You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
277 lines
7.6 KiB
277 lines
7.6 KiB
/* bn_x931p.c */ |
|
/* |
|
* Written by Dr Stephen N Henson (steve@openssl.org) for the OpenSSL project |
|
* 2005. |
|
*/ |
|
/* ==================================================================== |
|
* Copyright (c) 2005 The OpenSSL Project. All rights reserved. |
|
* |
|
* Redistribution and use in source and binary forms, with or without |
|
* modification, are permitted provided that the following conditions |
|
* are met: |
|
* |
|
* 1. Redistributions of source code must retain the above copyright |
|
* notice, this list of conditions and the following disclaimer. |
|
* |
|
* 2. Redistributions in binary form must reproduce the above copyright |
|
* notice, this list of conditions and the following disclaimer in |
|
* the documentation and/or other materials provided with the |
|
* distribution. |
|
* |
|
* 3. All advertising materials mentioning features or use of this |
|
* software must display the following acknowledgment: |
|
* "This product includes software developed by the OpenSSL Project |
|
* for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)" |
|
* |
|
* 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to |
|
* endorse or promote products derived from this software without |
|
* prior written permission. For written permission, please contact |
|
* licensing@OpenSSL.org. |
|
* |
|
* 5. Products derived from this software may not be called "OpenSSL" |
|
* nor may "OpenSSL" appear in their names without prior written |
|
* permission of the OpenSSL Project. |
|
* |
|
* 6. Redistributions of any form whatsoever must retain the following |
|
* acknowledgment: |
|
* "This product includes software developed by the OpenSSL Project |
|
* for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)" |
|
* |
|
* THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY |
|
* EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR |
|
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR |
|
* ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
|
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT |
|
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; |
|
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, |
|
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
|
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED |
|
* OF THE POSSIBILITY OF SUCH DAMAGE. |
|
* ==================================================================== |
|
* |
|
* This product includes cryptographic software written by Eric Young |
|
* (eay@cryptsoft.com). This product includes software written by Tim |
|
* Hudson (tjh@cryptsoft.com). |
|
* |
|
*/ |
|
|
|
#include <stdio.h> |
|
#include <openssl/bn.h> |
|
|
|
/* X9.31 routines for prime derivation */ |
|
|
|
/* |
|
* X9.31 prime derivation. This is used to generate the primes pi (p1, p2, |
|
* q1, q2) from a parameter Xpi by checking successive odd integers. |
|
*/ |
|
|
|
static int bn_x931_derive_pi(BIGNUM *pi, const BIGNUM *Xpi, BN_CTX *ctx, |
|
BN_GENCB *cb) |
|
{ |
|
int i = 0; |
|
if (!BN_copy(pi, Xpi)) |
|
return 0; |
|
if (!BN_is_odd(pi) && !BN_add_word(pi, 1)) |
|
return 0; |
|
for (;;) { |
|
i++; |
|
BN_GENCB_call(cb, 0, i); |
|
/* NB 27 MR is specificed in X9.31 */ |
|
if (BN_is_prime_fasttest_ex(pi, 27, ctx, 1, cb)) |
|
break; |
|
if (!BN_add_word(pi, 2)) |
|
return 0; |
|
} |
|
BN_GENCB_call(cb, 2, i); |
|
return 1; |
|
} |
|
|
|
/* |
|
* This is the main X9.31 prime derivation function. From parameters Xp1, Xp2 |
|
* and Xp derive the prime p. If the parameters p1 or p2 are not NULL they |
|
* will be returned too: this is needed for testing. |
|
*/ |
|
|
|
int BN_X931_derive_prime_ex(BIGNUM *p, BIGNUM *p1, BIGNUM *p2, |
|
const BIGNUM *Xp, const BIGNUM *Xp1, |
|
const BIGNUM *Xp2, const BIGNUM *e, BN_CTX *ctx, |
|
BN_GENCB *cb) |
|
{ |
|
int ret = 0; |
|
|
|
BIGNUM *t, *p1p2, *pm1; |
|
|
|
/* Only even e supported */ |
|
if (!BN_is_odd(e)) |
|
return 0; |
|
|
|
BN_CTX_start(ctx); |
|
if (!p1) |
|
p1 = BN_CTX_get(ctx); |
|
|
|
if (!p2) |
|
p2 = BN_CTX_get(ctx); |
|
|
|
t = BN_CTX_get(ctx); |
|
|
|
p1p2 = BN_CTX_get(ctx); |
|
|
|
pm1 = BN_CTX_get(ctx); |
|
|
|
if (!bn_x931_derive_pi(p1, Xp1, ctx, cb)) |
|
goto err; |
|
|
|
if (!bn_x931_derive_pi(p2, Xp2, ctx, cb)) |
|
goto err; |
|
|
|
if (!BN_mul(p1p2, p1, p2, ctx)) |
|
goto err; |
|
|
|
/* First set p to value of Rp */ |
|
|
|
if (!BN_mod_inverse(p, p2, p1, ctx)) |
|
goto err; |
|
|
|
if (!BN_mul(p, p, p2, ctx)) |
|
goto err; |
|
|
|
if (!BN_mod_inverse(t, p1, p2, ctx)) |
|
goto err; |
|
|
|
if (!BN_mul(t, t, p1, ctx)) |
|
goto err; |
|
|
|
if (!BN_sub(p, p, t)) |
|
goto err; |
|
|
|
if (p->neg && !BN_add(p, p, p1p2)) |
|
goto err; |
|
|
|
/* p now equals Rp */ |
|
|
|
if (!BN_mod_sub(p, p, Xp, p1p2, ctx)) |
|
goto err; |
|
|
|
if (!BN_add(p, p, Xp)) |
|
goto err; |
|
|
|
/* p now equals Yp0 */ |
|
|
|
for (;;) { |
|
int i = 1; |
|
BN_GENCB_call(cb, 0, i++); |
|
if (!BN_copy(pm1, p)) |
|
goto err; |
|
if (!BN_sub_word(pm1, 1)) |
|
goto err; |
|
if (!BN_gcd(t, pm1, e, ctx)) |
|
goto err; |
|
if (BN_is_one(t) |
|
/* |
|
* X9.31 specifies 8 MR and 1 Lucas test or any prime test |
|
* offering similar or better guarantees 50 MR is considerably |
|
* better. |
|
*/ |
|
&& BN_is_prime_fasttest_ex(p, 50, ctx, 1, cb)) |
|
break; |
|
if (!BN_add(p, p, p1p2)) |
|
goto err; |
|
} |
|
|
|
BN_GENCB_call(cb, 3, 0); |
|
|
|
ret = 1; |
|
|
|
err: |
|
|
|
BN_CTX_end(ctx); |
|
|
|
return ret; |
|
} |
|
|
|
/* |
|
* Generate pair of paramters Xp, Xq for X9.31 prime generation. Note: nbits |
|
* paramter is sum of number of bits in both. |
|
*/ |
|
|
|
int BN_X931_generate_Xpq(BIGNUM *Xp, BIGNUM *Xq, int nbits, BN_CTX *ctx) |
|
{ |
|
BIGNUM *t; |
|
int i; |
|
/* |
|
* Number of bits for each prime is of the form 512+128s for s = 0, 1, |
|
* ... |
|
*/ |
|
if ((nbits < 1024) || (nbits & 0xff)) |
|
return 0; |
|
nbits >>= 1; |
|
/* |
|
* The random value Xp must be between sqrt(2) * 2^(nbits-1) and 2^nbits |
|
* - 1. By setting the top two bits we ensure that the lower bound is |
|
* exceeded. |
|
*/ |
|
if (!BN_rand(Xp, nbits, 1, 0)) |
|
goto err; |
|
|
|
BN_CTX_start(ctx); |
|
t = BN_CTX_get(ctx); |
|
|
|
for (i = 0; i < 1000; i++) { |
|
if (!BN_rand(Xq, nbits, 1, 0)) |
|
goto err; |
|
/* Check that |Xp - Xq| > 2^(nbits - 100) */ |
|
BN_sub(t, Xp, Xq); |
|
if (BN_num_bits(t) > (nbits - 100)) |
|
break; |
|
} |
|
|
|
BN_CTX_end(ctx); |
|
|
|
if (i < 1000) |
|
return 1; |
|
|
|
return 0; |
|
|
|
err: |
|
BN_CTX_end(ctx); |
|
return 0; |
|
} |
|
|
|
/* |
|
* Generate primes using X9.31 algorithm. Of the values p, p1, p2, Xp1 and |
|
* Xp2 only 'p' needs to be non-NULL. If any of the others are not NULL the |
|
* relevant parameter will be stored in it. Due to the fact that |Xp - Xq| > |
|
* 2^(nbits - 100) must be satisfied Xp and Xq are generated using the |
|
* previous function and supplied as input. |
|
*/ |
|
|
|
int BN_X931_generate_prime_ex(BIGNUM *p, BIGNUM *p1, BIGNUM *p2, |
|
BIGNUM *Xp1, BIGNUM *Xp2, |
|
const BIGNUM *Xp, |
|
const BIGNUM *e, BN_CTX *ctx, BN_GENCB *cb) |
|
{ |
|
int ret = 0; |
|
|
|
BN_CTX_start(ctx); |
|
if (!Xp1) |
|
Xp1 = BN_CTX_get(ctx); |
|
if (!Xp2) |
|
Xp2 = BN_CTX_get(ctx); |
|
|
|
if (!BN_rand(Xp1, 101, 0, 0)) |
|
goto error; |
|
if (!BN_rand(Xp2, 101, 0, 0)) |
|
goto error; |
|
if (!BN_X931_derive_prime_ex(p, p1, p2, Xp, Xp1, Xp2, e, ctx, cb)) |
|
goto error; |
|
|
|
ret = 1; |
|
|
|
error: |
|
BN_CTX_end(ctx); |
|
|
|
return ret; |
|
|
|
}
|
|
|