ctx; |
|
l2n(sha1->h0, md_out); |
|
l2n(sha1->h1, md_out); |
|
l2n(sha1->h2, md_out); |
|
l2n(sha1->h3, md_out); |
|
l2n(sha1->h4, md_out); |
|
} |
|
|
|
#define LARGEST_DIGEST_CTX SHA_CTX |
|
|
|
#ifndef OPENSSL_NO_SHA256 |
|
static void tls1_sha256_final_raw(void *ctx, unsigned char *md_out) |
|
{ |
|
SHA256_CTX *sha256 = ctx; |
|
unsigned i; |
|
|
|
for (i = 0; i < 8; i++) { |
|
l2n(sha256->h[i], md_out); |
|
} |
|
} |
|
|
|
# undef LARGEST_DIGEST_CTX |
|
# define LARGEST_DIGEST_CTX SHA256_CTX |
|
#endif |
|
|
|
#ifndef OPENSSL_NO_SHA512 |
|
static void tls1_sha512_final_raw(void *ctx, unsigned char *md_out) |
|
{ |
|
SHA512_CTX *sha512 = ctx; |
|
unsigned i; |
|
|
|
for (i = 0; i < 8; i++) { |
|
l2n8(sha512->h[i], md_out); |
|
} |
|
} |
|
|
|
# undef LARGEST_DIGEST_CTX |
|
# define LARGEST_DIGEST_CTX SHA512_CTX |
|
#endif |
|
|
|
/* |
|
* ssl3_cbc_record_digest_supported returns 1 iff |ctx| uses a hash function |
|
* which ssl3_cbc_digest_record supports. |
|
*/ |
|
char ssl3_cbc_record_digest_supported(const EVP_MD_CTX *ctx) |
|
{ |
|
#ifdef OPENSSL_FIPS |
|
if (FIPS_mode()) |
|
return 0; |
|
#endif |
|
switch (EVP_MD_CTX_type(ctx)) { |
|
case NID_md5: |
|
case NID_sha1: |
|
#ifndef OPENSSL_NO_SHA256 |
|
case NID_sha224: |
|
case NID_sha256: |
|
#endif |
|
#ifndef OPENSSL_NO_SHA512 |
|
case NID_sha384: |
|
case NID_sha512: |
|
#endif |
|
return 1; |
|
default: |
|
return 0; |
|
} |
|
} |
|
|
|
/*- |
|
* ssl3_cbc_digest_record computes the MAC of a decrypted, padded SSLv3/TLS |
|
* record. |
|
* |
|
* ctx: the EVP_MD_CTX from which we take the hash function. |
|
* ssl3_cbc_record_digest_supported must return true for this EVP_MD_CTX. |
|
* md_out: the digest output. At most EVP_MAX_MD_SIZE bytes will be written. |
|
* md_out_size: if non-NULL, the number of output bytes is written here. |
|
* header: the 13-byte, TLS record header. |
|
* data: the record data itself, less any preceeding explicit IV. |
|
* data_plus_mac_size: the secret, reported length of the data and MAC |
|
* once the padding has been removed. |
|
* data_plus_mac_plus_padding_size: the public length of the whole |
|
* record, including padding. |
|
* is_sslv3: non-zero if we are to use SSLv3. Otherwise, TLS. |
|
* |
|
* On entry: by virtue of having been through one of the remove_padding |
|
* functions, above, we know that data_plus_mac_size is large enough to contain |
|
* a padding byte and MAC. (If the padding was invalid, it might contain the |
|
* padding too. ) |
|
* Returns 1 on success or 0 on error |
|
*/ |
|
int ssl3_cbc_digest_record(const EVP_MD_CTX *ctx, |
|
unsigned char *md_out, |
|
size_t *md_out_size, |
|
const unsigned char header[13], |
|
const unsigned char *data, |
|
size_t data_plus_mac_size, |
|
size_t data_plus_mac_plus_padding_size, |
|
const unsigned char *mac_secret, |
|
unsigned mac_secret_length, char is_sslv3) |
|
{ |
|
union { |
|
double align; |
|
unsigned char c[sizeof(LARGEST_DIGEST_CTX)]; |
|
} md_state; |
|
void (*md_final_raw) (void *ctx, unsigned char *md_out); |
|
void (*md_transform) (void *ctx, const unsigned char *block); |
|
unsigned md_size, md_block_size = 64; |
|
unsigned sslv3_pad_length = 40, header_length, variance_blocks, |
|
len, max_mac_bytes, num_blocks, |
|
num_starting_blocks, k, mac_end_offset, c, index_a, index_b; |
|
unsigned int bits; /* at most 18 bits */ |
|
unsigned char length_bytes[MAX_HASH_BIT_COUNT_BYTES]; |
|
/* hmac_pad is the masked HMAC key. */ |
|
unsigned char hmac_pad[MAX_HASH_BLOCK_SIZE]; |
|
unsigned char first_block[MAX_HASH_BLOCK_SIZE]; |
|
unsigned char mac_out[EVP_MAX_MD_SIZE]; |
|
unsigned i, j, md_out_size_u; |
|
EVP_MD_CTX md_ctx; |
|
/* |
|
* mdLengthSize is the number of bytes in the length field that |
|
* terminates * the hash. |
|
*/ |
|
unsigned md_length_size = 8; |
|
char length_is_big_endian = 1; |
|
|
|
/* |
|
* This is a, hopefully redundant, check that allows us to forget about |
|
* many possible overflows later in this function. |
|
*/ |
|
OPENSSL_assert(data_plus_mac_plus_padding_size < 1024 * 1024); |
|
|
|
switch (EVP_MD_CTX_type(ctx)) { |
|
case NID_md5: |
|
if (MD5_Init((MD5_CTX *)md_state.c) <= 0) |
|
return 0; |
|
md_final_raw = tls1_md5_final_raw; |
|
md_transform = |
|
(void (*)(void *ctx, const unsigned char *block))MD5_Transform; |
|
md_size = 16; |
|
sslv3_pad_length = 48; |
|
length_is_big_endian = 0; |
|
break; |
|
case NID_sha1: |
|
if (SHA1_Init((SHA_CTX *)md_state.c) <= 0) |
|
return 0; |
|
md_final_raw = tls1_sha1_final_raw; |
|
md_transform = |
|
(void (*)(void *ctx, const unsigned char *block))SHA1_Transform; |
|
md_size = 20; |
|
break; |
|
#ifndef OPENSSL_NO_SHA256 |
|
case NID_sha224: |
|
if (SHA224_Init((SHA256_CTX *)md_state.c) <= 0) |
|
return 0; |
|
md_final_raw = tls1_sha256_final_raw; |
|
md_transform = |
|
(void (*)(void *ctx, const unsigned char *block))SHA256_Transform; |
|
md_size = 224 / 8; |
|
break; |
|
case NID_sha256: |
|
if (SHA256_Init((SHA256_CTX *)md_state.c) <= 0) |
|
return 0; |
|
md_final_raw = tls1_sha256_final_raw; |
|
md_transform = |
|
(void (*)(void *ctx, const unsigned char *block))SHA256_Transform; |
|
md_size = 32; |
|
break; |
|
#endif |
|
#ifndef OPENSSL_NO_SHA512 |
|
case NID_sha384: |
|
if (SHA384_Init((SHA512_CTX *)md_state.c) <= 0) |
|
return 0; |
|
md_final_raw = tls1_sha512_final_raw; |
|
md_transform = |
|
(void (*)(void *ctx, const unsigned char *block))SHA512_Transform; |
|
md_size = 384 / 8; |
|
md_block_size = 128; |
|
md_length_size = 16; |
|
break; |
|
case NID_sha512: |
|
if (SHA512_Init((SHA512_CTX *)md_state.c) <= 0) |
|
return 0; |
|
md_final_raw = tls1_sha512_final_raw; |
|
md_transform = |
|
(void (*)(void *ctx, const unsigned char *block))SHA512_Transform; |
|
md_size = 64; |
|
md_block_size = 128; |
|
md_length_size = 16; |
|
break; |
|
#endif |
|
default: |
|
/* |
|
* ssl3_cbc_record_digest_supported should have been called first to |
|
* check that the hash function is supported. |
|
*/ |
|
OPENSSL_assert(0); |
|
if (md_out_size) |
|
*md_out_size = -1; |
|
return 0; |
|
} |
|
|
|
OPENSSL_assert(md_length_size <= MAX_HASH_BIT_COUNT_BYTES); |
|
OPENSSL_assert(md_block_size <= MAX_HASH_BLOCK_SIZE); |
|
OPENSSL_assert(md_size <= EVP_MAX_MD_SIZE); |
|
|
|
header_length = 13; |
|
if (is_sslv3) { |
|
header_length = mac_secret_length + sslv3_pad_length + 8 /* sequence |
|
* number */ + |
|
1 /* record type */ + |
|
2 /* record length */ ; |
|
} |
|
|
|
/* |
|
* variance_blocks is the number of blocks of the hash that we have to |
|
* calculate in constant time because they could be altered by the |
|
* padding value. In SSLv3, the padding must be minimal so the end of |
|
* the plaintext varies by, at most, 15+20 = 35 bytes. (We conservatively |
|
* assume that the MAC size varies from 0..20 bytes.) In case the 9 bytes |
|
* of hash termination (0x80 + 64-bit length) don't fit in the final |
|
* block, we say that the final two blocks can vary based on the padding. |
|
* TLSv1 has MACs up to 48 bytes long (SHA-384) and the padding is not |
|
* required to be minimal. Therefore we say that the final six blocks can |
|
* vary based on the padding. Later in the function, if the message is |
|
* short and there obviously cannot be this many blocks then |
|
* variance_blocks can be reduced. |
|
*/ |
|
variance_blocks = is_sslv3 ? 2 : 6; |
|
/* |
|
* From now on we're dealing with the MAC, which conceptually has 13 |
|
* bytes of `header' before the start of the data (TLS) or 71/75 bytes |
|
* (SSLv3) |
|
*/ |
|
len = data_plus_mac_plus_padding_size + header_length; |
|
/* |
|
* max_mac_bytes contains the maximum bytes of bytes in the MAC, |
|
* including * |header|, assuming that there's no padding. |
|
*/ |
|
max_mac_bytes = len - md_size - 1; |
|
/* num_blocks is the maximum number of hash blocks. */ |
|
num_blocks = |
|
(max_mac_bytes + 1 + md_length_size + md_block_size - |
|
1) / md_block_size; |
|
/* |
|
* In order to calculate the MAC in constant time we have to handle the |
|
* final blocks specially because the padding value could cause the end |
|
* to appear somewhere in the final |variance_blocks| blocks and we can't |
|
* leak where. However, |num_starting_blocks| worth of data can be hashed |
|
* right away because no padding value can affect whether they are |
|
* plaintext. |
|
*/ |
|
num_starting_blocks = 0; |
|
/* |
|
* k is the starting byte offset into the conceptual header||data where |
|
* we start processing. |
|
*/ |
|
k = 0; |
|
/* |
|
* mac_end_offset is the index just past the end of the data to be MACed. |
|
*/ |
|
mac_end_offset = data_plus_mac_size + header_length - md_size; |
|
/* |
|
* c is the index of the 0x80 byte in the final hash block that contains |
|
* application data. |
|
*/ |
|
c = mac_end_offset % md_block_size; |
|
/* |
|
* index_a is the hash block number that contains the 0x80 terminating |
|
* value. |
|
*/ |
|
index_a = mac_end_offset / md_block_size; |
|
/* |
|
* index_b is the hash block number that contains the 64-bit hash length, |
|
* in bits. |
|
*/ |
|
index_b = (mac_end_offset + md_length_size) / md_block_size; |
|
/* |
|
* bits is the hash-length in bits. It includes the additional hash block |
|
* for the masked HMAC key, or whole of |header| in the case of SSLv3. |
|
*/ |
|
|
|
/* |
|
* For SSLv3, if we're going to have any starting blocks then we need at |
|
* least two because the header is larger than a single block. |
|
*/ |
|
if (num_blocks > variance_blocks + (is_sslv3 ? 1 : 0)) { |
|
num_starting_blocks = num_blocks - variance_blocks; |
|
k = md_block_size * num_starting_blocks; |
|
} |
|
|
|
bits = 8 * mac_end_offset; |
|
if (!is_sslv3) { |
|
/* |
|
* Compute the initial HMAC block. For SSLv3, the padding and secret |
|
* bytes are included in |header| because they take more than a |
|
* single block. |
|
*/ |
|
bits += 8 * md_block_size; |
|
memset(hmac_pad, 0, md_block_size); |
|
OPENSSL_assert(mac_secret_length <= sizeof(hmac_pad)); |
|
memcpy(hmac_pad, mac_secret, mac_secret_length); |
|
for (i = 0; i < md_block_size; i++) |
|
hmac_pad[i] ^= 0x36; |
|
|
|
md_transform(md_state.c, hmac_pad); |
|
} |
|
|
|
if (length_is_big_endian) { |
|
memset(length_bytes, 0, md_length_size - 4); |
|
length_bytes[md_length_size - 4] = (unsigned char)(bits >> 24); |
|
length_bytes[md_length_size - 3] = (unsigned char)(bits >> 16); |
|
length_bytes[md_length_size - 2] = (unsigned char)(bits >> 8); |
|
length_bytes[md_length_size - 1] = (unsigned char)bits; |
|
} else { |
|
memset(length_bytes, 0, md_length_size); |
|
length_bytes[md_length_size - 5] = (unsigned char)(bits >> 24); |
|
length_bytes[md_length_size - 6] = (unsigned char)(bits >> 16); |
|
length_bytes[md_length_size - 7] = (unsigned char)(bits >> 8); |
|
length_bytes[md_length_size - 8] = (unsigned char)bits; |
|
} |
|
|
|
if (k > 0) { |
|
if (is_sslv3) { |
|
unsigned overhang; |
|
|
|
/* |
|
* The SSLv3 header is larger than a single block. overhang is |
|
* the number of bytes beyond a single block that the header |
|
* consumes: either 7 bytes (SHA1) or 11 bytes (MD5). There are no |
|
* ciphersuites in SSLv3 that are not SHA1 or MD5 based and |
|
* therefore we can be confident that the header_length will be |
|
* greater than |md_block_size|. However we add a sanity check just |
|
* in case |
|
*/ |
|
if (header_length <= md_block_size) { |
|
/* Should never happen */ |
|
return 0; |
|
} |
|
overhang = header_length - md_block_size; |
|
md_transform(md_state.c, header); |
|
memcpy(first_block, header + md_block_size, overhang); |
|
memcpy(first_block + overhang, data, md_block_size - overhang); |
|
md_transform(md_state.c, first_block); |
|
for (i = 1; i < k / md_block_size - 1; i++) |
|
md_transform(md_state.c, data + md_block_size * i - overhang); |
|
} else { |
|
/* k is a multiple of md_block_size. */ |
|
memcpy(first_block, header, 13); |
|
memcpy(first_block + 13, data, md_block_size - 13); |
|
md_transform(md_state.c, first_block); |
|
for (i = 1; i < k / md_block_size; i++) |
|
md_transform(md_state.c, data + md_block_size * i - 13); |
|
} |
|
} |
|
|
|
memset(mac_out, 0, sizeof(mac_out)); |
|
|
|
/* |
|
* We now process the final hash blocks. For each block, we construct it |
|
* in constant time. If the |i==index_a| then we'll include the 0x80 |
|
* bytes and zero pad etc. For each block we selectively copy it, in |
|
* constant time, to |mac_out|. |
|
*/ |
|
for (i = num_starting_blocks; i <= num_starting_blocks + variance_blocks; |
|
i++) { |
|
unsigned char block[MAX_HASH_BLOCK_SIZE]; |
|
unsigned char is_block_a = constant_time_eq_8(i, index_a); |
|
unsigned char is_block_b = constant_time_eq_8(i, index_b); |
|
for (j = 0; j < md_block_size; j++) { |
|
unsigned char b = 0, is_past_c, is_past_cp1; |
|
if (k < header_length) |
|
b = header[k]; |
|
else if (k < data_plus_mac_plus_padding_size + header_length) |
|
b = data[k - header_length]; |
|
k++; |
|
|
|
is_past_c = is_block_a & constant_time_ge_8(j, c); |
|
is_past_cp1 = is_block_a & constant_time_ge_8(j, c + 1); |
|
/* |
|
* If this is the block containing the end of the application |
|
* data, and we are at the offset for the 0x80 value, then |
|
* overwrite b with 0x80. |
|
*/ |
|
b = constant_time_select_8(is_past_c, 0x80, b); |
|
/* |
|
* If this the the block containing the end of the application |
|
* data and we're past the 0x80 value then just write zero. |
|
*/ |
|
b = b & ~is_past_cp1; |
|
/* |
|
* If this is index_b (the final block), but not index_a (the end |
|
* of the data), then the 64-bit length didn't fit into index_a |
|
* and we're having to add an extra block of zeros. |
|
*/ |
|
b &= ~is_block_b | is_block_a; |
|
|
|
/* |
|
* The final bytes of one of the blocks contains the length. |
|
*/ |
|
if (j >= md_block_size - md_length_size) { |
|
/* If this is index_b, write a length byte. */ |
|
b = constant_time_select_8(is_block_b, |
|
length_bytes[j - |
|
(md_block_size - |
|
md_length_size)], b); |
|
} |
|
block[j] = b; |
|
} |
|
|
|
md_transform(md_state.c, block); |
|
md_final_raw(md_state.c, block); |
|
/* If this is index_b, copy the hash value to |mac_out|. */ |
|
for (j = 0; j < md_size; j++) |
|
mac_out[j] |= block[j] & is_block_b; |
|
} |
|
|
|
EVP_MD_CTX_init(&md_ctx); |
|
if (EVP_DigestInit_ex(&md_ctx, ctx->digest, NULL /* engine */ ) <= 0) |
|
goto err; |
|
if (is_sslv3) { |
|
/* We repurpose |hmac_pad| to contain the SSLv3 pad2 block. */ |
|
memset(hmac_pad, 0x5c, sslv3_pad_length); |
|
|
|
if (EVP_DigestUpdate(&md_ctx, mac_secret, mac_secret_length) <= 0 |
|
|| EVP_DigestUpdate(&md_ctx, hmac_pad, sslv3_pad_length) <= 0 |
|
|| EVP_DigestUpdate(&md_ctx, mac_out, md_size) <= 0) |
|
goto err; |
|
} else { |
|
/* Complete the HMAC in the standard manner. */ |
|
for (i = 0; i < md_block_size; i++) |
|
hmac_pad[i] ^= 0x6a; |
|
|
|
if (EVP_DigestUpdate(&md_ctx, hmac_pad, md_block_size) <= 0 |
|
|| EVP_DigestUpdate(&md_ctx, mac_out, md_size) <= 0) |
|
goto err; |
|
} |
|
EVP_DigestFinal(&md_ctx, md_out, &md_out_size_u); |
|
if (md_out_size) |
|
*md_out_size = md_out_size_u; |
|
EVP_MD_CTX_cleanup(&md_ctx); |
|
|
|
return 1; |
|
err: |
|
EVP_MD_CTX_cleanup(&md_ctx); |
|
return 0; |
|
} |
|
|
|
#ifdef OPENSSL_FIPS |
|
|
|
/* |
|
* Due to the need to use EVP in FIPS mode we can't reimplement digests but |
|
* we can ensure the number of blocks processed is equal for all cases by |
|
* digesting additional data. |
|
*/ |
|
|
|
void tls_fips_digest_extra(const EVP_CIPHER_CTX *cipher_ctx, |
|
EVP_MD_CTX *mac_ctx, const unsigned char *data, |
|
size_t data_len, size_t orig_len) |
|
{ |
|
size_t block_size, digest_pad, blocks_data, blocks_orig; |
|
if (EVP_CIPHER_CTX_mode(cipher_ctx) != EVP_CIPH_CBC_MODE) |
|
return; |
|
block_size = EVP_MD_CTX_block_size(mac_ctx); |
|
/*- |
|
* We are in FIPS mode if we get this far so we know we have only SHA* |
|
* digests and TLS to deal with. |
|
* Minimum digest padding length is 17 for SHA384/SHA512 and 9 |
|
* otherwise. |
|
* Additional header is 13 bytes. To get the number of digest blocks |
|
* processed round up the amount of data plus padding to the nearest |
|
* block length. Block length is 128 for SHA384/SHA512 and 64 otherwise. |
|
* So we have: |
|
* blocks = (payload_len + digest_pad + 13 + block_size - 1)/block_size |
|
* equivalently: |
|
* blocks = (payload_len + digest_pad + 12)/block_size + 1 |
|
* HMAC adds a constant overhead. |
|
* We're ultimately only interested in differences so this becomes |
|
* blocks = (payload_len + 29)/128 |
|
* for SHA384/SHA512 and |
|
* blocks = (payload_len + 21)/64 |
|
* otherwise. |
|
*/ |
|
digest_pad = block_size == 64 ? 21 : 29; |
|
blocks_orig = (orig_len + digest_pad) / block_size; |
|
blocks_data = (data_len + digest_pad) / block_size; |
|
/* |
|
* MAC enough blocks to make up the difference between the original and |
|
* actual lengths plus one extra block to ensure this is never a no op. |
|
* The "data" pointer should always have enough space to perform this |
|
* operation as it is large enough for a maximum length TLS buffer. |
|
*/ |
|
EVP_DigestSignUpdate(mac_ctx, data, |
|
(blocks_orig - blocks_data + 1) * block_size); |
|
} |
|
#endif
|
|
|