You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
290 lines
8.3 KiB
290 lines
8.3 KiB
/* crypto/bn/bn_sqr.c */ |
|
/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com) |
|
* All rights reserved. |
|
* |
|
* This package is an SSL implementation written |
|
* by Eric Young (eay@cryptsoft.com). |
|
* The implementation was written so as to conform with Netscapes SSL. |
|
* |
|
* This library is free for commercial and non-commercial use as long as |
|
* the following conditions are aheared to. The following conditions |
|
* apply to all code found in this distribution, be it the RC4, RSA, |
|
* lhash, DES, etc., code; not just the SSL code. The SSL documentation |
|
* included with this distribution is covered by the same copyright terms |
|
* except that the holder is Tim Hudson (tjh@cryptsoft.com). |
|
* |
|
* Copyright remains Eric Young's, and as such any Copyright notices in |
|
* the code are not to be removed. |
|
* If this package is used in a product, Eric Young should be given attribution |
|
* as the author of the parts of the library used. |
|
* This can be in the form of a textual message at program startup or |
|
* in documentation (online or textual) provided with the package. |
|
* |
|
* Redistribution and use in source and binary forms, with or without |
|
* modification, are permitted provided that the following conditions |
|
* are met: |
|
* 1. Redistributions of source code must retain the copyright |
|
* notice, this list of conditions and the following disclaimer. |
|
* 2. Redistributions in binary form must reproduce the above copyright |
|
* notice, this list of conditions and the following disclaimer in the |
|
* documentation and/or other materials provided with the distribution. |
|
* 3. All advertising materials mentioning features or use of this software |
|
* must display the following acknowledgement: |
|
* "This product includes cryptographic software written by |
|
* Eric Young (eay@cryptsoft.com)" |
|
* The word 'cryptographic' can be left out if the rouines from the library |
|
* being used are not cryptographic related :-). |
|
* 4. If you include any Windows specific code (or a derivative thereof) from |
|
* the apps directory (application code) you must include an acknowledgement: |
|
* "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" |
|
* |
|
* THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND |
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE |
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL |
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS |
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY |
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF |
|
* SUCH DAMAGE. |
|
* |
|
* The licence and distribution terms for any publically available version or |
|
* derivative of this code cannot be changed. i.e. this code cannot simply be |
|
* copied and put under another distribution licence |
|
* [including the GNU Public Licence.] |
|
*/ |
|
|
|
#include <stdio.h> |
|
#include "cryptlib.h" |
|
#include "bn_lcl.h" |
|
|
|
/* r must not be a */ |
|
/* |
|
* I've just gone over this and it is now %20 faster on x86 - eay - 27 Jun 96 |
|
*/ |
|
int BN_sqr(BIGNUM *r, const BIGNUM *a, BN_CTX *ctx) |
|
{ |
|
int max, al; |
|
int ret = 0; |
|
BIGNUM *tmp, *rr; |
|
|
|
#ifdef BN_COUNT |
|
fprintf(stderr, "BN_sqr %d * %d\n", a->top, a->top); |
|
#endif |
|
bn_check_top(a); |
|
|
|
al = a->top; |
|
if (al <= 0) { |
|
r->top = 0; |
|
r->neg = 0; |
|
return 1; |
|
} |
|
|
|
BN_CTX_start(ctx); |
|
rr = (a != r) ? r : BN_CTX_get(ctx); |
|
tmp = BN_CTX_get(ctx); |
|
if (!rr || !tmp) |
|
goto err; |
|
|
|
max = 2 * al; /* Non-zero (from above) */ |
|
if (bn_wexpand(rr, max) == NULL) |
|
goto err; |
|
|
|
if (al == 4) { |
|
#ifndef BN_SQR_COMBA |
|
BN_ULONG t[8]; |
|
bn_sqr_normal(rr->d, a->d, 4, t); |
|
#else |
|
bn_sqr_comba4(rr->d, a->d); |
|
#endif |
|
} else if (al == 8) { |
|
#ifndef BN_SQR_COMBA |
|
BN_ULONG t[16]; |
|
bn_sqr_normal(rr->d, a->d, 8, t); |
|
#else |
|
bn_sqr_comba8(rr->d, a->d); |
|
#endif |
|
} else { |
|
#if defined(BN_RECURSION) |
|
if (al < BN_SQR_RECURSIVE_SIZE_NORMAL) { |
|
BN_ULONG t[BN_SQR_RECURSIVE_SIZE_NORMAL * 2]; |
|
bn_sqr_normal(rr->d, a->d, al, t); |
|
} else { |
|
int j, k; |
|
|
|
j = BN_num_bits_word((BN_ULONG)al); |
|
j = 1 << (j - 1); |
|
k = j + j; |
|
if (al == j) { |
|
if (bn_wexpand(tmp, k * 2) == NULL) |
|
goto err; |
|
bn_sqr_recursive(rr->d, a->d, al, tmp->d); |
|
} else { |
|
if (bn_wexpand(tmp, max) == NULL) |
|
goto err; |
|
bn_sqr_normal(rr->d, a->d, al, tmp->d); |
|
} |
|
} |
|
#else |
|
if (bn_wexpand(tmp, max) == NULL) |
|
goto err; |
|
bn_sqr_normal(rr->d, a->d, al, tmp->d); |
|
#endif |
|
} |
|
|
|
rr->neg = 0; |
|
/* |
|
* If the most-significant half of the top word of 'a' is zero, then the |
|
* square of 'a' will max-1 words. |
|
*/ |
|
if (a->d[al - 1] == (a->d[al - 1] & BN_MASK2l)) |
|
rr->top = max - 1; |
|
else |
|
rr->top = max; |
|
if (rr != r) |
|
BN_copy(r, rr); |
|
ret = 1; |
|
err: |
|
bn_check_top(rr); |
|
bn_check_top(tmp); |
|
BN_CTX_end(ctx); |
|
return (ret); |
|
} |
|
|
|
/* tmp must have 2*n words */ |
|
void bn_sqr_normal(BN_ULONG *r, const BN_ULONG *a, int n, BN_ULONG *tmp) |
|
{ |
|
int i, j, max; |
|
const BN_ULONG *ap; |
|
BN_ULONG *rp; |
|
|
|
max = n * 2; |
|
ap = a; |
|
rp = r; |
|
rp[0] = rp[max - 1] = 0; |
|
rp++; |
|
j = n; |
|
|
|
if (--j > 0) { |
|
ap++; |
|
rp[j] = bn_mul_words(rp, ap, j, ap[-1]); |
|
rp += 2; |
|
} |
|
|
|
for (i = n - 2; i > 0; i--) { |
|
j--; |
|
ap++; |
|
rp[j] = bn_mul_add_words(rp, ap, j, ap[-1]); |
|
rp += 2; |
|
} |
|
|
|
bn_add_words(r, r, r, max); |
|
|
|
/* There will not be a carry */ |
|
|
|
bn_sqr_words(tmp, a, n); |
|
|
|
bn_add_words(r, r, tmp, max); |
|
} |
|
|
|
#ifdef BN_RECURSION |
|
/*- |
|
* r is 2*n words in size, |
|
* a and b are both n words in size. (There's not actually a 'b' here ...) |
|
* n must be a power of 2. |
|
* We multiply and return the result. |
|
* t must be 2*n words in size |
|
* We calculate |
|
* a[0]*b[0] |
|
* a[0]*b[0]+a[1]*b[1]+(a[0]-a[1])*(b[1]-b[0]) |
|
* a[1]*b[1] |
|
*/ |
|
void bn_sqr_recursive(BN_ULONG *r, const BN_ULONG *a, int n2, BN_ULONG *t) |
|
{ |
|
int n = n2 / 2; |
|
int zero, c1; |
|
BN_ULONG ln, lo, *p; |
|
|
|
# ifdef BN_COUNT |
|
fprintf(stderr, " bn_sqr_recursive %d * %d\n", n2, n2); |
|
# endif |
|
if (n2 == 4) { |
|
# ifndef BN_SQR_COMBA |
|
bn_sqr_normal(r, a, 4, t); |
|
# else |
|
bn_sqr_comba4(r, a); |
|
# endif |
|
return; |
|
} else if (n2 == 8) { |
|
# ifndef BN_SQR_COMBA |
|
bn_sqr_normal(r, a, 8, t); |
|
# else |
|
bn_sqr_comba8(r, a); |
|
# endif |
|
return; |
|
} |
|
if (n2 < BN_SQR_RECURSIVE_SIZE_NORMAL) { |
|
bn_sqr_normal(r, a, n2, t); |
|
return; |
|
} |
|
/* r=(a[0]-a[1])*(a[1]-a[0]) */ |
|
c1 = bn_cmp_words(a, &(a[n]), n); |
|
zero = 0; |
|
if (c1 > 0) |
|
bn_sub_words(t, a, &(a[n]), n); |
|
else if (c1 < 0) |
|
bn_sub_words(t, &(a[n]), a, n); |
|
else |
|
zero = 1; |
|
|
|
/* The result will always be negative unless it is zero */ |
|
p = &(t[n2 * 2]); |
|
|
|
if (!zero) |
|
bn_sqr_recursive(&(t[n2]), t, n, p); |
|
else |
|
memset(&(t[n2]), 0, n2 * sizeof(BN_ULONG)); |
|
bn_sqr_recursive(r, a, n, p); |
|
bn_sqr_recursive(&(r[n2]), &(a[n]), n, p); |
|
|
|
/*- |
|
* t[32] holds (a[0]-a[1])*(a[1]-a[0]), it is negative or zero |
|
* r[10] holds (a[0]*b[0]) |
|
* r[32] holds (b[1]*b[1]) |
|
*/ |
|
|
|
c1 = (int)(bn_add_words(t, r, &(r[n2]), n2)); |
|
|
|
/* t[32] is negative */ |
|
c1 -= (int)(bn_sub_words(&(t[n2]), t, &(t[n2]), n2)); |
|
|
|
/*- |
|
* t[32] holds (a[0]-a[1])*(a[1]-a[0])+(a[0]*a[0])+(a[1]*a[1]) |
|
* r[10] holds (a[0]*a[0]) |
|
* r[32] holds (a[1]*a[1]) |
|
* c1 holds the carry bits |
|
*/ |
|
c1 += (int)(bn_add_words(&(r[n]), &(r[n]), &(t[n2]), n2)); |
|
if (c1) { |
|
p = &(r[n + n2]); |
|
lo = *p; |
|
ln = (lo + c1) & BN_MASK2; |
|
*p = ln; |
|
|
|
/* |
|
* The overflow will stop before we over write words we should not |
|
* overwrite |
|
*/ |
|
if (ln < (BN_ULONG)c1) { |
|
do { |
|
p++; |
|
lo = *p; |
|
ln = (lo + 1) & BN_MASK2; |
|
*p = ln; |
|
} while (ln == 0); |
|
} |
|
} |
|
} |
|
#endif
|
|
|