You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
275 lines
8.9 KiB
275 lines
8.9 KiB
/* crypto/rsa/rsa_pk1.c */ |
|
/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com) |
|
* All rights reserved. |
|
* |
|
* This package is an SSL implementation written |
|
* by Eric Young (eay@cryptsoft.com). |
|
* The implementation was written so as to conform with Netscapes SSL. |
|
* |
|
* This library is free for commercial and non-commercial use as long as |
|
* the following conditions are aheared to. The following conditions |
|
* apply to all code found in this distribution, be it the RC4, RSA, |
|
* lhash, DES, etc., code; not just the SSL code. The SSL documentation |
|
* included with this distribution is covered by the same copyright terms |
|
* except that the holder is Tim Hudson (tjh@cryptsoft.com). |
|
* |
|
* Copyright remains Eric Young's, and as such any Copyright notices in |
|
* the code are not to be removed. |
|
* If this package is used in a product, Eric Young should be given attribution |
|
* as the author of the parts of the library used. |
|
* This can be in the form of a textual message at program startup or |
|
* in documentation (online or textual) provided with the package. |
|
* |
|
* Redistribution and use in source and binary forms, with or without |
|
* modification, are permitted provided that the following conditions |
|
* are met: |
|
* 1. Redistributions of source code must retain the copyright |
|
* notice, this list of conditions and the following disclaimer. |
|
* 2. Redistributions in binary form must reproduce the above copyright |
|
* notice, this list of conditions and the following disclaimer in the |
|
* documentation and/or other materials provided with the distribution. |
|
* 3. All advertising materials mentioning features or use of this software |
|
* must display the following acknowledgement: |
|
* "This product includes cryptographic software written by |
|
* Eric Young (eay@cryptsoft.com)" |
|
* The word 'cryptographic' can be left out if the rouines from the library |
|
* being used are not cryptographic related :-). |
|
* 4. If you include any Windows specific code (or a derivative thereof) from |
|
* the apps directory (application code) you must include an acknowledgement: |
|
* "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" |
|
* |
|
* THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND |
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE |
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL |
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS |
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY |
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF |
|
* SUCH DAMAGE. |
|
* |
|
* The licence and distribution terms for any publically available version or |
|
* derivative of this code cannot be changed. i.e. this code cannot simply be |
|
* copied and put under another distribution licence |
|
* [including the GNU Public Licence.] |
|
*/ |
|
|
|
#include "constant_time_locl.h" |
|
|
|
#include <stdio.h> |
|
#include "cryptlib.h" |
|
#include <openssl/bn.h> |
|
#include <openssl/rsa.h> |
|
#include <openssl/rand.h> |
|
|
|
int RSA_padding_add_PKCS1_type_1(unsigned char *to, int tlen, |
|
const unsigned char *from, int flen) |
|
{ |
|
int j; |
|
unsigned char *p; |
|
|
|
if (flen > (tlen - RSA_PKCS1_PADDING_SIZE)) { |
|
RSAerr(RSA_F_RSA_PADDING_ADD_PKCS1_TYPE_1, |
|
RSA_R_DATA_TOO_LARGE_FOR_KEY_SIZE); |
|
return (0); |
|
} |
|
|
|
p = (unsigned char *)to; |
|
|
|
*(p++) = 0; |
|
*(p++) = 1; /* Private Key BT (Block Type) */ |
|
|
|
/* pad out with 0xff data */ |
|
j = tlen - 3 - flen; |
|
memset(p, 0xff, j); |
|
p += j; |
|
*(p++) = '\0'; |
|
memcpy(p, from, (unsigned int)flen); |
|
return (1); |
|
} |
|
|
|
int RSA_padding_check_PKCS1_type_1(unsigned char *to, int tlen, |
|
const unsigned char *from, int flen, |
|
int num) |
|
{ |
|
int i, j; |
|
const unsigned char *p; |
|
|
|
p = from; |
|
if ((num != (flen + 1)) || (*(p++) != 01)) { |
|
RSAerr(RSA_F_RSA_PADDING_CHECK_PKCS1_TYPE_1, |
|
RSA_R_BLOCK_TYPE_IS_NOT_01); |
|
return (-1); |
|
} |
|
|
|
/* scan over padding data */ |
|
j = flen - 1; /* one for type. */ |
|
for (i = 0; i < j; i++) { |
|
if (*p != 0xff) { /* should decrypt to 0xff */ |
|
if (*p == 0) { |
|
p++; |
|
break; |
|
} else { |
|
RSAerr(RSA_F_RSA_PADDING_CHECK_PKCS1_TYPE_1, |
|
RSA_R_BAD_FIXED_HEADER_DECRYPT); |
|
return (-1); |
|
} |
|
} |
|
p++; |
|
} |
|
|
|
if (i == j) { |
|
RSAerr(RSA_F_RSA_PADDING_CHECK_PKCS1_TYPE_1, |
|
RSA_R_NULL_BEFORE_BLOCK_MISSING); |
|
return (-1); |
|
} |
|
|
|
if (i < 8) { |
|
RSAerr(RSA_F_RSA_PADDING_CHECK_PKCS1_TYPE_1, |
|
RSA_R_BAD_PAD_BYTE_COUNT); |
|
return (-1); |
|
} |
|
i++; /* Skip over the '\0' */ |
|
j -= i; |
|
if (j > tlen) { |
|
RSAerr(RSA_F_RSA_PADDING_CHECK_PKCS1_TYPE_1, RSA_R_DATA_TOO_LARGE); |
|
return (-1); |
|
} |
|
memcpy(to, p, (unsigned int)j); |
|
|
|
return (j); |
|
} |
|
|
|
int RSA_padding_add_PKCS1_type_2(unsigned char *to, int tlen, |
|
const unsigned char *from, int flen) |
|
{ |
|
int i, j; |
|
unsigned char *p; |
|
|
|
if (flen > (tlen - 11)) { |
|
RSAerr(RSA_F_RSA_PADDING_ADD_PKCS1_TYPE_2, |
|
RSA_R_DATA_TOO_LARGE_FOR_KEY_SIZE); |
|
return (0); |
|
} |
|
|
|
p = (unsigned char *)to; |
|
|
|
*(p++) = 0; |
|
*(p++) = 2; /* Public Key BT (Block Type) */ |
|
|
|
/* pad out with non-zero random data */ |
|
j = tlen - 3 - flen; |
|
|
|
if (RAND_bytes(p, j) <= 0) |
|
return (0); |
|
for (i = 0; i < j; i++) { |
|
if (*p == '\0') |
|
do { |
|
if (RAND_bytes(p, 1) <= 0) |
|
return (0); |
|
} while (*p == '\0'); |
|
p++; |
|
} |
|
|
|
*(p++) = '\0'; |
|
|
|
memcpy(p, from, (unsigned int)flen); |
|
return (1); |
|
} |
|
|
|
int RSA_padding_check_PKCS1_type_2(unsigned char *to, int tlen, |
|
const unsigned char *from, int flen, |
|
int num) |
|
{ |
|
int i; |
|
/* |em| is the encoded message, zero-padded to exactly |num| bytes */ |
|
unsigned char *em = NULL; |
|
unsigned int good, found_zero_byte; |
|
int zero_index = 0, msg_index, mlen = -1; |
|
|
|
if (tlen < 0 || flen < 0) |
|
return -1; |
|
|
|
/* |
|
* PKCS#1 v1.5 decryption. See "PKCS #1 v2.2: RSA Cryptography Standard", |
|
* section 7.2.2. |
|
*/ |
|
|
|
if (flen > num) |
|
goto err; |
|
|
|
if (num < 11) |
|
goto err; |
|
|
|
em = OPENSSL_malloc(num); |
|
if (em == NULL) { |
|
RSAerr(RSA_F_RSA_PADDING_CHECK_PKCS1_TYPE_2, ERR_R_MALLOC_FAILURE); |
|
return -1; |
|
} |
|
memset(em, 0, num); |
|
/* |
|
* Always do this zero-padding copy (even when num == flen) to avoid |
|
* leaking that information. The copy still leaks some side-channel |
|
* information, but it's impossible to have a fixed memory access |
|
* pattern since we can't read out of the bounds of |from|. |
|
* |
|
* TODO(emilia): Consider porting BN_bn2bin_padded from BoringSSL. |
|
*/ |
|
memcpy(em + num - flen, from, flen); |
|
|
|
good = constant_time_is_zero(em[0]); |
|
good &= constant_time_eq(em[1], 2); |
|
|
|
found_zero_byte = 0; |
|
for (i = 2; i < num; i++) { |
|
unsigned int equals0 = constant_time_is_zero(em[i]); |
|
zero_index = |
|
constant_time_select_int(~found_zero_byte & equals0, i, |
|
zero_index); |
|
found_zero_byte |= equals0; |
|
} |
|
|
|
/* |
|
* PS must be at least 8 bytes long, and it starts two bytes into |em|. |
|
* If we never found a 0-byte, then |zero_index| is 0 and the check |
|
* also fails. |
|
*/ |
|
good &= constant_time_ge((unsigned int)(zero_index), 2 + 8); |
|
|
|
/* |
|
* Skip the zero byte. This is incorrect if we never found a zero-byte |
|
* but in this case we also do not copy the message out. |
|
*/ |
|
msg_index = zero_index + 1; |
|
mlen = num - msg_index; |
|
|
|
/* |
|
* For good measure, do this check in constant time as well; it could |
|
* leak something if |tlen| was assuming valid padding. |
|
*/ |
|
good &= constant_time_ge((unsigned int)(tlen), (unsigned int)(mlen)); |
|
|
|
/* |
|
* We can't continue in constant-time because we need to copy the result |
|
* and we cannot fake its length. This unavoidably leaks timing |
|
* information at the API boundary. |
|
* TODO(emilia): this could be addressed at the call site, |
|
* see BoringSSL commit 0aa0767340baf925bda4804882aab0cb974b2d26. |
|
*/ |
|
if (!good) { |
|
mlen = -1; |
|
goto err; |
|
} |
|
|
|
memcpy(to, em + msg_index, mlen); |
|
|
|
err: |
|
if (em != NULL) |
|
OPENSSL_free(em); |
|
if (mlen == -1) |
|
RSAerr(RSA_F_RSA_PADDING_CHECK_PKCS1_TYPE_2, |
|
RSA_R_PKCS_DECODING_ERROR); |
|
return mlen; |
|
}
|
|
|