You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
1266 lines
38 KiB
1266 lines
38 KiB
/*- |
|
* Support for VIA PadLock Advanced Cryptography Engine (ACE) |
|
* Written by Michal Ludvig <michal@logix.cz> |
|
* http://www.logix.cz/michal |
|
* |
|
* Big thanks to Andy Polyakov for a help with optimization, |
|
* assembler fixes, port to MS Windows and a lot of other |
|
* valuable work on this engine! |
|
*/ |
|
|
|
/* ==================================================================== |
|
* Copyright (c) 1999-2001 The OpenSSL Project. All rights reserved. |
|
* |
|
* Redistribution and use in source and binary forms, with or without |
|
* modification, are permitted provided that the following conditions |
|
* are met: |
|
* |
|
* 1. Redistributions of source code must retain the above copyright |
|
* notice, this list of conditions and the following disclaimer. |
|
* |
|
* 2. Redistributions in binary form must reproduce the above copyright |
|
* notice, this list of conditions and the following disclaimer in |
|
* the documentation and/or other materials provided with the |
|
* distribution. |
|
* |
|
* 3. All advertising materials mentioning features or use of this |
|
* software must display the following acknowledgment: |
|
* "This product includes software developed by the OpenSSL Project |
|
* for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)" |
|
* |
|
* 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to |
|
* endorse or promote products derived from this software without |
|
* prior written permission. For written permission, please contact |
|
* licensing@OpenSSL.org. |
|
* |
|
* 5. Products derived from this software may not be called "OpenSSL" |
|
* nor may "OpenSSL" appear in their names without prior written |
|
* permission of the OpenSSL Project. |
|
* |
|
* 6. Redistributions of any form whatsoever must retain the following |
|
* acknowledgment: |
|
* "This product includes software developed by the OpenSSL Project |
|
* for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)" |
|
* |
|
* THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY |
|
* EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR |
|
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR |
|
* ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
|
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT |
|
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; |
|
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, |
|
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
|
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED |
|
* OF THE POSSIBILITY OF SUCH DAMAGE. |
|
* ==================================================================== |
|
* |
|
* This product includes cryptographic software written by Eric Young |
|
* (eay@cryptsoft.com). This product includes software written by Tim |
|
* Hudson (tjh@cryptsoft.com). |
|
* |
|
*/ |
|
|
|
#include <stdio.h> |
|
#include <string.h> |
|
|
|
#include <openssl/opensslconf.h> |
|
#include <openssl/crypto.h> |
|
#include <openssl/dso.h> |
|
#include <openssl/engine.h> |
|
#include <openssl/evp.h> |
|
#ifndef OPENSSL_NO_AES |
|
# include <openssl/aes.h> |
|
#endif |
|
#include <openssl/rand.h> |
|
#include <openssl/err.h> |
|
|
|
#ifndef OPENSSL_NO_HW |
|
# ifndef OPENSSL_NO_HW_PADLOCK |
|
|
|
/* Attempt to have a single source for both 0.9.7 and 0.9.8 :-) */ |
|
# if (OPENSSL_VERSION_NUMBER >= 0x00908000L) |
|
# ifndef OPENSSL_NO_DYNAMIC_ENGINE |
|
# define DYNAMIC_ENGINE |
|
# endif |
|
# elif (OPENSSL_VERSION_NUMBER >= 0x00907000L) |
|
# ifdef ENGINE_DYNAMIC_SUPPORT |
|
# define DYNAMIC_ENGINE |
|
# endif |
|
# else |
|
# error "Only OpenSSL >= 0.9.7 is supported" |
|
# endif |
|
|
|
/* |
|
* VIA PadLock AES is available *ONLY* on some x86 CPUs. Not only that it |
|
* doesn't exist elsewhere, but it even can't be compiled on other platforms! |
|
* |
|
* In addition, because of the heavy use of inline assembler, compiler choice |
|
* is limited to GCC and Microsoft C. |
|
*/ |
|
# undef COMPILE_HW_PADLOCK |
|
# if !defined(I386_ONLY) && !defined(OPENSSL_NO_INLINE_ASM) |
|
# if (defined(__GNUC__) && (defined(__i386__) || defined(__i386))) || \ |
|
(defined(_MSC_VER) && defined(_M_IX86)) |
|
# define COMPILE_HW_PADLOCK |
|
# endif |
|
# endif |
|
|
|
# ifdef OPENSSL_NO_DYNAMIC_ENGINE |
|
# ifdef COMPILE_HW_PADLOCK |
|
static ENGINE *ENGINE_padlock(void); |
|
# endif |
|
|
|
void ENGINE_load_padlock(void) |
|
{ |
|
/* On non-x86 CPUs it just returns. */ |
|
# ifdef COMPILE_HW_PADLOCK |
|
ENGINE *toadd = ENGINE_padlock(); |
|
if (!toadd) |
|
return; |
|
ENGINE_add(toadd); |
|
ENGINE_free(toadd); |
|
ERR_clear_error(); |
|
# endif |
|
} |
|
|
|
# endif |
|
|
|
# ifdef COMPILE_HW_PADLOCK |
|
/* |
|
* We do these includes here to avoid header problems on platforms that do |
|
* not have the VIA padlock anyway... |
|
*/ |
|
# include <stdlib.h> |
|
# ifdef _WIN32 |
|
# include <malloc.h> |
|
# ifndef alloca |
|
# define alloca _alloca |
|
# endif |
|
# elif defined(__GNUC__) |
|
# ifndef alloca |
|
# define alloca(s) __builtin_alloca(s) |
|
# endif |
|
# endif |
|
|
|
/* Function for ENGINE detection and control */ |
|
static int padlock_available(void); |
|
static int padlock_init(ENGINE *e); |
|
|
|
/* RNG Stuff */ |
|
static RAND_METHOD padlock_rand; |
|
|
|
/* Cipher Stuff */ |
|
# ifndef OPENSSL_NO_AES |
|
static int padlock_ciphers(ENGINE *e, const EVP_CIPHER **cipher, |
|
const int **nids, int nid); |
|
# endif |
|
|
|
/* Engine names */ |
|
static const char *padlock_id = "padlock"; |
|
static char padlock_name[100]; |
|
|
|
/* Available features */ |
|
static int padlock_use_ace = 0; /* Advanced Cryptography Engine */ |
|
static int padlock_use_rng = 0; /* Random Number Generator */ |
|
# ifndef OPENSSL_NO_AES |
|
static int padlock_aes_align_required = 1; |
|
# endif |
|
|
|
/* ===== Engine "management" functions ===== */ |
|
|
|
/* Prepare the ENGINE structure for registration */ |
|
static int padlock_bind_helper(ENGINE *e) |
|
{ |
|
/* Check available features */ |
|
padlock_available(); |
|
|
|
# if 1 /* disable RNG for now, see commentary in |
|
* vicinity of RNG code */ |
|
padlock_use_rng = 0; |
|
# endif |
|
|
|
/* Generate a nice engine name with available features */ |
|
BIO_snprintf(padlock_name, sizeof(padlock_name), |
|
"VIA PadLock (%s, %s)", |
|
padlock_use_rng ? "RNG" : "no-RNG", |
|
padlock_use_ace ? "ACE" : "no-ACE"); |
|
|
|
/* Register everything or return with an error */ |
|
if (!ENGINE_set_id(e, padlock_id) || |
|
!ENGINE_set_name(e, padlock_name) || |
|
!ENGINE_set_init_function(e, padlock_init) || |
|
# ifndef OPENSSL_NO_AES |
|
(padlock_use_ace && !ENGINE_set_ciphers(e, padlock_ciphers)) || |
|
# endif |
|
(padlock_use_rng && !ENGINE_set_RAND(e, &padlock_rand))) { |
|
return 0; |
|
} |
|
|
|
/* Everything looks good */ |
|
return 1; |
|
} |
|
|
|
# ifdef OPENSSL_NO_DYNAMIC_ENGINE |
|
|
|
/* Constructor */ |
|
static ENGINE *ENGINE_padlock(void) |
|
{ |
|
ENGINE *eng = ENGINE_new(); |
|
|
|
if (!eng) { |
|
return NULL; |
|
} |
|
|
|
if (!padlock_bind_helper(eng)) { |
|
ENGINE_free(eng); |
|
return NULL; |
|
} |
|
|
|
return eng; |
|
} |
|
|
|
# endif |
|
|
|
/* Check availability of the engine */ |
|
static int padlock_init(ENGINE *e) |
|
{ |
|
return (padlock_use_rng || padlock_use_ace); |
|
} |
|
|
|
/* |
|
* This stuff is needed if this ENGINE is being compiled into a |
|
* self-contained shared-library. |
|
*/ |
|
# ifdef DYNAMIC_ENGINE |
|
static int padlock_bind_fn(ENGINE *e, const char *id) |
|
{ |
|
if (id && (strcmp(id, padlock_id) != 0)) { |
|
return 0; |
|
} |
|
|
|
if (!padlock_bind_helper(e)) { |
|
return 0; |
|
} |
|
|
|
return 1; |
|
} |
|
|
|
IMPLEMENT_DYNAMIC_CHECK_FN() |
|
IMPLEMENT_DYNAMIC_BIND_FN(padlock_bind_fn) |
|
# endif /* DYNAMIC_ENGINE */ |
|
/* ===== Here comes the "real" engine ===== */ |
|
# ifndef OPENSSL_NO_AES |
|
/* Some AES-related constants */ |
|
# define AES_BLOCK_SIZE 16 |
|
# define AES_KEY_SIZE_128 16 |
|
# define AES_KEY_SIZE_192 24 |
|
# define AES_KEY_SIZE_256 32 |
|
/* |
|
* Here we store the status information relevant to the current context. |
|
*/ |
|
/* |
|
* BIG FAT WARNING: Inline assembler in PADLOCK_XCRYPT_ASM() depends on |
|
* the order of items in this structure. Don't blindly modify, reorder, |
|
* etc! |
|
*/ |
|
struct padlock_cipher_data { |
|
unsigned char iv[AES_BLOCK_SIZE]; /* Initialization vector */ |
|
union { |
|
unsigned int pad[4]; |
|
struct { |
|
int rounds:4; |
|
int dgst:1; /* n/a in C3 */ |
|
int align:1; /* n/a in C3 */ |
|
int ciphr:1; /* n/a in C3 */ |
|
unsigned int keygen:1; |
|
int interm:1; |
|
unsigned int encdec:1; |
|
int ksize:2; |
|
} b; |
|
} cword; /* Control word */ |
|
AES_KEY ks; /* Encryption key */ |
|
}; |
|
|
|
/* |
|
* Essentially this variable belongs in thread local storage. |
|
* Having this variable global on the other hand can only cause |
|
* few bogus key reloads [if any at all on single-CPU system], |
|
* so we accept the penatly... |
|
*/ |
|
static volatile struct padlock_cipher_data *padlock_saved_context; |
|
# endif |
|
|
|
/*- |
|
* ======================================================= |
|
* Inline assembler section(s). |
|
* ======================================================= |
|
* Order of arguments is chosen to facilitate Windows port |
|
* using __fastcall calling convention. If you wish to add |
|
* more routines, keep in mind that first __fastcall |
|
* argument is passed in %ecx and second - in %edx. |
|
* ======================================================= |
|
*/ |
|
# if defined(__GNUC__) && __GNUC__>=2 |
|
/* |
|
* As for excessive "push %ebx"/"pop %ebx" found all over. |
|
* When generating position-independent code GCC won't let |
|
* us use "b" in assembler templates nor even respect "ebx" |
|
* in "clobber description." Therefore the trouble... |
|
*/ |
|
|
|
/* |
|
* Helper function - check if a CPUID instruction is available on this CPU |
|
*/ |
|
static int padlock_insn_cpuid_available(void) |
|
{ |
|
int result = -1; |
|
|
|
/* |
|
* We're checking if the bit #21 of EFLAGS can be toggled. If yes = |
|
* CPUID is available. |
|
*/ |
|
asm volatile ("pushf\n" |
|
"popl %%eax\n" |
|
"xorl $0x200000, %%eax\n" |
|
"movl %%eax, %%ecx\n" |
|
"andl $0x200000, %%ecx\n" |
|
"pushl %%eax\n" |
|
"popf\n" |
|
"pushf\n" |
|
"popl %%eax\n" |
|
"andl $0x200000, %%eax\n" |
|
"xorl %%eax, %%ecx\n" |
|
"movl %%ecx, %0\n":"=r" (result)::"eax", "ecx"); |
|
|
|
return (result == 0); |
|
} |
|
|
|
/* |
|
* Load supported features of the CPU to see if the PadLock is available. |
|
*/ |
|
static int padlock_available(void) |
|
{ |
|
char vendor_string[16]; |
|
unsigned int eax, edx; |
|
|
|
/* First check if the CPUID instruction is available at all... */ |
|
if (!padlock_insn_cpuid_available()) |
|
return 0; |
|
|
|
/* Are we running on the Centaur (VIA) CPU? */ |
|
eax = 0x00000000; |
|
vendor_string[12] = 0; |
|
asm volatile ("pushl %%ebx\n" |
|
"cpuid\n" |
|
"movl %%ebx,(%%edi)\n" |
|
"movl %%edx,4(%%edi)\n" |
|
"movl %%ecx,8(%%edi)\n" |
|
"popl %%ebx":"+a" (eax):"D"(vendor_string):"ecx", "edx"); |
|
if (strcmp(vendor_string, "CentaurHauls") != 0) |
|
return 0; |
|
|
|
/* Check for Centaur Extended Feature Flags presence */ |
|
eax = 0xC0000000; |
|
asm volatile ("pushl %%ebx; cpuid; popl %%ebx":"+a" (eax)::"ecx", "edx"); |
|
if (eax < 0xC0000001) |
|
return 0; |
|
|
|
/* Read the Centaur Extended Feature Flags */ |
|
eax = 0xC0000001; |
|
asm volatile ("pushl %%ebx; cpuid; popl %%ebx":"+a" (eax), |
|
"=d"(edx)::"ecx"); |
|
|
|
/* Fill up some flags */ |
|
padlock_use_ace = ((edx & (0x3 << 6)) == (0x3 << 6)); |
|
padlock_use_rng = ((edx & (0x3 << 2)) == (0x3 << 2)); |
|
|
|
return padlock_use_ace + padlock_use_rng; |
|
} |
|
|
|
# ifndef OPENSSL_NO_AES |
|
# ifndef AES_ASM |
|
/* Our own htonl()/ntohl() */ |
|
static inline void padlock_bswapl(AES_KEY *ks) |
|
{ |
|
size_t i = sizeof(ks->rd_key) / sizeof(ks->rd_key[0]); |
|
unsigned int *key = ks->rd_key; |
|
|
|
while (i--) { |
|
asm volatile ("bswapl %0":"+r" (*key)); |
|
key++; |
|
} |
|
} |
|
# endif |
|
# endif |
|
|
|
/* |
|
* Force key reload from memory to the CPU microcode. Loading EFLAGS from the |
|
* stack clears EFLAGS[30] which does the trick. |
|
*/ |
|
static inline void padlock_reload_key(void) |
|
{ |
|
asm volatile ("pushfl; popfl"); |
|
} |
|
|
|
# ifndef OPENSSL_NO_AES |
|
/* |
|
* This is heuristic key context tracing. At first one |
|
* believes that one should use atomic swap instructions, |
|
* but it's not actually necessary. Point is that if |
|
* padlock_saved_context was changed by another thread |
|
* after we've read it and before we compare it with cdata, |
|
* our key *shall* be reloaded upon thread context switch |
|
* and we are therefore set in either case... |
|
*/ |
|
static inline void padlock_verify_context(struct padlock_cipher_data *cdata) |
|
{ |
|
asm volatile ("pushfl\n" |
|
" btl $30,(%%esp)\n" |
|
" jnc 1f\n" |
|
" cmpl %2,%1\n" |
|
" je 1f\n" |
|
" popfl\n" |
|
" subl $4,%%esp\n" |
|
"1: addl $4,%%esp\n" |
|
" movl %2,%0":"+m" (padlock_saved_context) |
|
:"r"(padlock_saved_context), "r"(cdata):"cc"); |
|
} |
|
|
|
/* Template for padlock_xcrypt_* modes */ |
|
/* |
|
* BIG FAT WARNING: The offsets used with 'leal' instructions describe items |
|
* of the 'padlock_cipher_data' structure. |
|
*/ |
|
# define PADLOCK_XCRYPT_ASM(name,rep_xcrypt) \ |
|
static inline void *name(size_t cnt, \ |
|
struct padlock_cipher_data *cdata, \ |
|
void *out, const void *inp) \ |
|
{ void *iv; \ |
|
asm volatile ( "pushl %%ebx\n" \ |
|
" leal 16(%0),%%edx\n" \ |
|
" leal 32(%0),%%ebx\n" \ |
|
rep_xcrypt "\n" \ |
|
" popl %%ebx" \ |
|
: "=a"(iv), "=c"(cnt), "=D"(out), "=S"(inp) \ |
|
: "0"(cdata), "1"(cnt), "2"(out), "3"(inp) \ |
|
: "edx", "cc", "memory"); \ |
|
return iv; \ |
|
} |
|
|
|
/* Generate all functions with appropriate opcodes */ |
|
/* rep xcryptecb */ |
|
PADLOCK_XCRYPT_ASM(padlock_xcrypt_ecb, ".byte 0xf3,0x0f,0xa7,0xc8") |
|
/* rep xcryptcbc */ |
|
PADLOCK_XCRYPT_ASM(padlock_xcrypt_cbc, ".byte 0xf3,0x0f,0xa7,0xd0") |
|
/* rep xcryptcfb */ |
|
PADLOCK_XCRYPT_ASM(padlock_xcrypt_cfb, ".byte 0xf3,0x0f,0xa7,0xe0") |
|
/* rep xcryptofb */ |
|
PADLOCK_XCRYPT_ASM(padlock_xcrypt_ofb, ".byte 0xf3,0x0f,0xa7,0xe8") |
|
# endif |
|
/* The RNG call itself */ |
|
static inline unsigned int padlock_xstore(void *addr, unsigned int edx_in) |
|
{ |
|
unsigned int eax_out; |
|
|
|
asm volatile (".byte 0x0f,0xa7,0xc0" /* xstore */ |
|
:"=a" (eax_out), "=m"(*(unsigned *)addr) |
|
:"D"(addr), "d"(edx_in) |
|
); |
|
|
|
return eax_out; |
|
} |
|
|
|
/* |
|
* Why not inline 'rep movsd'? I failed to find information on what value in |
|
* Direction Flag one can expect and consequently have to apply |
|
* "better-safe-than-sorry" approach and assume "undefined." I could |
|
* explicitly clear it and restore the original value upon return from |
|
* padlock_aes_cipher, but it's presumably too much trouble for too little |
|
* gain... In case you wonder 'rep xcrypt*' instructions above are *not* |
|
* affected by the Direction Flag and pointers advance toward larger |
|
* addresses unconditionally. |
|
*/ |
|
static inline unsigned char *padlock_memcpy(void *dst, const void *src, |
|
size_t n) |
|
{ |
|
long *d = dst; |
|
const long *s = src; |
|
|
|
n /= sizeof(*d); |
|
do { |
|
*d++ = *s++; |
|
} while (--n); |
|
|
|
return dst; |
|
} |
|
|
|
# elif defined(_MSC_VER) |
|
/* |
|
* Unlike GCC these are real functions. In order to minimize impact |
|
* on performance we adhere to __fastcall calling convention in |
|
* order to get two first arguments passed through %ecx and %edx. |
|
* Which kind of suits very well, as instructions in question use |
|
* both %ecx and %edx as input:-) |
|
*/ |
|
# define REP_XCRYPT(code) \ |
|
_asm _emit 0xf3 \ |
|
_asm _emit 0x0f _asm _emit 0xa7 \ |
|
_asm _emit code |
|
|
|
/* |
|
* BIG FAT WARNING: The offsets used with 'lea' instructions describe items |
|
* of the 'padlock_cipher_data' structure. |
|
*/ |
|
# define PADLOCK_XCRYPT_ASM(name,code) \ |
|
static void * __fastcall \ |
|
name (size_t cnt, void *cdata, \ |
|
void *outp, const void *inp) \ |
|
{ _asm mov eax,edx \ |
|
_asm lea edx,[eax+16] \ |
|
_asm lea ebx,[eax+32] \ |
|
_asm mov edi,outp \ |
|
_asm mov esi,inp \ |
|
REP_XCRYPT(code) \ |
|
} |
|
|
|
PADLOCK_XCRYPT_ASM(padlock_xcrypt_ecb,0xc8) |
|
PADLOCK_XCRYPT_ASM(padlock_xcrypt_cbc,0xd0) |
|
PADLOCK_XCRYPT_ASM(padlock_xcrypt_cfb,0xe0) |
|
PADLOCK_XCRYPT_ASM(padlock_xcrypt_ofb,0xe8) |
|
|
|
static int __fastcall padlock_xstore(void *outp, unsigned int code) |
|
{ |
|
_asm mov edi,ecx |
|
_asm _emit 0x0f _asm _emit 0xa7 _asm _emit 0xc0 |
|
} |
|
|
|
static void __fastcall padlock_reload_key(void) |
|
{ |
|
_asm pushfd |
|
_asm popfd |
|
} |
|
|
|
static void __fastcall padlock_verify_context(void *cdata) |
|
{ |
|
_asm { |
|
pushfd |
|
bt DWORD PTR[esp],30 |
|
jnc skip |
|
cmp ecx,padlock_saved_context |
|
je skip |
|
popfd |
|
sub esp,4 |
|
skip: add esp,4 |
|
mov padlock_saved_context,ecx |
|
} |
|
} |
|
|
|
static int |
|
padlock_available(void) |
|
{ |
|
_asm { |
|
pushfd |
|
pop eax |
|
mov ecx,eax |
|
xor eax,1<<21 |
|
push eax |
|
popfd |
|
pushfd |
|
pop eax |
|
xor eax,ecx |
|
bt eax,21 |
|
jnc noluck |
|
mov eax,0 |
|
cpuid |
|
xor eax,eax |
|
cmp ebx,'tneC' |
|
jne noluck |
|
cmp edx,'Hrua' |
|
jne noluck |
|
cmp ecx,'slua' |
|
jne noluck |
|
mov eax,0xC0000000 |
|
cpuid |
|
mov edx,eax |
|
xor eax,eax |
|
cmp edx,0xC0000001 |
|
jb noluck |
|
mov eax,0xC0000001 |
|
cpuid |
|
xor eax,eax |
|
bt edx,6 |
|
jnc skip_a |
|
bt edx,7 |
|
jnc skip_a |
|
mov padlock_use_ace,1 |
|
inc eax |
|
skip_a: bt edx,2 |
|
jnc skip_r |
|
bt edx,3 |
|
jnc skip_r |
|
mov padlock_use_rng,1 |
|
inc eax |
|
skip_r: |
|
noluck: |
|
} |
|
} |
|
|
|
static void __fastcall padlock_bswapl(void *key) |
|
{ |
|
_asm { |
|
pushfd |
|
cld |
|
mov esi,ecx |
|
mov edi,ecx |
|
mov ecx,60 |
|
up: lodsd |
|
bswap eax |
|
stosd |
|
loop up |
|
popfd |
|
} |
|
} |
|
|
|
/* |
|
* MS actually specifies status of Direction Flag and compiler even manages |
|
* to compile following as 'rep movsd' all by itself... |
|
*/ |
|
# define padlock_memcpy(o,i,n) ((unsigned char *)memcpy((o),(i),(n)&~3U)) |
|
# endif |
|
/* ===== AES encryption/decryption ===== */ |
|
# ifndef OPENSSL_NO_AES |
|
# if defined(NID_aes_128_cfb128) && ! defined (NID_aes_128_cfb) |
|
# define NID_aes_128_cfb NID_aes_128_cfb128 |
|
# endif |
|
# if defined(NID_aes_128_ofb128) && ! defined (NID_aes_128_ofb) |
|
# define NID_aes_128_ofb NID_aes_128_ofb128 |
|
# endif |
|
# if defined(NID_aes_192_cfb128) && ! defined (NID_aes_192_cfb) |
|
# define NID_aes_192_cfb NID_aes_192_cfb128 |
|
# endif |
|
# if defined(NID_aes_192_ofb128) && ! defined (NID_aes_192_ofb) |
|
# define NID_aes_192_ofb NID_aes_192_ofb128 |
|
# endif |
|
# if defined(NID_aes_256_cfb128) && ! defined (NID_aes_256_cfb) |
|
# define NID_aes_256_cfb NID_aes_256_cfb128 |
|
# endif |
|
# if defined(NID_aes_256_ofb128) && ! defined (NID_aes_256_ofb) |
|
# define NID_aes_256_ofb NID_aes_256_ofb128 |
|
# endif |
|
/* |
|
* List of supported ciphers. |
|
*/ static int padlock_cipher_nids[] = { |
|
NID_aes_128_ecb, |
|
NID_aes_128_cbc, |
|
NID_aes_128_cfb, |
|
NID_aes_128_ofb, |
|
|
|
NID_aes_192_ecb, |
|
NID_aes_192_cbc, |
|
NID_aes_192_cfb, |
|
NID_aes_192_ofb, |
|
|
|
NID_aes_256_ecb, |
|
NID_aes_256_cbc, |
|
NID_aes_256_cfb, |
|
NID_aes_256_ofb, |
|
}; |
|
|
|
static int padlock_cipher_nids_num = (sizeof(padlock_cipher_nids) / |
|
sizeof(padlock_cipher_nids[0])); |
|
|
|
/* Function prototypes ... */ |
|
static int padlock_aes_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key, |
|
const unsigned char *iv, int enc); |
|
static int padlock_aes_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, |
|
const unsigned char *in, size_t nbytes); |
|
|
|
# define NEAREST_ALIGNED(ptr) ( (unsigned char *)(ptr) + \ |
|
( (0x10 - ((size_t)(ptr) & 0x0F)) & 0x0F ) ) |
|
# define ALIGNED_CIPHER_DATA(ctx) ((struct padlock_cipher_data *)\ |
|
NEAREST_ALIGNED(ctx->cipher_data)) |
|
|
|
# define EVP_CIPHER_block_size_ECB AES_BLOCK_SIZE |
|
# define EVP_CIPHER_block_size_CBC AES_BLOCK_SIZE |
|
# define EVP_CIPHER_block_size_OFB 1 |
|
# define EVP_CIPHER_block_size_CFB 1 |
|
|
|
/* |
|
* Declaring so many ciphers by hand would be a pain. Instead introduce a bit |
|
* of preprocessor magic :-) |
|
*/ |
|
# define DECLARE_AES_EVP(ksize,lmode,umode) \ |
|
static const EVP_CIPHER padlock_aes_##ksize##_##lmode = { \ |
|
NID_aes_##ksize##_##lmode, \ |
|
EVP_CIPHER_block_size_##umode, \ |
|
AES_KEY_SIZE_##ksize, \ |
|
AES_BLOCK_SIZE, \ |
|
0 | EVP_CIPH_##umode##_MODE, \ |
|
padlock_aes_init_key, \ |
|
padlock_aes_cipher, \ |
|
NULL, \ |
|
sizeof(struct padlock_cipher_data) + 16, \ |
|
EVP_CIPHER_set_asn1_iv, \ |
|
EVP_CIPHER_get_asn1_iv, \ |
|
NULL, \ |
|
NULL \ |
|
} |
|
|
|
DECLARE_AES_EVP(128, ecb, ECB); |
|
DECLARE_AES_EVP(128, cbc, CBC); |
|
DECLARE_AES_EVP(128, cfb, CFB); |
|
DECLARE_AES_EVP(128, ofb, OFB); |
|
|
|
DECLARE_AES_EVP(192, ecb, ECB); |
|
DECLARE_AES_EVP(192, cbc, CBC); |
|
DECLARE_AES_EVP(192, cfb, CFB); |
|
DECLARE_AES_EVP(192, ofb, OFB); |
|
|
|
DECLARE_AES_EVP(256, ecb, ECB); |
|
DECLARE_AES_EVP(256, cbc, CBC); |
|
DECLARE_AES_EVP(256, cfb, CFB); |
|
DECLARE_AES_EVP(256, ofb, OFB); |
|
|
|
static int |
|
padlock_ciphers(ENGINE *e, const EVP_CIPHER **cipher, const int **nids, |
|
int nid) |
|
{ |
|
/* No specific cipher => return a list of supported nids ... */ |
|
if (!cipher) { |
|
*nids = padlock_cipher_nids; |
|
return padlock_cipher_nids_num; |
|
} |
|
|
|
/* ... or the requested "cipher" otherwise */ |
|
switch (nid) { |
|
case NID_aes_128_ecb: |
|
*cipher = &padlock_aes_128_ecb; |
|
break; |
|
case NID_aes_128_cbc: |
|
*cipher = &padlock_aes_128_cbc; |
|
break; |
|
case NID_aes_128_cfb: |
|
*cipher = &padlock_aes_128_cfb; |
|
break; |
|
case NID_aes_128_ofb: |
|
*cipher = &padlock_aes_128_ofb; |
|
break; |
|
|
|
case NID_aes_192_ecb: |
|
*cipher = &padlock_aes_192_ecb; |
|
break; |
|
case NID_aes_192_cbc: |
|
*cipher = &padlock_aes_192_cbc; |
|
break; |
|
case NID_aes_192_cfb: |
|
*cipher = &padlock_aes_192_cfb; |
|
break; |
|
case NID_aes_192_ofb: |
|
*cipher = &padlock_aes_192_ofb; |
|
break; |
|
|
|
case NID_aes_256_ecb: |
|
*cipher = &padlock_aes_256_ecb; |
|
break; |
|
case NID_aes_256_cbc: |
|
*cipher = &padlock_aes_256_cbc; |
|
break; |
|
case NID_aes_256_cfb: |
|
*cipher = &padlock_aes_256_cfb; |
|
break; |
|
case NID_aes_256_ofb: |
|
*cipher = &padlock_aes_256_ofb; |
|
break; |
|
|
|
default: |
|
/* Sorry, we don't support this NID */ |
|
*cipher = NULL; |
|
return 0; |
|
} |
|
|
|
return 1; |
|
} |
|
|
|
/* Prepare the encryption key for PadLock usage */ |
|
static int |
|
padlock_aes_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key, |
|
const unsigned char *iv, int enc) |
|
{ |
|
struct padlock_cipher_data *cdata; |
|
int key_len = EVP_CIPHER_CTX_key_length(ctx) * 8; |
|
|
|
if (key == NULL) |
|
return 0; /* ERROR */ |
|
|
|
cdata = ALIGNED_CIPHER_DATA(ctx); |
|
memset(cdata, 0, sizeof(struct padlock_cipher_data)); |
|
|
|
/* Prepare Control word. */ |
|
if (EVP_CIPHER_CTX_mode(ctx) == EVP_CIPH_OFB_MODE) |
|
cdata->cword.b.encdec = 0; |
|
else |
|
cdata->cword.b.encdec = (ctx->encrypt == 0); |
|
cdata->cword.b.rounds = 10 + (key_len - 128) / 32; |
|
cdata->cword.b.ksize = (key_len - 128) / 64; |
|
|
|
switch (key_len) { |
|
case 128: |
|
/* |
|
* PadLock can generate an extended key for AES128 in hardware |
|
*/ |
|
memcpy(cdata->ks.rd_key, key, AES_KEY_SIZE_128); |
|
cdata->cword.b.keygen = 0; |
|
break; |
|
|
|
case 192: |
|
case 256: |
|
/* |
|
* Generate an extended AES key in software. Needed for AES192/AES256 |
|
*/ |
|
/* |
|
* Well, the above applies to Stepping 8 CPUs and is listed as |
|
* hardware errata. They most likely will fix it at some point and |
|
* then a check for stepping would be due here. |
|
*/ |
|
if (EVP_CIPHER_CTX_mode(ctx) == EVP_CIPH_CFB_MODE || |
|
EVP_CIPHER_CTX_mode(ctx) == EVP_CIPH_OFB_MODE || enc) |
|
AES_set_encrypt_key(key, key_len, &cdata->ks); |
|
else |
|
AES_set_decrypt_key(key, key_len, &cdata->ks); |
|
# ifndef AES_ASM |
|
/* |
|
* OpenSSL C functions use byte-swapped extended key. |
|
*/ |
|
padlock_bswapl(&cdata->ks); |
|
# endif |
|
cdata->cword.b.keygen = 1; |
|
break; |
|
|
|
default: |
|
/* ERROR */ |
|
return 0; |
|
} |
|
|
|
/* |
|
* This is done to cover for cases when user reuses the |
|
* context for new key. The catch is that if we don't do |
|
* this, padlock_eas_cipher might proceed with old key... |
|
*/ |
|
padlock_reload_key(); |
|
|
|
return 1; |
|
} |
|
|
|
/*- |
|
* Simplified version of padlock_aes_cipher() used when |
|
* 1) both input and output buffers are at aligned addresses. |
|
* or when |
|
* 2) running on a newer CPU that doesn't require aligned buffers. |
|
*/ |
|
static int |
|
padlock_aes_cipher_omnivorous(EVP_CIPHER_CTX *ctx, unsigned char *out_arg, |
|
const unsigned char *in_arg, size_t nbytes) |
|
{ |
|
struct padlock_cipher_data *cdata; |
|
void *iv; |
|
|
|
cdata = ALIGNED_CIPHER_DATA(ctx); |
|
padlock_verify_context(cdata); |
|
|
|
switch (EVP_CIPHER_CTX_mode(ctx)) { |
|
case EVP_CIPH_ECB_MODE: |
|
padlock_xcrypt_ecb(nbytes / AES_BLOCK_SIZE, cdata, out_arg, in_arg); |
|
break; |
|
|
|
case EVP_CIPH_CBC_MODE: |
|
memcpy(cdata->iv, ctx->iv, AES_BLOCK_SIZE); |
|
iv = padlock_xcrypt_cbc(nbytes / AES_BLOCK_SIZE, cdata, out_arg, |
|
in_arg); |
|
memcpy(ctx->iv, iv, AES_BLOCK_SIZE); |
|
break; |
|
|
|
case EVP_CIPH_CFB_MODE: |
|
memcpy(cdata->iv, ctx->iv, AES_BLOCK_SIZE); |
|
iv = padlock_xcrypt_cfb(nbytes / AES_BLOCK_SIZE, cdata, out_arg, |
|
in_arg); |
|
memcpy(ctx->iv, iv, AES_BLOCK_SIZE); |
|
break; |
|
|
|
case EVP_CIPH_OFB_MODE: |
|
memcpy(cdata->iv, ctx->iv, AES_BLOCK_SIZE); |
|
padlock_xcrypt_ofb(nbytes / AES_BLOCK_SIZE, cdata, out_arg, in_arg); |
|
memcpy(ctx->iv, cdata->iv, AES_BLOCK_SIZE); |
|
break; |
|
|
|
default: |
|
return 0; |
|
} |
|
|
|
memset(cdata->iv, 0, AES_BLOCK_SIZE); |
|
|
|
return 1; |
|
} |
|
|
|
# ifndef PADLOCK_CHUNK |
|
# define PADLOCK_CHUNK 512 /* Must be a power of 2 larger than 16 */ |
|
# endif |
|
# if PADLOCK_CHUNK<16 || PADLOCK_CHUNK&(PADLOCK_CHUNK-1) |
|
# error "insane PADLOCK_CHUNK..." |
|
# endif |
|
|
|
/* |
|
* Re-align the arguments to 16-Bytes boundaries and run the encryption |
|
* function itself. This function is not AES-specific. |
|
*/ |
|
static int |
|
padlock_aes_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out_arg, |
|
const unsigned char *in_arg, size_t nbytes) |
|
{ |
|
struct padlock_cipher_data *cdata; |
|
const void *inp; |
|
unsigned char *out; |
|
void *iv; |
|
int inp_misaligned, out_misaligned, realign_in_loop; |
|
size_t chunk, allocated = 0; |
|
|
|
/* |
|
* ctx->num is maintained in byte-oriented modes, such as CFB and OFB... |
|
*/ |
|
if ((chunk = ctx->num)) { /* borrow chunk variable */ |
|
unsigned char *ivp = ctx->iv; |
|
|
|
switch (EVP_CIPHER_CTX_mode(ctx)) { |
|
case EVP_CIPH_CFB_MODE: |
|
if (chunk >= AES_BLOCK_SIZE) |
|
return 0; /* bogus value */ |
|
|
|
if (ctx->encrypt) |
|
while (chunk < AES_BLOCK_SIZE && nbytes != 0) { |
|
ivp[chunk] = *(out_arg++) = *(in_arg++) ^ ivp[chunk]; |
|
chunk++, nbytes--; |
|
} else |
|
while (chunk < AES_BLOCK_SIZE && nbytes != 0) { |
|
unsigned char c = *(in_arg++); |
|
*(out_arg++) = c ^ ivp[chunk]; |
|
ivp[chunk++] = c, nbytes--; |
|
} |
|
|
|
ctx->num = chunk % AES_BLOCK_SIZE; |
|
break; |
|
case EVP_CIPH_OFB_MODE: |
|
if (chunk >= AES_BLOCK_SIZE) |
|
return 0; /* bogus value */ |
|
|
|
while (chunk < AES_BLOCK_SIZE && nbytes != 0) { |
|
*(out_arg++) = *(in_arg++) ^ ivp[chunk]; |
|
chunk++, nbytes--; |
|
} |
|
|
|
ctx->num = chunk % AES_BLOCK_SIZE; |
|
break; |
|
} |
|
} |
|
|
|
if (nbytes == 0) |
|
return 1; |
|
# if 0 |
|
if (nbytes % AES_BLOCK_SIZE) |
|
return 0; /* are we expected to do tail processing? */ |
|
# else |
|
/* |
|
* nbytes is always multiple of AES_BLOCK_SIZE in ECB and CBC modes and |
|
* arbitrary value in byte-oriented modes, such as CFB and OFB... |
|
*/ |
|
# endif |
|
|
|
/* |
|
* VIA promises CPUs that won't require alignment in the future. For now |
|
* padlock_aes_align_required is initialized to 1 and the condition is |
|
* never met... |
|
*/ |
|
/* |
|
* C7 core is capable to manage unaligned input in non-ECB[!] mode, but |
|
* performance penalties appear to be approximately same as for software |
|
* alignment below or ~3x. They promise to improve it in the future, but |
|
* for now we can just as well pretend that it can only handle aligned |
|
* input... |
|
*/ |
|
if (!padlock_aes_align_required && (nbytes % AES_BLOCK_SIZE) == 0) |
|
return padlock_aes_cipher_omnivorous(ctx, out_arg, in_arg, nbytes); |
|
|
|
inp_misaligned = (((size_t)in_arg) & 0x0F); |
|
out_misaligned = (((size_t)out_arg) & 0x0F); |
|
|
|
/* |
|
* Note that even if output is aligned and input not, I still prefer to |
|
* loop instead of copy the whole input and then encrypt in one stroke. |
|
* This is done in order to improve L1 cache utilization... |
|
*/ |
|
realign_in_loop = out_misaligned | inp_misaligned; |
|
|
|
if (!realign_in_loop && (nbytes % AES_BLOCK_SIZE) == 0) |
|
return padlock_aes_cipher_omnivorous(ctx, out_arg, in_arg, nbytes); |
|
|
|
/* this takes one "if" out of the loops */ |
|
chunk = nbytes; |
|
chunk %= PADLOCK_CHUNK; |
|
if (chunk == 0) |
|
chunk = PADLOCK_CHUNK; |
|
|
|
if (out_misaligned) { |
|
/* optmize for small input */ |
|
allocated = (chunk < nbytes ? PADLOCK_CHUNK : nbytes); |
|
out = alloca(0x10 + allocated); |
|
out = NEAREST_ALIGNED(out); |
|
} else |
|
out = out_arg; |
|
|
|
cdata = ALIGNED_CIPHER_DATA(ctx); |
|
padlock_verify_context(cdata); |
|
|
|
switch (EVP_CIPHER_CTX_mode(ctx)) { |
|
case EVP_CIPH_ECB_MODE: |
|
do { |
|
if (inp_misaligned) |
|
inp = padlock_memcpy(out, in_arg, chunk); |
|
else |
|
inp = in_arg; |
|
in_arg += chunk; |
|
|
|
padlock_xcrypt_ecb(chunk / AES_BLOCK_SIZE, cdata, out, inp); |
|
|
|
if (out_misaligned) |
|
out_arg = padlock_memcpy(out_arg, out, chunk) + chunk; |
|
else |
|
out = out_arg += chunk; |
|
|
|
nbytes -= chunk; |
|
chunk = PADLOCK_CHUNK; |
|
} while (nbytes); |
|
break; |
|
|
|
case EVP_CIPH_CBC_MODE: |
|
memcpy(cdata->iv, ctx->iv, AES_BLOCK_SIZE); |
|
goto cbc_shortcut; |
|
do { |
|
if (iv != cdata->iv) |
|
memcpy(cdata->iv, iv, AES_BLOCK_SIZE); |
|
chunk = PADLOCK_CHUNK; |
|
cbc_shortcut: /* optimize for small input */ |
|
if (inp_misaligned) |
|
inp = padlock_memcpy(out, in_arg, chunk); |
|
else |
|
inp = in_arg; |
|
in_arg += chunk; |
|
|
|
iv = padlock_xcrypt_cbc(chunk / AES_BLOCK_SIZE, cdata, out, inp); |
|
|
|
if (out_misaligned) |
|
out_arg = padlock_memcpy(out_arg, out, chunk) + chunk; |
|
else |
|
out = out_arg += chunk; |
|
|
|
} while (nbytes -= chunk); |
|
memcpy(ctx->iv, iv, AES_BLOCK_SIZE); |
|
break; |
|
|
|
case EVP_CIPH_CFB_MODE: |
|
memcpy(iv = cdata->iv, ctx->iv, AES_BLOCK_SIZE); |
|
chunk &= ~(AES_BLOCK_SIZE - 1); |
|
if (chunk) |
|
goto cfb_shortcut; |
|
else |
|
goto cfb_skiploop; |
|
do { |
|
if (iv != cdata->iv) |
|
memcpy(cdata->iv, iv, AES_BLOCK_SIZE); |
|
chunk = PADLOCK_CHUNK; |
|
cfb_shortcut: /* optimize for small input */ |
|
if (inp_misaligned) |
|
inp = padlock_memcpy(out, in_arg, chunk); |
|
else |
|
inp = in_arg; |
|
in_arg += chunk; |
|
|
|
iv = padlock_xcrypt_cfb(chunk / AES_BLOCK_SIZE, cdata, out, inp); |
|
|
|
if (out_misaligned) |
|
out_arg = padlock_memcpy(out_arg, out, chunk) + chunk; |
|
else |
|
out = out_arg += chunk; |
|
|
|
nbytes -= chunk; |
|
} while (nbytes >= AES_BLOCK_SIZE); |
|
|
|
cfb_skiploop: |
|
if (nbytes) { |
|
unsigned char *ivp = cdata->iv; |
|
|
|
if (iv != ivp) { |
|
memcpy(ivp, iv, AES_BLOCK_SIZE); |
|
iv = ivp; |
|
} |
|
ctx->num = nbytes; |
|
if (cdata->cword.b.encdec) { |
|
cdata->cword.b.encdec = 0; |
|
padlock_reload_key(); |
|
padlock_xcrypt_ecb(1, cdata, ivp, ivp); |
|
cdata->cword.b.encdec = 1; |
|
padlock_reload_key(); |
|
while (nbytes) { |
|
unsigned char c = *(in_arg++); |
|
*(out_arg++) = c ^ *ivp; |
|
*(ivp++) = c, nbytes--; |
|
} |
|
} else { |
|
padlock_reload_key(); |
|
padlock_xcrypt_ecb(1, cdata, ivp, ivp); |
|
padlock_reload_key(); |
|
while (nbytes) { |
|
*ivp = *(out_arg++) = *(in_arg++) ^ *ivp; |
|
ivp++, nbytes--; |
|
} |
|
} |
|
} |
|
|
|
memcpy(ctx->iv, iv, AES_BLOCK_SIZE); |
|
break; |
|
|
|
case EVP_CIPH_OFB_MODE: |
|
memcpy(cdata->iv, ctx->iv, AES_BLOCK_SIZE); |
|
chunk &= ~(AES_BLOCK_SIZE - 1); |
|
if (chunk) |
|
do { |
|
if (inp_misaligned) |
|
inp = padlock_memcpy(out, in_arg, chunk); |
|
else |
|
inp = in_arg; |
|
in_arg += chunk; |
|
|
|
padlock_xcrypt_ofb(chunk / AES_BLOCK_SIZE, cdata, out, inp); |
|
|
|
if (out_misaligned) |
|
out_arg = padlock_memcpy(out_arg, out, chunk) + chunk; |
|
else |
|
out = out_arg += chunk; |
|
|
|
nbytes -= chunk; |
|
chunk = PADLOCK_CHUNK; |
|
} while (nbytes >= AES_BLOCK_SIZE); |
|
|
|
if (nbytes) { |
|
unsigned char *ivp = cdata->iv; |
|
|
|
ctx->num = nbytes; |
|
padlock_reload_key(); /* empirically found */ |
|
padlock_xcrypt_ecb(1, cdata, ivp, ivp); |
|
padlock_reload_key(); /* empirically found */ |
|
while (nbytes) { |
|
*(out_arg++) = *(in_arg++) ^ *ivp; |
|
ivp++, nbytes--; |
|
} |
|
} |
|
|
|
memcpy(ctx->iv, cdata->iv, AES_BLOCK_SIZE); |
|
break; |
|
|
|
default: |
|
return 0; |
|
} |
|
|
|
/* Clean the realign buffer if it was used */ |
|
if (out_misaligned) { |
|
volatile unsigned long *p = (void *)out; |
|
size_t n = allocated / sizeof(*p); |
|
while (n--) |
|
*p++ = 0; |
|
} |
|
|
|
memset(cdata->iv, 0, AES_BLOCK_SIZE); |
|
|
|
return 1; |
|
} |
|
|
|
# endif /* OPENSSL_NO_AES */ |
|
|
|
/* ===== Random Number Generator ===== */ |
|
/* |
|
* This code is not engaged. The reason is that it does not comply |
|
* with recommendations for VIA RNG usage for secure applications |
|
* (posted at http://www.via.com.tw/en/viac3/c3.jsp) nor does it |
|
* provide meaningful error control... |
|
*/ |
|
/* |
|
* Wrapper that provides an interface between the API and the raw PadLock |
|
* RNG |
|
*/ |
|
static int padlock_rand_bytes(unsigned char *output, int count) |
|
{ |
|
unsigned int eax, buf; |
|
|
|
while (count >= 8) { |
|
eax = padlock_xstore(output, 0); |
|
if (!(eax & (1 << 6))) |
|
return 0; /* RNG disabled */ |
|
/* this ---vv--- covers DC bias, Raw Bits and String Filter */ |
|
if (eax & (0x1F << 10)) |
|
return 0; |
|
if ((eax & 0x1F) == 0) |
|
continue; /* no data, retry... */ |
|
if ((eax & 0x1F) != 8) |
|
return 0; /* fatal failure... */ |
|
output += 8; |
|
count -= 8; |
|
} |
|
while (count > 0) { |
|
eax = padlock_xstore(&buf, 3); |
|
if (!(eax & (1 << 6))) |
|
return 0; /* RNG disabled */ |
|
/* this ---vv--- covers DC bias, Raw Bits and String Filter */ |
|
if (eax & (0x1F << 10)) |
|
return 0; |
|
if ((eax & 0x1F) == 0) |
|
continue; /* no data, retry... */ |
|
if ((eax & 0x1F) != 1) |
|
return 0; /* fatal failure... */ |
|
*output++ = (unsigned char)buf; |
|
count--; |
|
} |
|
*(volatile unsigned int *)&buf = 0; |
|
|
|
return 1; |
|
} |
|
|
|
/* Dummy but necessary function */ |
|
static int padlock_rand_status(void) |
|
{ |
|
return 1; |
|
} |
|
|
|
/* Prepare structure for registration */ |
|
static RAND_METHOD padlock_rand = { |
|
NULL, /* seed */ |
|
padlock_rand_bytes, /* bytes */ |
|
NULL, /* cleanup */ |
|
NULL, /* add */ |
|
padlock_rand_bytes, /* pseudorand */ |
|
padlock_rand_status, /* rand status */ |
|
}; |
|
|
|
# else /* !COMPILE_HW_PADLOCK */ |
|
# ifndef OPENSSL_NO_DYNAMIC_ENGINE |
|
OPENSSL_EXPORT |
|
int bind_engine(ENGINE *e, const char *id, const dynamic_fns *fns); |
|
OPENSSL_EXPORT |
|
int bind_engine(ENGINE *e, const char *id, const dynamic_fns *fns) |
|
{ |
|
return 0; |
|
} |
|
|
|
IMPLEMENT_DYNAMIC_CHECK_FN() |
|
# endif |
|
# endif /* COMPILE_HW_PADLOCK */ |
|
# endif /* !OPENSSL_NO_HW_PADLOCK */ |
|
#endif /* !OPENSSL_NO_HW */
|
|
|