You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
701 lines
20 KiB
701 lines
20 KiB
/* crypto/engine/eng_rsax.c */ |
|
/* Copyright (c) 2010-2010 Intel Corp. |
|
* Author: Vinodh.Gopal@intel.com |
|
* Jim Guilford |
|
* Erdinc.Ozturk@intel.com |
|
* Maxim.Perminov@intel.com |
|
* Ying.Huang@intel.com |
|
* |
|
* More information about algorithm used can be found at: |
|
* http://www.cse.buffalo.edu/srds2009/escs2009_submission_Gopal.pdf |
|
*/ |
|
/* ==================================================================== |
|
* Copyright (c) 1999-2001 The OpenSSL Project. All rights reserved. |
|
* |
|
* Redistribution and use in source and binary forms, with or without |
|
* modification, are permitted provided that the following conditions |
|
* are met: |
|
* |
|
* 1. Redistributions of source code must retain the above copyright |
|
* notice, this list of conditions and the following disclaimer. |
|
* |
|
* 2. Redistributions in binary form must reproduce the above copyright |
|
* notice, this list of conditions and the following disclaimer in |
|
* the documentation and/or other materials provided with the |
|
* distribution. |
|
* |
|
* 3. All advertising materials mentioning features or use of this |
|
* software must display the following acknowledgment: |
|
* "This product includes software developed by the OpenSSL Project |
|
* for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)" |
|
* |
|
* 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to |
|
* endorse or promote products derived from this software without |
|
* prior written permission. For written permission, please contact |
|
* licensing@OpenSSL.org. |
|
* |
|
* 5. Products derived from this software may not be called "OpenSSL" |
|
* nor may "OpenSSL" appear in their names without prior written |
|
* permission of the OpenSSL Project. |
|
* |
|
* 6. Redistributions of any form whatsoever must retain the following |
|
* acknowledgment: |
|
* "This product includes software developed by the OpenSSL Project |
|
* for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)" |
|
* |
|
* THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY |
|
* EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR |
|
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR |
|
* ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
|
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT |
|
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; |
|
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, |
|
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
|
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED |
|
* OF THE POSSIBILITY OF SUCH DAMAGE. |
|
* ==================================================================== |
|
* |
|
* This product includes cryptographic software written by Eric Young |
|
* (eay@cryptsoft.com). This product includes software written by Tim |
|
* Hudson (tjh@cryptsoft.com). |
|
*/ |
|
|
|
#include <openssl/opensslconf.h> |
|
|
|
#include <stdio.h> |
|
#include <string.h> |
|
#include <openssl/crypto.h> |
|
#include <openssl/buffer.h> |
|
#include <openssl/engine.h> |
|
#ifndef OPENSSL_NO_RSA |
|
# include <openssl/rsa.h> |
|
#endif |
|
#include <openssl/bn.h> |
|
#include <openssl/err.h> |
|
|
|
/* RSAX is available **ONLY* on x86_64 CPUs */ |
|
#undef COMPILE_RSAX |
|
|
|
#if (defined(__x86_64) || defined(__x86_64__) || \ |
|
defined(_M_AMD64) || defined (_M_X64)) && !defined(OPENSSL_NO_ASM) |
|
# define COMPILE_RSAX |
|
static ENGINE *ENGINE_rsax(void); |
|
#endif |
|
|
|
void ENGINE_load_rsax(void) |
|
{ |
|
/* On non-x86 CPUs it just returns. */ |
|
#ifdef COMPILE_RSAX |
|
ENGINE *toadd = ENGINE_rsax(); |
|
if (!toadd) |
|
return; |
|
ENGINE_add(toadd); |
|
ENGINE_free(toadd); |
|
ERR_clear_error(); |
|
#endif |
|
} |
|
|
|
#ifdef COMPILE_RSAX |
|
# define E_RSAX_LIB_NAME "rsax engine" |
|
|
|
static int e_rsax_destroy(ENGINE *e); |
|
static int e_rsax_init(ENGINE *e); |
|
static int e_rsax_finish(ENGINE *e); |
|
static int e_rsax_ctrl(ENGINE *e, int cmd, long i, void *p, void (*f) (void)); |
|
|
|
# ifndef OPENSSL_NO_RSA |
|
/* RSA stuff */ |
|
static int e_rsax_rsa_mod_exp(BIGNUM *r, const BIGNUM *I, RSA *rsa, |
|
BN_CTX *ctx); |
|
static int e_rsax_rsa_finish(RSA *r); |
|
# endif |
|
|
|
static const ENGINE_CMD_DEFN e_rsax_cmd_defns[] = { |
|
{0, NULL, NULL, 0} |
|
}; |
|
|
|
# ifndef OPENSSL_NO_RSA |
|
/* Our internal RSA_METHOD that we provide pointers to */ |
|
static RSA_METHOD e_rsax_rsa = { |
|
"Intel RSA-X method", |
|
NULL, |
|
NULL, |
|
NULL, |
|
NULL, |
|
e_rsax_rsa_mod_exp, |
|
NULL, |
|
NULL, |
|
e_rsax_rsa_finish, |
|
RSA_FLAG_CACHE_PUBLIC | RSA_FLAG_CACHE_PRIVATE, |
|
NULL, |
|
NULL, |
|
NULL |
|
}; |
|
# endif |
|
|
|
/* Constants used when creating the ENGINE */ |
|
static const char *engine_e_rsax_id = "rsax"; |
|
static const char *engine_e_rsax_name = "RSAX engine support"; |
|
|
|
/* This internal function is used by ENGINE_rsax() */ |
|
static int bind_helper(ENGINE *e) |
|
{ |
|
# ifndef OPENSSL_NO_RSA |
|
const RSA_METHOD *meth1; |
|
# endif |
|
if (!ENGINE_set_id(e, engine_e_rsax_id) || |
|
!ENGINE_set_name(e, engine_e_rsax_name) || |
|
# ifndef OPENSSL_NO_RSA |
|
!ENGINE_set_RSA(e, &e_rsax_rsa) || |
|
# endif |
|
!ENGINE_set_destroy_function(e, e_rsax_destroy) || |
|
!ENGINE_set_init_function(e, e_rsax_init) || |
|
!ENGINE_set_finish_function(e, e_rsax_finish) || |
|
!ENGINE_set_ctrl_function(e, e_rsax_ctrl) || |
|
!ENGINE_set_cmd_defns(e, e_rsax_cmd_defns)) |
|
return 0; |
|
|
|
# ifndef OPENSSL_NO_RSA |
|
meth1 = RSA_PKCS1_SSLeay(); |
|
e_rsax_rsa.rsa_pub_enc = meth1->rsa_pub_enc; |
|
e_rsax_rsa.rsa_pub_dec = meth1->rsa_pub_dec; |
|
e_rsax_rsa.rsa_priv_enc = meth1->rsa_priv_enc; |
|
e_rsax_rsa.rsa_priv_dec = meth1->rsa_priv_dec; |
|
e_rsax_rsa.bn_mod_exp = meth1->bn_mod_exp; |
|
# endif |
|
return 1; |
|
} |
|
|
|
static ENGINE *ENGINE_rsax(void) |
|
{ |
|
ENGINE *ret = ENGINE_new(); |
|
if (!ret) |
|
return NULL; |
|
if (!bind_helper(ret)) { |
|
ENGINE_free(ret); |
|
return NULL; |
|
} |
|
return ret; |
|
} |
|
|
|
# ifndef OPENSSL_NO_RSA |
|
/* Used to attach our own key-data to an RSA structure */ |
|
static int rsax_ex_data_idx = -1; |
|
# endif |
|
|
|
static int e_rsax_destroy(ENGINE *e) |
|
{ |
|
return 1; |
|
} |
|
|
|
/* (de)initialisation functions. */ |
|
static int e_rsax_init(ENGINE *e) |
|
{ |
|
# ifndef OPENSSL_NO_RSA |
|
if (rsax_ex_data_idx == -1) |
|
rsax_ex_data_idx = RSA_get_ex_new_index(0, NULL, NULL, NULL, NULL); |
|
# endif |
|
if (rsax_ex_data_idx == -1) |
|
return 0; |
|
return 1; |
|
} |
|
|
|
static int e_rsax_finish(ENGINE *e) |
|
{ |
|
return 1; |
|
} |
|
|
|
static int e_rsax_ctrl(ENGINE *e, int cmd, long i, void *p, void (*f) (void)) |
|
{ |
|
int to_return = 1; |
|
|
|
switch (cmd) { |
|
/* The command isn't understood by this engine */ |
|
default: |
|
to_return = 0; |
|
break; |
|
} |
|
|
|
return to_return; |
|
} |
|
|
|
# ifndef OPENSSL_NO_RSA |
|
|
|
# ifdef _WIN32 |
|
typedef unsigned __int64 UINT64; |
|
# else |
|
typedef unsigned long long UINT64; |
|
# endif |
|
typedef unsigned short UINT16; |
|
|
|
/* |
|
* Table t is interleaved in the following manner: The order in memory is |
|
* t[0][0], t[0][1], ..., t[0][7], t[1][0], ... A particular 512-bit value is |
|
* stored in t[][index] rather than the more normal t[index][]; i.e. the |
|
* qwords of a particular entry in t are not adjacent in memory |
|
*/ |
|
|
|
/* Init BIGNUM b from the interleaved UINT64 array */ |
|
static int interleaved_array_to_bn_512(BIGNUM *b, UINT64 *array); |
|
|
|
/* |
|
* Extract array elements from BIGNUM b To set the whole array from b, call |
|
* with n=8 |
|
*/ |
|
static int bn_extract_to_array_512(const BIGNUM *b, unsigned int n, |
|
UINT64 *array); |
|
|
|
struct mod_ctx_512 { |
|
UINT64 t[8][8]; |
|
UINT64 m[8]; |
|
UINT64 m1[8]; /* 2^278 % m */ |
|
UINT64 m2[8]; /* 2^640 % m */ |
|
UINT64 k1[2]; /* (- 1/m) % 2^128 */ |
|
}; |
|
|
|
static int mod_exp_pre_compute_data_512(UINT64 *m, struct mod_ctx_512 *data); |
|
|
|
void mod_exp_512(UINT64 *result, /* 512 bits, 8 qwords */ |
|
UINT64 *g, /* 512 bits, 8 qwords */ |
|
UINT64 *exp, /* 512 bits, 8 qwords */ |
|
struct mod_ctx_512 *data); |
|
|
|
typedef struct st_e_rsax_mod_ctx { |
|
UINT64 type; |
|
union { |
|
struct mod_ctx_512 b512; |
|
} ctx; |
|
|
|
} E_RSAX_MOD_CTX; |
|
|
|
static E_RSAX_MOD_CTX *e_rsax_get_ctx(RSA *rsa, int idx, BIGNUM *m) |
|
{ |
|
E_RSAX_MOD_CTX *hptr; |
|
|
|
if (idx < 0 || idx > 2) |
|
return NULL; |
|
|
|
hptr = RSA_get_ex_data(rsa, rsax_ex_data_idx); |
|
if (!hptr) { |
|
hptr = OPENSSL_malloc(3 * sizeof(E_RSAX_MOD_CTX)); |
|
if (!hptr) |
|
return NULL; |
|
hptr[2].type = hptr[1].type = hptr[0].type = 0; |
|
RSA_set_ex_data(rsa, rsax_ex_data_idx, hptr); |
|
} |
|
|
|
if (hptr[idx].type == (UINT64)BN_num_bits(m)) |
|
return hptr + idx; |
|
|
|
if (BN_num_bits(m) == 512) { |
|
UINT64 _m[8]; |
|
bn_extract_to_array_512(m, 8, _m); |
|
memset(&hptr[idx].ctx.b512, 0, sizeof(struct mod_ctx_512)); |
|
mod_exp_pre_compute_data_512(_m, &hptr[idx].ctx.b512); |
|
} |
|
|
|
hptr[idx].type = BN_num_bits(m); |
|
return hptr + idx; |
|
} |
|
|
|
static int e_rsax_rsa_finish(RSA *rsa) |
|
{ |
|
E_RSAX_MOD_CTX *hptr = RSA_get_ex_data(rsa, rsax_ex_data_idx); |
|
if (hptr) { |
|
OPENSSL_free(hptr); |
|
RSA_set_ex_data(rsa, rsax_ex_data_idx, NULL); |
|
} |
|
if (rsa->_method_mod_n) |
|
BN_MONT_CTX_free(rsa->_method_mod_n); |
|
if (rsa->_method_mod_p) |
|
BN_MONT_CTX_free(rsa->_method_mod_p); |
|
if (rsa->_method_mod_q) |
|
BN_MONT_CTX_free(rsa->_method_mod_q); |
|
return 1; |
|
} |
|
|
|
static int e_rsax_bn_mod_exp(BIGNUM *r, const BIGNUM *g, const BIGNUM *e, |
|
const BIGNUM *m, BN_CTX *ctx, |
|
BN_MONT_CTX *in_mont, |
|
E_RSAX_MOD_CTX *rsax_mod_ctx) |
|
{ |
|
if (rsax_mod_ctx && BN_get_flags(e, BN_FLG_CONSTTIME) != 0) { |
|
if (BN_num_bits(m) == 512) { |
|
UINT64 _r[8]; |
|
UINT64 _g[8]; |
|
UINT64 _e[8]; |
|
|
|
/* Init the arrays from the BIGNUMs */ |
|
bn_extract_to_array_512(g, 8, _g); |
|
bn_extract_to_array_512(e, 8, _e); |
|
|
|
mod_exp_512(_r, _g, _e, &rsax_mod_ctx->ctx.b512); |
|
/* Return the result in the BIGNUM */ |
|
interleaved_array_to_bn_512(r, _r); |
|
return 1; |
|
} |
|
} |
|
|
|
return BN_mod_exp_mont(r, g, e, m, ctx, in_mont); |
|
} |
|
|
|
/* |
|
* Declares for the Intel CIAP 512-bit / CRT / 1024 bit RSA modular |
|
* exponentiation routine precalculations and a structure to hold the |
|
* necessary values. These files are meant to live in crypto/rsa/ in the |
|
* target openssl. |
|
*/ |
|
|
|
/* |
|
* Local method: extracts a piece from a BIGNUM, to fit it into |
|
* an array. Call with n=8 to extract an entire 512-bit BIGNUM |
|
*/ |
|
static int bn_extract_to_array_512(const BIGNUM *b, unsigned int n, |
|
UINT64 *array) |
|
{ |
|
int i; |
|
UINT64 tmp; |
|
unsigned char bn_buff[64]; |
|
memset(bn_buff, 0, 64); |
|
if (BN_num_bytes(b) > 64) { |
|
printf("Can't support this byte size\n"); |
|
return 0; |
|
} |
|
if (BN_num_bytes(b) != 0) { |
|
if (!BN_bn2bin(b, bn_buff + (64 - BN_num_bytes(b)))) { |
|
printf("Error's in bn2bin\n"); |
|
/* We have to error, here */ |
|
return 0; |
|
} |
|
} |
|
while (n-- > 0) { |
|
array[n] = 0; |
|
for (i = 7; i >= 0; i--) { |
|
tmp = bn_buff[63 - (n * 8 + i)]; |
|
array[n] |= tmp << (8 * i); |
|
} |
|
} |
|
return 1; |
|
} |
|
|
|
/* Init a 512-bit BIGNUM from the UINT64*_ (8 * 64) interleaved array */ |
|
static int interleaved_array_to_bn_512(BIGNUM *b, UINT64 *array) |
|
{ |
|
unsigned char tmp[64]; |
|
int n = 8; |
|
int i; |
|
while (n-- > 0) { |
|
for (i = 7; i >= 0; i--) { |
|
tmp[63 - (n * 8 + i)] = (unsigned char)(array[n] >> (8 * i)); |
|
}} |
|
BN_bin2bn(tmp, 64, b); |
|
return 0; |
|
} |
|
|
|
/* The main 512bit precompute call */ |
|
static int mod_exp_pre_compute_data_512(UINT64 *m, struct mod_ctx_512 *data) |
|
{ |
|
BIGNUM two_768, two_640, two_128, two_512, tmp, _m, tmp2; |
|
|
|
/* We need a BN_CTX for the modulo functions */ |
|
BN_CTX *ctx; |
|
/* Some tmps */ |
|
UINT64 _t[8]; |
|
int i, j, ret = 0; |
|
|
|
/* Init _m with m */ |
|
BN_init(&_m); |
|
interleaved_array_to_bn_512(&_m, m); |
|
memset(_t, 0, 64); |
|
|
|
/* Inits */ |
|
BN_init(&two_768); |
|
BN_init(&two_640); |
|
BN_init(&two_128); |
|
BN_init(&two_512); |
|
BN_init(&tmp); |
|
BN_init(&tmp2); |
|
|
|
/* Create our context */ |
|
if ((ctx = BN_CTX_new()) == NULL) { |
|
goto err; |
|
} |
|
BN_CTX_start(ctx); |
|
|
|
/* |
|
* For production, if you care, these only need to be set once, |
|
* and may be made constants. |
|
*/ |
|
BN_lshift(&two_768, BN_value_one(), 768); |
|
BN_lshift(&two_640, BN_value_one(), 640); |
|
BN_lshift(&two_128, BN_value_one(), 128); |
|
BN_lshift(&two_512, BN_value_one(), 512); |
|
|
|
if (0 == (m[7] & 0x8000000000000000)) { |
|
goto err; |
|
} |
|
if (0 == (m[0] & 0x1)) { /* Odd modulus required for Mont */ |
|
goto err; |
|
} |
|
|
|
/* Precompute m1 */ |
|
BN_mod(&tmp, &two_768, &_m, ctx); |
|
if (!bn_extract_to_array_512(&tmp, 8, &data->m1[0])) { |
|
goto err; |
|
} |
|
|
|
/* Precompute m2 */ |
|
BN_mod(&tmp, &two_640, &_m, ctx); |
|
if (!bn_extract_to_array_512(&tmp, 8, &data->m2[0])) { |
|
goto err; |
|
} |
|
|
|
/* |
|
* Precompute k1, a 128b number = ((-1)* m-1 ) mod 2128; k1 should |
|
* be non-negative. |
|
*/ |
|
BN_mod_inverse(&tmp, &_m, &two_128, ctx); |
|
if (!BN_is_zero(&tmp)) { |
|
BN_sub(&tmp, &two_128, &tmp); |
|
} |
|
if (!bn_extract_to_array_512(&tmp, 2, &data->k1[0])) { |
|
goto err; |
|
} |
|
|
|
/* Precompute t */ |
|
for (i = 0; i < 8; i++) { |
|
BN_zero(&tmp); |
|
if (i & 1) { |
|
BN_add(&tmp, &two_512, &tmp); |
|
} |
|
if (i & 2) { |
|
BN_add(&tmp, &two_512, &tmp); |
|
} |
|
if (i & 4) { |
|
BN_add(&tmp, &two_640, &tmp); |
|
} |
|
|
|
BN_nnmod(&tmp2, &tmp, &_m, ctx); |
|
if (!bn_extract_to_array_512(&tmp2, 8, _t)) { |
|
goto err; |
|
} |
|
for (j = 0; j < 8; j++) |
|
data->t[j][i] = _t[j]; |
|
} |
|
|
|
/* Precompute m */ |
|
for (i = 0; i < 8; i++) { |
|
data->m[i] = m[i]; |
|
} |
|
|
|
ret = 1; |
|
|
|
err: |
|
/* Cleanup */ |
|
if (ctx != NULL) { |
|
BN_CTX_end(ctx); |
|
BN_CTX_free(ctx); |
|
} |
|
BN_free(&two_768); |
|
BN_free(&two_640); |
|
BN_free(&two_128); |
|
BN_free(&two_512); |
|
BN_free(&tmp); |
|
BN_free(&tmp2); |
|
BN_free(&_m); |
|
|
|
return ret; |
|
} |
|
|
|
static int e_rsax_rsa_mod_exp(BIGNUM *r0, const BIGNUM *I, RSA *rsa, |
|
BN_CTX *ctx) |
|
{ |
|
BIGNUM *r1, *m1, *vrfy; |
|
BIGNUM local_dmp1, local_dmq1, local_c, local_r1; |
|
BIGNUM *dmp1, *dmq1, *c, *pr1; |
|
int ret = 0; |
|
|
|
BN_CTX_start(ctx); |
|
r1 = BN_CTX_get(ctx); |
|
m1 = BN_CTX_get(ctx); |
|
vrfy = BN_CTX_get(ctx); |
|
|
|
{ |
|
BIGNUM local_p, local_q; |
|
BIGNUM *p = NULL, *q = NULL; |
|
int error = 0; |
|
|
|
/* |
|
* Make sure BN_mod_inverse in Montgomery intialization uses the |
|
* BN_FLG_CONSTTIME flag (unless RSA_FLAG_NO_CONSTTIME is set) |
|
*/ |
|
if (!(rsa->flags & RSA_FLAG_NO_CONSTTIME)) { |
|
BN_init(&local_p); |
|
p = &local_p; |
|
BN_with_flags(p, rsa->p, BN_FLG_CONSTTIME); |
|
|
|
BN_init(&local_q); |
|
q = &local_q; |
|
BN_with_flags(q, rsa->q, BN_FLG_CONSTTIME); |
|
} else { |
|
p = rsa->p; |
|
q = rsa->q; |
|
} |
|
|
|
if (rsa->flags & RSA_FLAG_CACHE_PRIVATE) { |
|
if (!BN_MONT_CTX_set_locked |
|
(&rsa->_method_mod_p, CRYPTO_LOCK_RSA, p, ctx)) |
|
error = 1; |
|
if (!BN_MONT_CTX_set_locked |
|
(&rsa->_method_mod_q, CRYPTO_LOCK_RSA, q, ctx)) |
|
error = 1; |
|
} |
|
|
|
/* clean up */ |
|
if (!(rsa->flags & RSA_FLAG_NO_CONSTTIME)) { |
|
BN_free(&local_p); |
|
BN_free(&local_q); |
|
} |
|
if (error) |
|
goto err; |
|
} |
|
|
|
if (rsa->flags & RSA_FLAG_CACHE_PUBLIC) |
|
if (!BN_MONT_CTX_set_locked |
|
(&rsa->_method_mod_n, CRYPTO_LOCK_RSA, rsa->n, ctx)) |
|
goto err; |
|
|
|
/* compute I mod q */ |
|
if (!(rsa->flags & RSA_FLAG_NO_CONSTTIME)) { |
|
c = &local_c; |
|
BN_with_flags(c, I, BN_FLG_CONSTTIME); |
|
if (!BN_mod(r1, c, rsa->q, ctx)) |
|
goto err; |
|
} else { |
|
if (!BN_mod(r1, I, rsa->q, ctx)) |
|
goto err; |
|
} |
|
|
|
/* compute r1^dmq1 mod q */ |
|
if (!(rsa->flags & RSA_FLAG_NO_CONSTTIME)) { |
|
dmq1 = &local_dmq1; |
|
BN_with_flags(dmq1, rsa->dmq1, BN_FLG_CONSTTIME); |
|
} else |
|
dmq1 = rsa->dmq1; |
|
|
|
if (!e_rsax_bn_mod_exp(m1, r1, dmq1, rsa->q, ctx, |
|
rsa->_method_mod_q, e_rsax_get_ctx(rsa, 0, |
|
rsa->q))) |
|
goto err; |
|
|
|
/* compute I mod p */ |
|
if (!(rsa->flags & RSA_FLAG_NO_CONSTTIME)) { |
|
c = &local_c; |
|
BN_with_flags(c, I, BN_FLG_CONSTTIME); |
|
if (!BN_mod(r1, c, rsa->p, ctx)) |
|
goto err; |
|
} else { |
|
if (!BN_mod(r1, I, rsa->p, ctx)) |
|
goto err; |
|
} |
|
|
|
/* compute r1^dmp1 mod p */ |
|
if (!(rsa->flags & RSA_FLAG_NO_CONSTTIME)) { |
|
dmp1 = &local_dmp1; |
|
BN_with_flags(dmp1, rsa->dmp1, BN_FLG_CONSTTIME); |
|
} else |
|
dmp1 = rsa->dmp1; |
|
|
|
if (!e_rsax_bn_mod_exp(r0, r1, dmp1, rsa->p, ctx, |
|
rsa->_method_mod_p, e_rsax_get_ctx(rsa, 1, |
|
rsa->p))) |
|
goto err; |
|
|
|
if (!BN_sub(r0, r0, m1)) |
|
goto err; |
|
/* |
|
* This will help stop the size of r0 increasing, which does affect the |
|
* multiply if it optimised for a power of 2 size |
|
*/ |
|
if (BN_is_negative(r0)) |
|
if (!BN_add(r0, r0, rsa->p)) |
|
goto err; |
|
|
|
if (!BN_mul(r1, r0, rsa->iqmp, ctx)) |
|
goto err; |
|
|
|
/* Turn BN_FLG_CONSTTIME flag on before division operation */ |
|
if (!(rsa->flags & RSA_FLAG_NO_CONSTTIME)) { |
|
pr1 = &local_r1; |
|
BN_with_flags(pr1, r1, BN_FLG_CONSTTIME); |
|
} else |
|
pr1 = r1; |
|
if (!BN_mod(r0, pr1, rsa->p, ctx)) |
|
goto err; |
|
|
|
/* |
|
* If p < q it is occasionally possible for the correction of adding 'p' |
|
* if r0 is negative above to leave the result still negative. This can |
|
* break the private key operations: the following second correction |
|
* should *always* correct this rare occurrence. This will *never* happen |
|
* with OpenSSL generated keys because they ensure p > q [steve] |
|
*/ |
|
if (BN_is_negative(r0)) |
|
if (!BN_add(r0, r0, rsa->p)) |
|
goto err; |
|
if (!BN_mul(r1, r0, rsa->q, ctx)) |
|
goto err; |
|
if (!BN_add(r0, r1, m1)) |
|
goto err; |
|
|
|
if (rsa->e && rsa->n) { |
|
if (!e_rsax_bn_mod_exp |
|
(vrfy, r0, rsa->e, rsa->n, ctx, rsa->_method_mod_n, |
|
e_rsax_get_ctx(rsa, 2, rsa->n))) |
|
goto err; |
|
|
|
/* |
|
* If 'I' was greater than (or equal to) rsa->n, the operation will |
|
* be equivalent to using 'I mod n'. However, the result of the |
|
* verify will *always* be less than 'n' so we don't check for |
|
* absolute equality, just congruency. |
|
*/ |
|
if (!BN_sub(vrfy, vrfy, I)) |
|
goto err; |
|
if (!BN_mod(vrfy, vrfy, rsa->n, ctx)) |
|
goto err; |
|
if (BN_is_negative(vrfy)) |
|
if (!BN_add(vrfy, vrfy, rsa->n)) |
|
goto err; |
|
if (!BN_is_zero(vrfy)) { |
|
/* |
|
* 'I' and 'vrfy' aren't congruent mod n. Don't leak |
|
* miscalculated CRT output, just do a raw (slower) mod_exp and |
|
* return that instead. |
|
*/ |
|
|
|
BIGNUM local_d; |
|
BIGNUM *d = NULL; |
|
|
|
if (!(rsa->flags & RSA_FLAG_NO_CONSTTIME)) { |
|
d = &local_d; |
|
BN_with_flags(d, rsa->d, BN_FLG_CONSTTIME); |
|
} else |
|
d = rsa->d; |
|
if (!e_rsax_bn_mod_exp(r0, I, d, rsa->n, ctx, |
|
rsa->_method_mod_n, e_rsax_get_ctx(rsa, 2, |
|
rsa->n))) |
|
goto err; |
|
} |
|
} |
|
ret = 1; |
|
|
|
err: |
|
BN_CTX_end(ctx); |
|
|
|
return ret; |
|
} |
|
# endif /* !OPENSSL_NO_RSA */ |
|
#endif /* !COMPILE_RSAX */
|
|
|