You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
1164 lines
33 KiB
1164 lines
33 KiB
/* crypto/bn/bn_mul.c */ |
|
/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com) |
|
* All rights reserved. |
|
* |
|
* This package is an SSL implementation written |
|
* by Eric Young (eay@cryptsoft.com). |
|
* The implementation was written so as to conform with Netscapes SSL. |
|
* |
|
* This library is free for commercial and non-commercial use as long as |
|
* the following conditions are aheared to. The following conditions |
|
* apply to all code found in this distribution, be it the RC4, RSA, |
|
* lhash, DES, etc., code; not just the SSL code. The SSL documentation |
|
* included with this distribution is covered by the same copyright terms |
|
* except that the holder is Tim Hudson (tjh@cryptsoft.com). |
|
* |
|
* Copyright remains Eric Young's, and as such any Copyright notices in |
|
* the code are not to be removed. |
|
* If this package is used in a product, Eric Young should be given attribution |
|
* as the author of the parts of the library used. |
|
* This can be in the form of a textual message at program startup or |
|
* in documentation (online or textual) provided with the package. |
|
* |
|
* Redistribution and use in source and binary forms, with or without |
|
* modification, are permitted provided that the following conditions |
|
* are met: |
|
* 1. Redistributions of source code must retain the copyright |
|
* notice, this list of conditions and the following disclaimer. |
|
* 2. Redistributions in binary form must reproduce the above copyright |
|
* notice, this list of conditions and the following disclaimer in the |
|
* documentation and/or other materials provided with the distribution. |
|
* 3. All advertising materials mentioning features or use of this software |
|
* must display the following acknowledgement: |
|
* "This product includes cryptographic software written by |
|
* Eric Young (eay@cryptsoft.com)" |
|
* The word 'cryptographic' can be left out if the rouines from the library |
|
* being used are not cryptographic related :-). |
|
* 4. If you include any Windows specific code (or a derivative thereof) from |
|
* the apps directory (application code) you must include an acknowledgement: |
|
* "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" |
|
* |
|
* THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND |
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE |
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL |
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS |
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY |
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF |
|
* SUCH DAMAGE. |
|
* |
|
* The licence and distribution terms for any publically available version or |
|
* derivative of this code cannot be changed. i.e. this code cannot simply be |
|
* copied and put under another distribution licence |
|
* [including the GNU Public Licence.] |
|
*/ |
|
|
|
#ifndef BN_DEBUG |
|
# undef NDEBUG /* avoid conflicting definitions */ |
|
# define NDEBUG |
|
#endif |
|
|
|
#include <stdio.h> |
|
#include <assert.h> |
|
#include "cryptlib.h" |
|
#include "bn_lcl.h" |
|
|
|
#if defined(OPENSSL_NO_ASM) || !defined(OPENSSL_BN_ASM_PART_WORDS) |
|
/* |
|
* Here follows specialised variants of bn_add_words() and bn_sub_words(). |
|
* They have the property performing operations on arrays of different sizes. |
|
* The sizes of those arrays is expressed through cl, which is the common |
|
* length ( basicall, min(len(a),len(b)) ), and dl, which is the delta |
|
* between the two lengths, calculated as len(a)-len(b). All lengths are the |
|
* number of BN_ULONGs... For the operations that require a result array as |
|
* parameter, it must have the length cl+abs(dl). These functions should |
|
* probably end up in bn_asm.c as soon as there are assembler counterparts |
|
* for the systems that use assembler files. |
|
*/ |
|
|
|
BN_ULONG bn_sub_part_words(BN_ULONG *r, |
|
const BN_ULONG *a, const BN_ULONG *b, |
|
int cl, int dl) |
|
{ |
|
BN_ULONG c, t; |
|
|
|
assert(cl >= 0); |
|
c = bn_sub_words(r, a, b, cl); |
|
|
|
if (dl == 0) |
|
return c; |
|
|
|
r += cl; |
|
a += cl; |
|
b += cl; |
|
|
|
if (dl < 0) { |
|
# ifdef BN_COUNT |
|
fprintf(stderr, " bn_sub_part_words %d + %d (dl < 0, c = %d)\n", cl, |
|
dl, c); |
|
# endif |
|
for (;;) { |
|
t = b[0]; |
|
r[0] = (0 - t - c) & BN_MASK2; |
|
if (t != 0) |
|
c = 1; |
|
if (++dl >= 0) |
|
break; |
|
|
|
t = b[1]; |
|
r[1] = (0 - t - c) & BN_MASK2; |
|
if (t != 0) |
|
c = 1; |
|
if (++dl >= 0) |
|
break; |
|
|
|
t = b[2]; |
|
r[2] = (0 - t - c) & BN_MASK2; |
|
if (t != 0) |
|
c = 1; |
|
if (++dl >= 0) |
|
break; |
|
|
|
t = b[3]; |
|
r[3] = (0 - t - c) & BN_MASK2; |
|
if (t != 0) |
|
c = 1; |
|
if (++dl >= 0) |
|
break; |
|
|
|
b += 4; |
|
r += 4; |
|
} |
|
} else { |
|
int save_dl = dl; |
|
# ifdef BN_COUNT |
|
fprintf(stderr, " bn_sub_part_words %d + %d (dl > 0, c = %d)\n", cl, |
|
dl, c); |
|
# endif |
|
while (c) { |
|
t = a[0]; |
|
r[0] = (t - c) & BN_MASK2; |
|
if (t != 0) |
|
c = 0; |
|
if (--dl <= 0) |
|
break; |
|
|
|
t = a[1]; |
|
r[1] = (t - c) & BN_MASK2; |
|
if (t != 0) |
|
c = 0; |
|
if (--dl <= 0) |
|
break; |
|
|
|
t = a[2]; |
|
r[2] = (t - c) & BN_MASK2; |
|
if (t != 0) |
|
c = 0; |
|
if (--dl <= 0) |
|
break; |
|
|
|
t = a[3]; |
|
r[3] = (t - c) & BN_MASK2; |
|
if (t != 0) |
|
c = 0; |
|
if (--dl <= 0) |
|
break; |
|
|
|
save_dl = dl; |
|
a += 4; |
|
r += 4; |
|
} |
|
if (dl > 0) { |
|
# ifdef BN_COUNT |
|
fprintf(stderr, " bn_sub_part_words %d + %d (dl > 0, c == 0)\n", |
|
cl, dl); |
|
# endif |
|
if (save_dl > dl) { |
|
switch (save_dl - dl) { |
|
case 1: |
|
r[1] = a[1]; |
|
if (--dl <= 0) |
|
break; |
|
case 2: |
|
r[2] = a[2]; |
|
if (--dl <= 0) |
|
break; |
|
case 3: |
|
r[3] = a[3]; |
|
if (--dl <= 0) |
|
break; |
|
} |
|
a += 4; |
|
r += 4; |
|
} |
|
} |
|
if (dl > 0) { |
|
# ifdef BN_COUNT |
|
fprintf(stderr, " bn_sub_part_words %d + %d (dl > 0, copy)\n", |
|
cl, dl); |
|
# endif |
|
for (;;) { |
|
r[0] = a[0]; |
|
if (--dl <= 0) |
|
break; |
|
r[1] = a[1]; |
|
if (--dl <= 0) |
|
break; |
|
r[2] = a[2]; |
|
if (--dl <= 0) |
|
break; |
|
r[3] = a[3]; |
|
if (--dl <= 0) |
|
break; |
|
|
|
a += 4; |
|
r += 4; |
|
} |
|
} |
|
} |
|
return c; |
|
} |
|
#endif |
|
|
|
BN_ULONG bn_add_part_words(BN_ULONG *r, |
|
const BN_ULONG *a, const BN_ULONG *b, |
|
int cl, int dl) |
|
{ |
|
BN_ULONG c, l, t; |
|
|
|
assert(cl >= 0); |
|
c = bn_add_words(r, a, b, cl); |
|
|
|
if (dl == 0) |
|
return c; |
|
|
|
r += cl; |
|
a += cl; |
|
b += cl; |
|
|
|
if (dl < 0) { |
|
int save_dl = dl; |
|
#ifdef BN_COUNT |
|
fprintf(stderr, " bn_add_part_words %d + %d (dl < 0, c = %d)\n", cl, |
|
dl, c); |
|
#endif |
|
while (c) { |
|
l = (c + b[0]) & BN_MASK2; |
|
c = (l < c); |
|
r[0] = l; |
|
if (++dl >= 0) |
|
break; |
|
|
|
l = (c + b[1]) & BN_MASK2; |
|
c = (l < c); |
|
r[1] = l; |
|
if (++dl >= 0) |
|
break; |
|
|
|
l = (c + b[2]) & BN_MASK2; |
|
c = (l < c); |
|
r[2] = l; |
|
if (++dl >= 0) |
|
break; |
|
|
|
l = (c + b[3]) & BN_MASK2; |
|
c = (l < c); |
|
r[3] = l; |
|
if (++dl >= 0) |
|
break; |
|
|
|
save_dl = dl; |
|
b += 4; |
|
r += 4; |
|
} |
|
if (dl < 0) { |
|
#ifdef BN_COUNT |
|
fprintf(stderr, " bn_add_part_words %d + %d (dl < 0, c == 0)\n", |
|
cl, dl); |
|
#endif |
|
if (save_dl < dl) { |
|
switch (dl - save_dl) { |
|
case 1: |
|
r[1] = b[1]; |
|
if (++dl >= 0) |
|
break; |
|
case 2: |
|
r[2] = b[2]; |
|
if (++dl >= 0) |
|
break; |
|
case 3: |
|
r[3] = b[3]; |
|
if (++dl >= 0) |
|
break; |
|
} |
|
b += 4; |
|
r += 4; |
|
} |
|
} |
|
if (dl < 0) { |
|
#ifdef BN_COUNT |
|
fprintf(stderr, " bn_add_part_words %d + %d (dl < 0, copy)\n", |
|
cl, dl); |
|
#endif |
|
for (;;) { |
|
r[0] = b[0]; |
|
if (++dl >= 0) |
|
break; |
|
r[1] = b[1]; |
|
if (++dl >= 0) |
|
break; |
|
r[2] = b[2]; |
|
if (++dl >= 0) |
|
break; |
|
r[3] = b[3]; |
|
if (++dl >= 0) |
|
break; |
|
|
|
b += 4; |
|
r += 4; |
|
} |
|
} |
|
} else { |
|
int save_dl = dl; |
|
#ifdef BN_COUNT |
|
fprintf(stderr, " bn_add_part_words %d + %d (dl > 0)\n", cl, dl); |
|
#endif |
|
while (c) { |
|
t = (a[0] + c) & BN_MASK2; |
|
c = (t < c); |
|
r[0] = t; |
|
if (--dl <= 0) |
|
break; |
|
|
|
t = (a[1] + c) & BN_MASK2; |
|
c = (t < c); |
|
r[1] = t; |
|
if (--dl <= 0) |
|
break; |
|
|
|
t = (a[2] + c) & BN_MASK2; |
|
c = (t < c); |
|
r[2] = t; |
|
if (--dl <= 0) |
|
break; |
|
|
|
t = (a[3] + c) & BN_MASK2; |
|
c = (t < c); |
|
r[3] = t; |
|
if (--dl <= 0) |
|
break; |
|
|
|
save_dl = dl; |
|
a += 4; |
|
r += 4; |
|
} |
|
#ifdef BN_COUNT |
|
fprintf(stderr, " bn_add_part_words %d + %d (dl > 0, c == 0)\n", cl, |
|
dl); |
|
#endif |
|
if (dl > 0) { |
|
if (save_dl > dl) { |
|
switch (save_dl - dl) { |
|
case 1: |
|
r[1] = a[1]; |
|
if (--dl <= 0) |
|
break; |
|
case 2: |
|
r[2] = a[2]; |
|
if (--dl <= 0) |
|
break; |
|
case 3: |
|
r[3] = a[3]; |
|
if (--dl <= 0) |
|
break; |
|
} |
|
a += 4; |
|
r += 4; |
|
} |
|
} |
|
if (dl > 0) { |
|
#ifdef BN_COUNT |
|
fprintf(stderr, " bn_add_part_words %d + %d (dl > 0, copy)\n", |
|
cl, dl); |
|
#endif |
|
for (;;) { |
|
r[0] = a[0]; |
|
if (--dl <= 0) |
|
break; |
|
r[1] = a[1]; |
|
if (--dl <= 0) |
|
break; |
|
r[2] = a[2]; |
|
if (--dl <= 0) |
|
break; |
|
r[3] = a[3]; |
|
if (--dl <= 0) |
|
break; |
|
|
|
a += 4; |
|
r += 4; |
|
} |
|
} |
|
} |
|
return c; |
|
} |
|
|
|
#ifdef BN_RECURSION |
|
/* |
|
* Karatsuba recursive multiplication algorithm (cf. Knuth, The Art of |
|
* Computer Programming, Vol. 2) |
|
*/ |
|
|
|
/*- |
|
* r is 2*n2 words in size, |
|
* a and b are both n2 words in size. |
|
* n2 must be a power of 2. |
|
* We multiply and return the result. |
|
* t must be 2*n2 words in size |
|
* We calculate |
|
* a[0]*b[0] |
|
* a[0]*b[0]+a[1]*b[1]+(a[0]-a[1])*(b[1]-b[0]) |
|
* a[1]*b[1] |
|
*/ |
|
/* dnX may not be positive, but n2/2+dnX has to be */ |
|
void bn_mul_recursive(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n2, |
|
int dna, int dnb, BN_ULONG *t) |
|
{ |
|
int n = n2 / 2, c1, c2; |
|
int tna = n + dna, tnb = n + dnb; |
|
unsigned int neg, zero; |
|
BN_ULONG ln, lo, *p; |
|
|
|
# ifdef BN_COUNT |
|
fprintf(stderr, " bn_mul_recursive %d%+d * %d%+d\n", n2, dna, n2, dnb); |
|
# endif |
|
# ifdef BN_MUL_COMBA |
|
# if 0 |
|
if (n2 == 4) { |
|
bn_mul_comba4(r, a, b); |
|
return; |
|
} |
|
# endif |
|
/* |
|
* Only call bn_mul_comba 8 if n2 == 8 and the two arrays are complete |
|
* [steve] |
|
*/ |
|
if (n2 == 8 && dna == 0 && dnb == 0) { |
|
bn_mul_comba8(r, a, b); |
|
return; |
|
} |
|
# endif /* BN_MUL_COMBA */ |
|
/* Else do normal multiply */ |
|
if (n2 < BN_MUL_RECURSIVE_SIZE_NORMAL) { |
|
bn_mul_normal(r, a, n2 + dna, b, n2 + dnb); |
|
if ((dna + dnb) < 0) |
|
memset(&r[2 * n2 + dna + dnb], 0, |
|
sizeof(BN_ULONG) * -(dna + dnb)); |
|
return; |
|
} |
|
/* r=(a[0]-a[1])*(b[1]-b[0]) */ |
|
c1 = bn_cmp_part_words(a, &(a[n]), tna, n - tna); |
|
c2 = bn_cmp_part_words(&(b[n]), b, tnb, tnb - n); |
|
zero = neg = 0; |
|
switch (c1 * 3 + c2) { |
|
case -4: |
|
bn_sub_part_words(t, &(a[n]), a, tna, tna - n); /* - */ |
|
bn_sub_part_words(&(t[n]), b, &(b[n]), tnb, n - tnb); /* - */ |
|
break; |
|
case -3: |
|
zero = 1; |
|
break; |
|
case -2: |
|
bn_sub_part_words(t, &(a[n]), a, tna, tna - n); /* - */ |
|
bn_sub_part_words(&(t[n]), &(b[n]), b, tnb, tnb - n); /* + */ |
|
neg = 1; |
|
break; |
|
case -1: |
|
case 0: |
|
case 1: |
|
zero = 1; |
|
break; |
|
case 2: |
|
bn_sub_part_words(t, a, &(a[n]), tna, n - tna); /* + */ |
|
bn_sub_part_words(&(t[n]), b, &(b[n]), tnb, n - tnb); /* - */ |
|
neg = 1; |
|
break; |
|
case 3: |
|
zero = 1; |
|
break; |
|
case 4: |
|
bn_sub_part_words(t, a, &(a[n]), tna, n - tna); |
|
bn_sub_part_words(&(t[n]), &(b[n]), b, tnb, tnb - n); |
|
break; |
|
} |
|
|
|
# ifdef BN_MUL_COMBA |
|
if (n == 4 && dna == 0 && dnb == 0) { /* XXX: bn_mul_comba4 could take |
|
* extra args to do this well */ |
|
if (!zero) |
|
bn_mul_comba4(&(t[n2]), t, &(t[n])); |
|
else |
|
memset(&(t[n2]), 0, 8 * sizeof(BN_ULONG)); |
|
|
|
bn_mul_comba4(r, a, b); |
|
bn_mul_comba4(&(r[n2]), &(a[n]), &(b[n])); |
|
} else if (n == 8 && dna == 0 && dnb == 0) { /* XXX: bn_mul_comba8 could |
|
* take extra args to do |
|
* this well */ |
|
if (!zero) |
|
bn_mul_comba8(&(t[n2]), t, &(t[n])); |
|
else |
|
memset(&(t[n2]), 0, 16 * sizeof(BN_ULONG)); |
|
|
|
bn_mul_comba8(r, a, b); |
|
bn_mul_comba8(&(r[n2]), &(a[n]), &(b[n])); |
|
} else |
|
# endif /* BN_MUL_COMBA */ |
|
{ |
|
p = &(t[n2 * 2]); |
|
if (!zero) |
|
bn_mul_recursive(&(t[n2]), t, &(t[n]), n, 0, 0, p); |
|
else |
|
memset(&(t[n2]), 0, n2 * sizeof(BN_ULONG)); |
|
bn_mul_recursive(r, a, b, n, 0, 0, p); |
|
bn_mul_recursive(&(r[n2]), &(a[n]), &(b[n]), n, dna, dnb, p); |
|
} |
|
|
|
/*- |
|
* t[32] holds (a[0]-a[1])*(b[1]-b[0]), c1 is the sign |
|
* r[10] holds (a[0]*b[0]) |
|
* r[32] holds (b[1]*b[1]) |
|
*/ |
|
|
|
c1 = (int)(bn_add_words(t, r, &(r[n2]), n2)); |
|
|
|
if (neg) { /* if t[32] is negative */ |
|
c1 -= (int)(bn_sub_words(&(t[n2]), t, &(t[n2]), n2)); |
|
} else { |
|
/* Might have a carry */ |
|
c1 += (int)(bn_add_words(&(t[n2]), &(t[n2]), t, n2)); |
|
} |
|
|
|
/*- |
|
* t[32] holds (a[0]-a[1])*(b[1]-b[0])+(a[0]*b[0])+(a[1]*b[1]) |
|
* r[10] holds (a[0]*b[0]) |
|
* r[32] holds (b[1]*b[1]) |
|
* c1 holds the carry bits |
|
*/ |
|
c1 += (int)(bn_add_words(&(r[n]), &(r[n]), &(t[n2]), n2)); |
|
if (c1) { |
|
p = &(r[n + n2]); |
|
lo = *p; |
|
ln = (lo + c1) & BN_MASK2; |
|
*p = ln; |
|
|
|
/* |
|
* The overflow will stop before we over write words we should not |
|
* overwrite |
|
*/ |
|
if (ln < (BN_ULONG)c1) { |
|
do { |
|
p++; |
|
lo = *p; |
|
ln = (lo + 1) & BN_MASK2; |
|
*p = ln; |
|
} while (ln == 0); |
|
} |
|
} |
|
} |
|
|
|
/* |
|
* n+tn is the word length t needs to be n*4 is size, as does r |
|
*/ |
|
/* tnX may not be negative but less than n */ |
|
void bn_mul_part_recursive(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n, |
|
int tna, int tnb, BN_ULONG *t) |
|
{ |
|
int i, j, n2 = n * 2; |
|
int c1, c2, neg; |
|
BN_ULONG ln, lo, *p; |
|
|
|
# ifdef BN_COUNT |
|
fprintf(stderr, " bn_mul_part_recursive (%d%+d) * (%d%+d)\n", |
|
n, tna, n, tnb); |
|
# endif |
|
if (n < 8) { |
|
bn_mul_normal(r, a, n + tna, b, n + tnb); |
|
return; |
|
} |
|
|
|
/* r=(a[0]-a[1])*(b[1]-b[0]) */ |
|
c1 = bn_cmp_part_words(a, &(a[n]), tna, n - tna); |
|
c2 = bn_cmp_part_words(&(b[n]), b, tnb, tnb - n); |
|
neg = 0; |
|
switch (c1 * 3 + c2) { |
|
case -4: |
|
bn_sub_part_words(t, &(a[n]), a, tna, tna - n); /* - */ |
|
bn_sub_part_words(&(t[n]), b, &(b[n]), tnb, n - tnb); /* - */ |
|
break; |
|
case -3: |
|
/* break; */ |
|
case -2: |
|
bn_sub_part_words(t, &(a[n]), a, tna, tna - n); /* - */ |
|
bn_sub_part_words(&(t[n]), &(b[n]), b, tnb, tnb - n); /* + */ |
|
neg = 1; |
|
break; |
|
case -1: |
|
case 0: |
|
case 1: |
|
/* break; */ |
|
case 2: |
|
bn_sub_part_words(t, a, &(a[n]), tna, n - tna); /* + */ |
|
bn_sub_part_words(&(t[n]), b, &(b[n]), tnb, n - tnb); /* - */ |
|
neg = 1; |
|
break; |
|
case 3: |
|
/* break; */ |
|
case 4: |
|
bn_sub_part_words(t, a, &(a[n]), tna, n - tna); |
|
bn_sub_part_words(&(t[n]), &(b[n]), b, tnb, tnb - n); |
|
break; |
|
} |
|
/* |
|
* The zero case isn't yet implemented here. The speedup would probably |
|
* be negligible. |
|
*/ |
|
# if 0 |
|
if (n == 4) { |
|
bn_mul_comba4(&(t[n2]), t, &(t[n])); |
|
bn_mul_comba4(r, a, b); |
|
bn_mul_normal(&(r[n2]), &(a[n]), tn, &(b[n]), tn); |
|
memset(&(r[n2 + tn * 2]), 0, sizeof(BN_ULONG) * (n2 - tn * 2)); |
|
} else |
|
# endif |
|
if (n == 8) { |
|
bn_mul_comba8(&(t[n2]), t, &(t[n])); |
|
bn_mul_comba8(r, a, b); |
|
bn_mul_normal(&(r[n2]), &(a[n]), tna, &(b[n]), tnb); |
|
memset(&(r[n2 + tna + tnb]), 0, sizeof(BN_ULONG) * (n2 - tna - tnb)); |
|
} else { |
|
p = &(t[n2 * 2]); |
|
bn_mul_recursive(&(t[n2]), t, &(t[n]), n, 0, 0, p); |
|
bn_mul_recursive(r, a, b, n, 0, 0, p); |
|
i = n / 2; |
|
/* |
|
* If there is only a bottom half to the number, just do it |
|
*/ |
|
if (tna > tnb) |
|
j = tna - i; |
|
else |
|
j = tnb - i; |
|
if (j == 0) { |
|
bn_mul_recursive(&(r[n2]), &(a[n]), &(b[n]), |
|
i, tna - i, tnb - i, p); |
|
memset(&(r[n2 + i * 2]), 0, sizeof(BN_ULONG) * (n2 - i * 2)); |
|
} else if (j > 0) { /* eg, n == 16, i == 8 and tn == 11 */ |
|
bn_mul_part_recursive(&(r[n2]), &(a[n]), &(b[n]), |
|
i, tna - i, tnb - i, p); |
|
memset(&(r[n2 + tna + tnb]), 0, |
|
sizeof(BN_ULONG) * (n2 - tna - tnb)); |
|
} else { /* (j < 0) eg, n == 16, i == 8 and tn == 5 */ |
|
|
|
memset(&(r[n2]), 0, sizeof(BN_ULONG) * n2); |
|
if (tna < BN_MUL_RECURSIVE_SIZE_NORMAL |
|
&& tnb < BN_MUL_RECURSIVE_SIZE_NORMAL) { |
|
bn_mul_normal(&(r[n2]), &(a[n]), tna, &(b[n]), tnb); |
|
} else { |
|
for (;;) { |
|
i /= 2; |
|
/* |
|
* these simplified conditions work exclusively because |
|
* difference between tna and tnb is 1 or 0 |
|
*/ |
|
if (i < tna || i < tnb) { |
|
bn_mul_part_recursive(&(r[n2]), |
|
&(a[n]), &(b[n]), |
|
i, tna - i, tnb - i, p); |
|
break; |
|
} else if (i == tna || i == tnb) { |
|
bn_mul_recursive(&(r[n2]), |
|
&(a[n]), &(b[n]), |
|
i, tna - i, tnb - i, p); |
|
break; |
|
} |
|
} |
|
} |
|
} |
|
} |
|
|
|
/*- |
|
* t[32] holds (a[0]-a[1])*(b[1]-b[0]), c1 is the sign |
|
* r[10] holds (a[0]*b[0]) |
|
* r[32] holds (b[1]*b[1]) |
|
*/ |
|
|
|
c1 = (int)(bn_add_words(t, r, &(r[n2]), n2)); |
|
|
|
if (neg) { /* if t[32] is negative */ |
|
c1 -= (int)(bn_sub_words(&(t[n2]), t, &(t[n2]), n2)); |
|
} else { |
|
/* Might have a carry */ |
|
c1 += (int)(bn_add_words(&(t[n2]), &(t[n2]), t, n2)); |
|
} |
|
|
|
/*- |
|
* t[32] holds (a[0]-a[1])*(b[1]-b[0])+(a[0]*b[0])+(a[1]*b[1]) |
|
* r[10] holds (a[0]*b[0]) |
|
* r[32] holds (b[1]*b[1]) |
|
* c1 holds the carry bits |
|
*/ |
|
c1 += (int)(bn_add_words(&(r[n]), &(r[n]), &(t[n2]), n2)); |
|
if (c1) { |
|
p = &(r[n + n2]); |
|
lo = *p; |
|
ln = (lo + c1) & BN_MASK2; |
|
*p = ln; |
|
|
|
/* |
|
* The overflow will stop before we over write words we should not |
|
* overwrite |
|
*/ |
|
if (ln < (BN_ULONG)c1) { |
|
do { |
|
p++; |
|
lo = *p; |
|
ln = (lo + 1) & BN_MASK2; |
|
*p = ln; |
|
} while (ln == 0); |
|
} |
|
} |
|
} |
|
|
|
/*- |
|
* a and b must be the same size, which is n2. |
|
* r needs to be n2 words and t needs to be n2*2 |
|
*/ |
|
void bn_mul_low_recursive(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n2, |
|
BN_ULONG *t) |
|
{ |
|
int n = n2 / 2; |
|
|
|
# ifdef BN_COUNT |
|
fprintf(stderr, " bn_mul_low_recursive %d * %d\n", n2, n2); |
|
# endif |
|
|
|
bn_mul_recursive(r, a, b, n, 0, 0, &(t[0])); |
|
if (n >= BN_MUL_LOW_RECURSIVE_SIZE_NORMAL) { |
|
bn_mul_low_recursive(&(t[0]), &(a[0]), &(b[n]), n, &(t[n2])); |
|
bn_add_words(&(r[n]), &(r[n]), &(t[0]), n); |
|
bn_mul_low_recursive(&(t[0]), &(a[n]), &(b[0]), n, &(t[n2])); |
|
bn_add_words(&(r[n]), &(r[n]), &(t[0]), n); |
|
} else { |
|
bn_mul_low_normal(&(t[0]), &(a[0]), &(b[n]), n); |
|
bn_mul_low_normal(&(t[n]), &(a[n]), &(b[0]), n); |
|
bn_add_words(&(r[n]), &(r[n]), &(t[0]), n); |
|
bn_add_words(&(r[n]), &(r[n]), &(t[n]), n); |
|
} |
|
} |
|
|
|
/*- |
|
* a and b must be the same size, which is n2. |
|
* r needs to be n2 words and t needs to be n2*2 |
|
* l is the low words of the output. |
|
* t needs to be n2*3 |
|
*/ |
|
void bn_mul_high(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, BN_ULONG *l, int n2, |
|
BN_ULONG *t) |
|
{ |
|
int i, n; |
|
int c1, c2; |
|
int neg, oneg, zero; |
|
BN_ULONG ll, lc, *lp, *mp; |
|
|
|
# ifdef BN_COUNT |
|
fprintf(stderr, " bn_mul_high %d * %d\n", n2, n2); |
|
# endif |
|
n = n2 / 2; |
|
|
|
/* Calculate (al-ah)*(bh-bl) */ |
|
neg = zero = 0; |
|
c1 = bn_cmp_words(&(a[0]), &(a[n]), n); |
|
c2 = bn_cmp_words(&(b[n]), &(b[0]), n); |
|
switch (c1 * 3 + c2) { |
|
case -4: |
|
bn_sub_words(&(r[0]), &(a[n]), &(a[0]), n); |
|
bn_sub_words(&(r[n]), &(b[0]), &(b[n]), n); |
|
break; |
|
case -3: |
|
zero = 1; |
|
break; |
|
case -2: |
|
bn_sub_words(&(r[0]), &(a[n]), &(a[0]), n); |
|
bn_sub_words(&(r[n]), &(b[n]), &(b[0]), n); |
|
neg = 1; |
|
break; |
|
case -1: |
|
case 0: |
|
case 1: |
|
zero = 1; |
|
break; |
|
case 2: |
|
bn_sub_words(&(r[0]), &(a[0]), &(a[n]), n); |
|
bn_sub_words(&(r[n]), &(b[0]), &(b[n]), n); |
|
neg = 1; |
|
break; |
|
case 3: |
|
zero = 1; |
|
break; |
|
case 4: |
|
bn_sub_words(&(r[0]), &(a[0]), &(a[n]), n); |
|
bn_sub_words(&(r[n]), &(b[n]), &(b[0]), n); |
|
break; |
|
} |
|
|
|
oneg = neg; |
|
/* t[10] = (a[0]-a[1])*(b[1]-b[0]) */ |
|
/* r[10] = (a[1]*b[1]) */ |
|
# ifdef BN_MUL_COMBA |
|
if (n == 8) { |
|
bn_mul_comba8(&(t[0]), &(r[0]), &(r[n])); |
|
bn_mul_comba8(r, &(a[n]), &(b[n])); |
|
} else |
|
# endif |
|
{ |
|
bn_mul_recursive(&(t[0]), &(r[0]), &(r[n]), n, 0, 0, &(t[n2])); |
|
bn_mul_recursive(r, &(a[n]), &(b[n]), n, 0, 0, &(t[n2])); |
|
} |
|
|
|
/*- |
|
* s0 == low(al*bl) |
|
* s1 == low(ah*bh)+low((al-ah)*(bh-bl))+low(al*bl)+high(al*bl) |
|
* We know s0 and s1 so the only unknown is high(al*bl) |
|
* high(al*bl) == s1 - low(ah*bh+s0+(al-ah)*(bh-bl)) |
|
* high(al*bl) == s1 - (r[0]+l[0]+t[0]) |
|
*/ |
|
if (l != NULL) { |
|
lp = &(t[n2 + n]); |
|
c1 = (int)(bn_add_words(lp, &(r[0]), &(l[0]), n)); |
|
} else { |
|
c1 = 0; |
|
lp = &(r[0]); |
|
} |
|
|
|
if (neg) |
|
neg = (int)(bn_sub_words(&(t[n2]), lp, &(t[0]), n)); |
|
else { |
|
bn_add_words(&(t[n2]), lp, &(t[0]), n); |
|
neg = 0; |
|
} |
|
|
|
if (l != NULL) { |
|
bn_sub_words(&(t[n2 + n]), &(l[n]), &(t[n2]), n); |
|
} else { |
|
lp = &(t[n2 + n]); |
|
mp = &(t[n2]); |
|
for (i = 0; i < n; i++) |
|
lp[i] = ((~mp[i]) + 1) & BN_MASK2; |
|
} |
|
|
|
/*- |
|
* s[0] = low(al*bl) |
|
* t[3] = high(al*bl) |
|
* t[10] = (a[0]-a[1])*(b[1]-b[0]) neg is the sign |
|
* r[10] = (a[1]*b[1]) |
|
*/ |
|
/*- |
|
* R[10] = al*bl |
|
* R[21] = al*bl + ah*bh + (a[0]-a[1])*(b[1]-b[0]) |
|
* R[32] = ah*bh |
|
*/ |
|
/*- |
|
* R[1]=t[3]+l[0]+r[0](+-)t[0] (have carry/borrow) |
|
* R[2]=r[0]+t[3]+r[1](+-)t[1] (have carry/borrow) |
|
* R[3]=r[1]+(carry/borrow) |
|
*/ |
|
if (l != NULL) { |
|
lp = &(t[n2]); |
|
c1 = (int)(bn_add_words(lp, &(t[n2 + n]), &(l[0]), n)); |
|
} else { |
|
lp = &(t[n2 + n]); |
|
c1 = 0; |
|
} |
|
c1 += (int)(bn_add_words(&(t[n2]), lp, &(r[0]), n)); |
|
if (oneg) |
|
c1 -= (int)(bn_sub_words(&(t[n2]), &(t[n2]), &(t[0]), n)); |
|
else |
|
c1 += (int)(bn_add_words(&(t[n2]), &(t[n2]), &(t[0]), n)); |
|
|
|
c2 = (int)(bn_add_words(&(r[0]), &(r[0]), &(t[n2 + n]), n)); |
|
c2 += (int)(bn_add_words(&(r[0]), &(r[0]), &(r[n]), n)); |
|
if (oneg) |
|
c2 -= (int)(bn_sub_words(&(r[0]), &(r[0]), &(t[n]), n)); |
|
else |
|
c2 += (int)(bn_add_words(&(r[0]), &(r[0]), &(t[n]), n)); |
|
|
|
if (c1 != 0) { /* Add starting at r[0], could be +ve or -ve */ |
|
i = 0; |
|
if (c1 > 0) { |
|
lc = c1; |
|
do { |
|
ll = (r[i] + lc) & BN_MASK2; |
|
r[i++] = ll; |
|
lc = (lc > ll); |
|
} while (lc); |
|
} else { |
|
lc = -c1; |
|
do { |
|
ll = r[i]; |
|
r[i++] = (ll - lc) & BN_MASK2; |
|
lc = (lc > ll); |
|
} while (lc); |
|
} |
|
} |
|
if (c2 != 0) { /* Add starting at r[1] */ |
|
i = n; |
|
if (c2 > 0) { |
|
lc = c2; |
|
do { |
|
ll = (r[i] + lc) & BN_MASK2; |
|
r[i++] = ll; |
|
lc = (lc > ll); |
|
} while (lc); |
|
} else { |
|
lc = -c2; |
|
do { |
|
ll = r[i]; |
|
r[i++] = (ll - lc) & BN_MASK2; |
|
lc = (lc > ll); |
|
} while (lc); |
|
} |
|
} |
|
} |
|
#endif /* BN_RECURSION */ |
|
|
|
int BN_mul(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx) |
|
{ |
|
int ret = 0; |
|
int top, al, bl; |
|
BIGNUM *rr; |
|
#if defined(BN_MUL_COMBA) || defined(BN_RECURSION) |
|
int i; |
|
#endif |
|
#ifdef BN_RECURSION |
|
BIGNUM *t = NULL; |
|
int j = 0, k; |
|
#endif |
|
|
|
#ifdef BN_COUNT |
|
fprintf(stderr, "BN_mul %d * %d\n", a->top, b->top); |
|
#endif |
|
|
|
bn_check_top(a); |
|
bn_check_top(b); |
|
bn_check_top(r); |
|
|
|
al = a->top; |
|
bl = b->top; |
|
|
|
if ((al == 0) || (bl == 0)) { |
|
BN_zero(r); |
|
return (1); |
|
} |
|
top = al + bl; |
|
|
|
BN_CTX_start(ctx); |
|
if ((r == a) || (r == b)) { |
|
if ((rr = BN_CTX_get(ctx)) == NULL) |
|
goto err; |
|
} else |
|
rr = r; |
|
rr->neg = a->neg ^ b->neg; |
|
|
|
#if defined(BN_MUL_COMBA) || defined(BN_RECURSION) |
|
i = al - bl; |
|
#endif |
|
#ifdef BN_MUL_COMBA |
|
if (i == 0) { |
|
# if 0 |
|
if (al == 4) { |
|
if (bn_wexpand(rr, 8) == NULL) |
|
goto err; |
|
rr->top = 8; |
|
bn_mul_comba4(rr->d, a->d, b->d); |
|
goto end; |
|
} |
|
# endif |
|
if (al == 8) { |
|
if (bn_wexpand(rr, 16) == NULL) |
|
goto err; |
|
rr->top = 16; |
|
bn_mul_comba8(rr->d, a->d, b->d); |
|
goto end; |
|
} |
|
} |
|
#endif /* BN_MUL_COMBA */ |
|
#ifdef BN_RECURSION |
|
if ((al >= BN_MULL_SIZE_NORMAL) && (bl >= BN_MULL_SIZE_NORMAL)) { |
|
if (i >= -1 && i <= 1) { |
|
/* |
|
* Find out the power of two lower or equal to the longest of the |
|
* two numbers |
|
*/ |
|
if (i >= 0) { |
|
j = BN_num_bits_word((BN_ULONG)al); |
|
} |
|
if (i == -1) { |
|
j = BN_num_bits_word((BN_ULONG)bl); |
|
} |
|
j = 1 << (j - 1); |
|
assert(j <= al || j <= bl); |
|
k = j + j; |
|
t = BN_CTX_get(ctx); |
|
if (t == NULL) |
|
goto err; |
|
if (al > j || bl > j) { |
|
if (bn_wexpand(t, k * 4) == NULL) |
|
goto err; |
|
if (bn_wexpand(rr, k * 4) == NULL) |
|
goto err; |
|
bn_mul_part_recursive(rr->d, a->d, b->d, |
|
j, al - j, bl - j, t->d); |
|
} else { /* al <= j || bl <= j */ |
|
|
|
if (bn_wexpand(t, k * 2) == NULL) |
|
goto err; |
|
if (bn_wexpand(rr, k * 2) == NULL) |
|
goto err; |
|
bn_mul_recursive(rr->d, a->d, b->d, j, al - j, bl - j, t->d); |
|
} |
|
rr->top = top; |
|
goto end; |
|
} |
|
# if 0 |
|
if (i == 1 && !BN_get_flags(b, BN_FLG_STATIC_DATA)) { |
|
BIGNUM *tmp_bn = (BIGNUM *)b; |
|
if (bn_wexpand(tmp_bn, al) == NULL) |
|
goto err; |
|
tmp_bn->d[bl] = 0; |
|
bl++; |
|
i--; |
|
} else if (i == -1 && !BN_get_flags(a, BN_FLG_STATIC_DATA)) { |
|
BIGNUM *tmp_bn = (BIGNUM *)a; |
|
if (bn_wexpand(tmp_bn, bl) == NULL) |
|
goto err; |
|
tmp_bn->d[al] = 0; |
|
al++; |
|
i++; |
|
} |
|
if (i == 0) { |
|
/* symmetric and > 4 */ |
|
/* 16 or larger */ |
|
j = BN_num_bits_word((BN_ULONG)al); |
|
j = 1 << (j - 1); |
|
k = j + j; |
|
t = BN_CTX_get(ctx); |
|
if (al == j) { /* exact multiple */ |
|
if (bn_wexpand(t, k * 2) == NULL) |
|
goto err; |
|
if (bn_wexpand(rr, k * 2) == NULL) |
|
goto err; |
|
bn_mul_recursive(rr->d, a->d, b->d, al, t->d); |
|
} else { |
|
if (bn_wexpand(t, k * 4) == NULL) |
|
goto err; |
|
if (bn_wexpand(rr, k * 4) == NULL) |
|
goto err; |
|
bn_mul_part_recursive(rr->d, a->d, b->d, al - j, j, t->d); |
|
} |
|
rr->top = top; |
|
goto end; |
|
} |
|
# endif |
|
} |
|
#endif /* BN_RECURSION */ |
|
if (bn_wexpand(rr, top) == NULL) |
|
goto err; |
|
rr->top = top; |
|
bn_mul_normal(rr->d, a->d, al, b->d, bl); |
|
|
|
#if defined(BN_MUL_COMBA) || defined(BN_RECURSION) |
|
end: |
|
#endif |
|
bn_correct_top(rr); |
|
if (r != rr) |
|
BN_copy(r, rr); |
|
ret = 1; |
|
err: |
|
bn_check_top(r); |
|
BN_CTX_end(ctx); |
|
return (ret); |
|
} |
|
|
|
void bn_mul_normal(BN_ULONG *r, BN_ULONG *a, int na, BN_ULONG *b, int nb) |
|
{ |
|
BN_ULONG *rr; |
|
|
|
#ifdef BN_COUNT |
|
fprintf(stderr, " bn_mul_normal %d * %d\n", na, nb); |
|
#endif |
|
|
|
if (na < nb) { |
|
int itmp; |
|
BN_ULONG *ltmp; |
|
|
|
itmp = na; |
|
na = nb; |
|
nb = itmp; |
|
ltmp = a; |
|
a = b; |
|
b = ltmp; |
|
|
|
} |
|
rr = &(r[na]); |
|
if (nb <= 0) { |
|
(void)bn_mul_words(r, a, na, 0); |
|
return; |
|
} else |
|
rr[0] = bn_mul_words(r, a, na, b[0]); |
|
|
|
for (;;) { |
|
if (--nb <= 0) |
|
return; |
|
rr[1] = bn_mul_add_words(&(r[1]), a, na, b[1]); |
|
if (--nb <= 0) |
|
return; |
|
rr[2] = bn_mul_add_words(&(r[2]), a, na, b[2]); |
|
if (--nb <= 0) |
|
return; |
|
rr[3] = bn_mul_add_words(&(r[3]), a, na, b[3]); |
|
if (--nb <= 0) |
|
return; |
|
rr[4] = bn_mul_add_words(&(r[4]), a, na, b[4]); |
|
rr += 4; |
|
r += 4; |
|
b += 4; |
|
} |
|
} |
|
|
|
void bn_mul_low_normal(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n) |
|
{ |
|
#ifdef BN_COUNT |
|
fprintf(stderr, " bn_mul_low_normal %d * %d\n", n, n); |
|
#endif |
|
bn_mul_words(r, a, n, b[0]); |
|
|
|
for (;;) { |
|
if (--n <= 0) |
|
return; |
|
bn_mul_add_words(&(r[1]), a, n, b[1]); |
|
if (--n <= 0) |
|
return; |
|
bn_mul_add_words(&(r[2]), a, n, b[2]); |
|
if (--n <= 0) |
|
return; |
|
bn_mul_add_words(&(r[3]), a, n, b[3]); |
|
if (--n <= 0) |
|
return; |
|
bn_mul_add_words(&(r[4]), a, n, b[4]); |
|
r += 4; |
|
b += 4; |
|
} |
|
}
|
|
|