You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
916 lines
23 KiB
916 lines
23 KiB
/* crypto/bn/bn_lib.c */ |
|
/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com) |
|
* All rights reserved. |
|
* |
|
* This package is an SSL implementation written |
|
* by Eric Young (eay@cryptsoft.com). |
|
* The implementation was written so as to conform with Netscapes SSL. |
|
* |
|
* This library is free for commercial and non-commercial use as long as |
|
* the following conditions are aheared to. The following conditions |
|
* apply to all code found in this distribution, be it the RC4, RSA, |
|
* lhash, DES, etc., code; not just the SSL code. The SSL documentation |
|
* included with this distribution is covered by the same copyright terms |
|
* except that the holder is Tim Hudson (tjh@cryptsoft.com). |
|
* |
|
* Copyright remains Eric Young's, and as such any Copyright notices in |
|
* the code are not to be removed. |
|
* If this package is used in a product, Eric Young should be given attribution |
|
* as the author of the parts of the library used. |
|
* This can be in the form of a textual message at program startup or |
|
* in documentation (online or textual) provided with the package. |
|
* |
|
* Redistribution and use in source and binary forms, with or without |
|
* modification, are permitted provided that the following conditions |
|
* are met: |
|
* 1. Redistributions of source code must retain the copyright |
|
* notice, this list of conditions and the following disclaimer. |
|
* 2. Redistributions in binary form must reproduce the above copyright |
|
* notice, this list of conditions and the following disclaimer in the |
|
* documentation and/or other materials provided with the distribution. |
|
* 3. All advertising materials mentioning features or use of this software |
|
* must display the following acknowledgement: |
|
* "This product includes cryptographic software written by |
|
* Eric Young (eay@cryptsoft.com)" |
|
* The word 'cryptographic' can be left out if the rouines from the library |
|
* being used are not cryptographic related :-). |
|
* 4. If you include any Windows specific code (or a derivative thereof) from |
|
* the apps directory (application code) you must include an acknowledgement: |
|
* "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" |
|
* |
|
* THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND |
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE |
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL |
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS |
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY |
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF |
|
* SUCH DAMAGE. |
|
* |
|
* The licence and distribution terms for any publically available version or |
|
* derivative of this code cannot be changed. i.e. this code cannot simply be |
|
* copied and put under another distribution licence |
|
* [including the GNU Public Licence.] |
|
*/ |
|
|
|
#ifndef BN_DEBUG |
|
# undef NDEBUG /* avoid conflicting definitions */ |
|
# define NDEBUG |
|
#endif |
|
|
|
#include <assert.h> |
|
#include <limits.h> |
|
#include <stdio.h> |
|
#include "cryptlib.h" |
|
#include "bn_lcl.h" |
|
|
|
const char BN_version[] = "Big Number" OPENSSL_VERSION_PTEXT; |
|
|
|
/* This stuff appears to be completely unused, so is deprecated */ |
|
#ifndef OPENSSL_NO_DEPRECATED |
|
/*- |
|
* For a 32 bit machine |
|
* 2 - 4 == 128 |
|
* 3 - 8 == 256 |
|
* 4 - 16 == 512 |
|
* 5 - 32 == 1024 |
|
* 6 - 64 == 2048 |
|
* 7 - 128 == 4096 |
|
* 8 - 256 == 8192 |
|
*/ |
|
static int bn_limit_bits = 0; |
|
static int bn_limit_num = 8; /* (1<<bn_limit_bits) */ |
|
static int bn_limit_bits_low = 0; |
|
static int bn_limit_num_low = 8; /* (1<<bn_limit_bits_low) */ |
|
static int bn_limit_bits_high = 0; |
|
static int bn_limit_num_high = 8; /* (1<<bn_limit_bits_high) */ |
|
static int bn_limit_bits_mont = 0; |
|
static int bn_limit_num_mont = 8; /* (1<<bn_limit_bits_mont) */ |
|
|
|
void BN_set_params(int mult, int high, int low, int mont) |
|
{ |
|
if (mult >= 0) { |
|
if (mult > (int)(sizeof(int) * 8) - 1) |
|
mult = sizeof(int) * 8 - 1; |
|
bn_limit_bits = mult; |
|
bn_limit_num = 1 << mult; |
|
} |
|
if (high >= 0) { |
|
if (high > (int)(sizeof(int) * 8) - 1) |
|
high = sizeof(int) * 8 - 1; |
|
bn_limit_bits_high = high; |
|
bn_limit_num_high = 1 << high; |
|
} |
|
if (low >= 0) { |
|
if (low > (int)(sizeof(int) * 8) - 1) |
|
low = sizeof(int) * 8 - 1; |
|
bn_limit_bits_low = low; |
|
bn_limit_num_low = 1 << low; |
|
} |
|
if (mont >= 0) { |
|
if (mont > (int)(sizeof(int) * 8) - 1) |
|
mont = sizeof(int) * 8 - 1; |
|
bn_limit_bits_mont = mont; |
|
bn_limit_num_mont = 1 << mont; |
|
} |
|
} |
|
|
|
int BN_get_params(int which) |
|
{ |
|
if (which == 0) |
|
return (bn_limit_bits); |
|
else if (which == 1) |
|
return (bn_limit_bits_high); |
|
else if (which == 2) |
|
return (bn_limit_bits_low); |
|
else if (which == 3) |
|
return (bn_limit_bits_mont); |
|
else |
|
return (0); |
|
} |
|
#endif |
|
|
|
const BIGNUM *BN_value_one(void) |
|
{ |
|
static const BN_ULONG data_one = 1L; |
|
static const BIGNUM const_one = |
|
{ (BN_ULONG *)&data_one, 1, 1, 0, BN_FLG_STATIC_DATA }; |
|
|
|
return (&const_one); |
|
} |
|
|
|
int BN_num_bits_word(BN_ULONG l) |
|
{ |
|
static const unsigned char bits[256] = { |
|
0, 1, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, |
|
5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, |
|
6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, |
|
6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, |
|
7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, |
|
7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, |
|
7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, |
|
7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, |
|
8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, |
|
8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, |
|
8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, |
|
8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, |
|
8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, |
|
8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, |
|
8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, |
|
8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, |
|
}; |
|
|
|
#if defined(SIXTY_FOUR_BIT_LONG) |
|
if (l & 0xffffffff00000000L) { |
|
if (l & 0xffff000000000000L) { |
|
if (l & 0xff00000000000000L) { |
|
return (bits[(int)(l >> 56)] + 56); |
|
} else |
|
return (bits[(int)(l >> 48)] + 48); |
|
} else { |
|
if (l & 0x0000ff0000000000L) { |
|
return (bits[(int)(l >> 40)] + 40); |
|
} else |
|
return (bits[(int)(l >> 32)] + 32); |
|
} |
|
} else |
|
#else |
|
# ifdef SIXTY_FOUR_BIT |
|
if (l & 0xffffffff00000000LL) { |
|
if (l & 0xffff000000000000LL) { |
|
if (l & 0xff00000000000000LL) { |
|
return (bits[(int)(l >> 56)] + 56); |
|
} else |
|
return (bits[(int)(l >> 48)] + 48); |
|
} else { |
|
if (l & 0x0000ff0000000000LL) { |
|
return (bits[(int)(l >> 40)] + 40); |
|
} else |
|
return (bits[(int)(l >> 32)] + 32); |
|
} |
|
} else |
|
# endif |
|
#endif |
|
{ |
|
#if defined(THIRTY_TWO_BIT) || defined(SIXTY_FOUR_BIT) || defined(SIXTY_FOUR_BIT_LONG) |
|
if (l & 0xffff0000L) { |
|
if (l & 0xff000000L) |
|
return (bits[(int)(l >> 24L)] + 24); |
|
else |
|
return (bits[(int)(l >> 16L)] + 16); |
|
} else |
|
#endif |
|
{ |
|
#if defined(THIRTY_TWO_BIT) || defined(SIXTY_FOUR_BIT) || defined(SIXTY_FOUR_BIT_LONG) |
|
if (l & 0xff00L) |
|
return (bits[(int)(l >> 8)] + 8); |
|
else |
|
#endif |
|
return (bits[(int)(l)]); |
|
} |
|
} |
|
} |
|
|
|
int BN_num_bits(const BIGNUM *a) |
|
{ |
|
int i = a->top - 1; |
|
bn_check_top(a); |
|
|
|
if (BN_is_zero(a)) |
|
return 0; |
|
return ((i * BN_BITS2) + BN_num_bits_word(a->d[i])); |
|
} |
|
|
|
void BN_clear_free(BIGNUM *a) |
|
{ |
|
int i; |
|
|
|
if (a == NULL) |
|
return; |
|
bn_check_top(a); |
|
if (a->d != NULL) { |
|
OPENSSL_cleanse(a->d, a->dmax * sizeof(a->d[0])); |
|
if (!(BN_get_flags(a, BN_FLG_STATIC_DATA))) |
|
OPENSSL_free(a->d); |
|
} |
|
i = BN_get_flags(a, BN_FLG_MALLOCED); |
|
OPENSSL_cleanse(a, sizeof(BIGNUM)); |
|
if (i) |
|
OPENSSL_free(a); |
|
} |
|
|
|
void BN_free(BIGNUM *a) |
|
{ |
|
if (a == NULL) |
|
return; |
|
bn_check_top(a); |
|
if ((a->d != NULL) && !(BN_get_flags(a, BN_FLG_STATIC_DATA))) |
|
OPENSSL_free(a->d); |
|
if (a->flags & BN_FLG_MALLOCED) |
|
OPENSSL_free(a); |
|
else { |
|
#ifndef OPENSSL_NO_DEPRECATED |
|
a->flags |= BN_FLG_FREE; |
|
#endif |
|
a->d = NULL; |
|
} |
|
} |
|
|
|
void BN_init(BIGNUM *a) |
|
{ |
|
memset(a, 0, sizeof(BIGNUM)); |
|
bn_check_top(a); |
|
} |
|
|
|
BIGNUM *BN_new(void) |
|
{ |
|
BIGNUM *ret; |
|
|
|
if ((ret = (BIGNUM *)OPENSSL_malloc(sizeof(BIGNUM))) == NULL) { |
|
BNerr(BN_F_BN_NEW, ERR_R_MALLOC_FAILURE); |
|
return (NULL); |
|
} |
|
ret->flags = BN_FLG_MALLOCED; |
|
ret->top = 0; |
|
ret->neg = 0; |
|
ret->dmax = 0; |
|
ret->d = NULL; |
|
bn_check_top(ret); |
|
return (ret); |
|
} |
|
|
|
/* This is used both by bn_expand2() and bn_dup_expand() */ |
|
/* The caller MUST check that words > b->dmax before calling this */ |
|
static BN_ULONG *bn_expand_internal(const BIGNUM *b, int words) |
|
{ |
|
BN_ULONG *A, *a = NULL; |
|
const BN_ULONG *B; |
|
int i; |
|
|
|
bn_check_top(b); |
|
|
|
if (words > (INT_MAX / (4 * BN_BITS2))) { |
|
BNerr(BN_F_BN_EXPAND_INTERNAL, BN_R_BIGNUM_TOO_LONG); |
|
return NULL; |
|
} |
|
if (BN_get_flags(b, BN_FLG_STATIC_DATA)) { |
|
BNerr(BN_F_BN_EXPAND_INTERNAL, BN_R_EXPAND_ON_STATIC_BIGNUM_DATA); |
|
return (NULL); |
|
} |
|
a = A = (BN_ULONG *)OPENSSL_malloc(sizeof(BN_ULONG) * words); |
|
if (A == NULL) { |
|
BNerr(BN_F_BN_EXPAND_INTERNAL, ERR_R_MALLOC_FAILURE); |
|
return (NULL); |
|
} |
|
#ifdef PURIFY |
|
/* |
|
* Valgrind complains in BN_consttime_swap because we process the whole |
|
* array even if it's not initialised yet. This doesn't matter in that |
|
* function - what's important is constant time operation (we're not |
|
* actually going to use the data) |
|
*/ |
|
memset(a, 0, sizeof(BN_ULONG) * words); |
|
#endif |
|
|
|
#if 1 |
|
B = b->d; |
|
/* Check if the previous number needs to be copied */ |
|
if (B != NULL) { |
|
for (i = b->top >> 2; i > 0; i--, A += 4, B += 4) { |
|
/* |
|
* The fact that the loop is unrolled |
|
* 4-wise is a tribute to Intel. It's |
|
* the one that doesn't have enough |
|
* registers to accomodate more data. |
|
* I'd unroll it 8-wise otherwise:-) |
|
* |
|
* <appro@fy.chalmers.se> |
|
*/ |
|
BN_ULONG a0, a1, a2, a3; |
|
a0 = B[0]; |
|
a1 = B[1]; |
|
a2 = B[2]; |
|
a3 = B[3]; |
|
A[0] = a0; |
|
A[1] = a1; |
|
A[2] = a2; |
|
A[3] = a3; |
|
} |
|
/* |
|
* workaround for ultrix cc: without 'case 0', the optimizer does |
|
* the switch table by doing a=top&3; a--; goto jump_table[a]; |
|
* which fails for top== 0 |
|
*/ |
|
switch (b->top & 3) { |
|
case 3: |
|
A[2] = B[2]; |
|
case 2: |
|
A[1] = B[1]; |
|
case 1: |
|
A[0] = B[0]; |
|
case 0: |
|
; |
|
} |
|
} |
|
#else |
|
memset(A, 0, sizeof(BN_ULONG) * words); |
|
memcpy(A, b->d, sizeof(b->d[0]) * b->top); |
|
#endif |
|
|
|
return (a); |
|
} |
|
|
|
/* |
|
* This is an internal function that can be used instead of bn_expand2() when |
|
* there is a need to copy BIGNUMs instead of only expanding the data part, |
|
* while still expanding them. Especially useful when needing to expand |
|
* BIGNUMs that are declared 'const' and should therefore not be changed. The |
|
* reason to use this instead of a BN_dup() followed by a bn_expand2() is |
|
* memory allocation overhead. A BN_dup() followed by a bn_expand2() will |
|
* allocate new memory for the BIGNUM data twice, and free it once, while |
|
* bn_dup_expand() makes sure allocation is made only once. |
|
*/ |
|
|
|
#ifndef OPENSSL_NO_DEPRECATED |
|
BIGNUM *bn_dup_expand(const BIGNUM *b, int words) |
|
{ |
|
BIGNUM *r = NULL; |
|
|
|
bn_check_top(b); |
|
|
|
/* |
|
* This function does not work if words <= b->dmax && top < words because |
|
* BN_dup() does not preserve 'dmax'! (But bn_dup_expand() is not used |
|
* anywhere yet.) |
|
*/ |
|
|
|
if (words > b->dmax) { |
|
BN_ULONG *a = bn_expand_internal(b, words); |
|
|
|
if (a) { |
|
r = BN_new(); |
|
if (r) { |
|
r->top = b->top; |
|
r->dmax = words; |
|
r->neg = b->neg; |
|
r->d = a; |
|
} else { |
|
/* r == NULL, BN_new failure */ |
|
OPENSSL_free(a); |
|
} |
|
} |
|
/* |
|
* If a == NULL, there was an error in allocation in |
|
* bn_expand_internal(), and NULL should be returned |
|
*/ |
|
} else { |
|
r = BN_dup(b); |
|
} |
|
|
|
bn_check_top(r); |
|
return r; |
|
} |
|
#endif |
|
|
|
/* |
|
* This is an internal function that should not be used in applications. It |
|
* ensures that 'b' has enough room for a 'words' word number and initialises |
|
* any unused part of b->d with leading zeros. It is mostly used by the |
|
* various BIGNUM routines. If there is an error, NULL is returned. If not, |
|
* 'b' is returned. |
|
*/ |
|
|
|
BIGNUM *bn_expand2(BIGNUM *b, int words) |
|
{ |
|
bn_check_top(b); |
|
|
|
if (words > b->dmax) { |
|
BN_ULONG *a = bn_expand_internal(b, words); |
|
if (!a) |
|
return NULL; |
|
if (b->d) |
|
OPENSSL_free(b->d); |
|
b->d = a; |
|
b->dmax = words; |
|
} |
|
|
|
/* None of this should be necessary because of what b->top means! */ |
|
#if 0 |
|
/* |
|
* NB: bn_wexpand() calls this only if the BIGNUM really has to grow |
|
*/ |
|
if (b->top < b->dmax) { |
|
int i; |
|
BN_ULONG *A = &(b->d[b->top]); |
|
for (i = (b->dmax - b->top) >> 3; i > 0; i--, A += 8) { |
|
A[0] = 0; |
|
A[1] = 0; |
|
A[2] = 0; |
|
A[3] = 0; |
|
A[4] = 0; |
|
A[5] = 0; |
|
A[6] = 0; |
|
A[7] = 0; |
|
} |
|
for (i = (b->dmax - b->top) & 7; i > 0; i--, A++) |
|
A[0] = 0; |
|
assert(A == &(b->d[b->dmax])); |
|
} |
|
#endif |
|
bn_check_top(b); |
|
return b; |
|
} |
|
|
|
BIGNUM *BN_dup(const BIGNUM *a) |
|
{ |
|
BIGNUM *t; |
|
|
|
if (a == NULL) |
|
return NULL; |
|
bn_check_top(a); |
|
|
|
t = BN_new(); |
|
if (t == NULL) |
|
return NULL; |
|
if (!BN_copy(t, a)) { |
|
BN_free(t); |
|
return NULL; |
|
} |
|
bn_check_top(t); |
|
return t; |
|
} |
|
|
|
BIGNUM *BN_copy(BIGNUM *a, const BIGNUM *b) |
|
{ |
|
int i; |
|
BN_ULONG *A; |
|
const BN_ULONG *B; |
|
|
|
bn_check_top(b); |
|
|
|
if (a == b) |
|
return (a); |
|
if (bn_wexpand(a, b->top) == NULL) |
|
return (NULL); |
|
|
|
#if 1 |
|
A = a->d; |
|
B = b->d; |
|
for (i = b->top >> 2; i > 0; i--, A += 4, B += 4) { |
|
BN_ULONG a0, a1, a2, a3; |
|
a0 = B[0]; |
|
a1 = B[1]; |
|
a2 = B[2]; |
|
a3 = B[3]; |
|
A[0] = a0; |
|
A[1] = a1; |
|
A[2] = a2; |
|
A[3] = a3; |
|
} |
|
/* ultrix cc workaround, see comments in bn_expand_internal */ |
|
switch (b->top & 3) { |
|
case 3: |
|
A[2] = B[2]; |
|
case 2: |
|
A[1] = B[1]; |
|
case 1: |
|
A[0] = B[0]; |
|
case 0:; |
|
} |
|
#else |
|
memcpy(a->d, b->d, sizeof(b->d[0]) * b->top); |
|
#endif |
|
|
|
a->top = b->top; |
|
a->neg = b->neg; |
|
bn_check_top(a); |
|
return (a); |
|
} |
|
|
|
void BN_swap(BIGNUM *a, BIGNUM *b) |
|
{ |
|
int flags_old_a, flags_old_b; |
|
BN_ULONG *tmp_d; |
|
int tmp_top, tmp_dmax, tmp_neg; |
|
|
|
bn_check_top(a); |
|
bn_check_top(b); |
|
|
|
flags_old_a = a->flags; |
|
flags_old_b = b->flags; |
|
|
|
tmp_d = a->d; |
|
tmp_top = a->top; |
|
tmp_dmax = a->dmax; |
|
tmp_neg = a->neg; |
|
|
|
a->d = b->d; |
|
a->top = b->top; |
|
a->dmax = b->dmax; |
|
a->neg = b->neg; |
|
|
|
b->d = tmp_d; |
|
b->top = tmp_top; |
|
b->dmax = tmp_dmax; |
|
b->neg = tmp_neg; |
|
|
|
a->flags = |
|
(flags_old_a & BN_FLG_MALLOCED) | (flags_old_b & BN_FLG_STATIC_DATA); |
|
b->flags = |
|
(flags_old_b & BN_FLG_MALLOCED) | (flags_old_a & BN_FLG_STATIC_DATA); |
|
bn_check_top(a); |
|
bn_check_top(b); |
|
} |
|
|
|
void BN_clear(BIGNUM *a) |
|
{ |
|
bn_check_top(a); |
|
if (a->d != NULL) |
|
OPENSSL_cleanse(a->d, a->dmax * sizeof(a->d[0])); |
|
a->top = 0; |
|
a->neg = 0; |
|
} |
|
|
|
BN_ULONG BN_get_word(const BIGNUM *a) |
|
{ |
|
if (a->top > 1) |
|
return BN_MASK2; |
|
else if (a->top == 1) |
|
return a->d[0]; |
|
/* a->top == 0 */ |
|
return 0; |
|
} |
|
|
|
int BN_set_word(BIGNUM *a, BN_ULONG w) |
|
{ |
|
bn_check_top(a); |
|
if (bn_expand(a, (int)sizeof(BN_ULONG) * 8) == NULL) |
|
return (0); |
|
a->neg = 0; |
|
a->d[0] = w; |
|
a->top = (w ? 1 : 0); |
|
bn_check_top(a); |
|
return (1); |
|
} |
|
|
|
BIGNUM *BN_bin2bn(const unsigned char *s, int len, BIGNUM *ret) |
|
{ |
|
unsigned int i, m; |
|
unsigned int n; |
|
BN_ULONG l; |
|
BIGNUM *bn = NULL; |
|
|
|
if (ret == NULL) |
|
ret = bn = BN_new(); |
|
if (ret == NULL) |
|
return (NULL); |
|
bn_check_top(ret); |
|
l = 0; |
|
n = len; |
|
if (n == 0) { |
|
ret->top = 0; |
|
return (ret); |
|
} |
|
i = ((n - 1) / BN_BYTES) + 1; |
|
m = ((n - 1) % (BN_BYTES)); |
|
if (bn_wexpand(ret, (int)i) == NULL) { |
|
if (bn) |
|
BN_free(bn); |
|
return NULL; |
|
} |
|
ret->top = i; |
|
ret->neg = 0; |
|
while (n--) { |
|
l = (l << 8L) | *(s++); |
|
if (m-- == 0) { |
|
ret->d[--i] = l; |
|
l = 0; |
|
m = BN_BYTES - 1; |
|
} |
|
} |
|
/* |
|
* need to call this due to clear byte at top if avoiding having the top |
|
* bit set (-ve number) |
|
*/ |
|
bn_correct_top(ret); |
|
return (ret); |
|
} |
|
|
|
/* ignore negative */ |
|
int BN_bn2bin(const BIGNUM *a, unsigned char *to) |
|
{ |
|
int n, i; |
|
BN_ULONG l; |
|
|
|
bn_check_top(a); |
|
n = i = BN_num_bytes(a); |
|
while (i--) { |
|
l = a->d[i / BN_BYTES]; |
|
*(to++) = (unsigned char)(l >> (8 * (i % BN_BYTES))) & 0xff; |
|
} |
|
return (n); |
|
} |
|
|
|
int BN_ucmp(const BIGNUM *a, const BIGNUM *b) |
|
{ |
|
int i; |
|
BN_ULONG t1, t2, *ap, *bp; |
|
|
|
bn_check_top(a); |
|
bn_check_top(b); |
|
|
|
i = a->top - b->top; |
|
if (i != 0) |
|
return (i); |
|
ap = a->d; |
|
bp = b->d; |
|
for (i = a->top - 1; i >= 0; i--) { |
|
t1 = ap[i]; |
|
t2 = bp[i]; |
|
if (t1 != t2) |
|
return ((t1 > t2) ? 1 : -1); |
|
} |
|
return (0); |
|
} |
|
|
|
int BN_cmp(const BIGNUM *a, const BIGNUM *b) |
|
{ |
|
int i; |
|
int gt, lt; |
|
BN_ULONG t1, t2; |
|
|
|
if ((a == NULL) || (b == NULL)) { |
|
if (a != NULL) |
|
return (-1); |
|
else if (b != NULL) |
|
return (1); |
|
else |
|
return (0); |
|
} |
|
|
|
bn_check_top(a); |
|
bn_check_top(b); |
|
|
|
if (a->neg != b->neg) { |
|
if (a->neg) |
|
return (-1); |
|
else |
|
return (1); |
|
} |
|
if (a->neg == 0) { |
|
gt = 1; |
|
lt = -1; |
|
} else { |
|
gt = -1; |
|
lt = 1; |
|
} |
|
|
|
if (a->top > b->top) |
|
return (gt); |
|
if (a->top < b->top) |
|
return (lt); |
|
for (i = a->top - 1; i >= 0; i--) { |
|
t1 = a->d[i]; |
|
t2 = b->d[i]; |
|
if (t1 > t2) |
|
return (gt); |
|
if (t1 < t2) |
|
return (lt); |
|
} |
|
return (0); |
|
} |
|
|
|
int BN_set_bit(BIGNUM *a, int n) |
|
{ |
|
int i, j, k; |
|
|
|
if (n < 0) |
|
return 0; |
|
|
|
i = n / BN_BITS2; |
|
j = n % BN_BITS2; |
|
if (a->top <= i) { |
|
if (bn_wexpand(a, i + 1) == NULL) |
|
return (0); |
|
for (k = a->top; k < i + 1; k++) |
|
a->d[k] = 0; |
|
a->top = i + 1; |
|
} |
|
|
|
a->d[i] |= (((BN_ULONG)1) << j); |
|
bn_check_top(a); |
|
return (1); |
|
} |
|
|
|
int BN_clear_bit(BIGNUM *a, int n) |
|
{ |
|
int i, j; |
|
|
|
bn_check_top(a); |
|
if (n < 0) |
|
return 0; |
|
|
|
i = n / BN_BITS2; |
|
j = n % BN_BITS2; |
|
if (a->top <= i) |
|
return (0); |
|
|
|
a->d[i] &= (~(((BN_ULONG)1) << j)); |
|
bn_correct_top(a); |
|
return (1); |
|
} |
|
|
|
int BN_is_bit_set(const BIGNUM *a, int n) |
|
{ |
|
int i, j; |
|
|
|
bn_check_top(a); |
|
if (n < 0) |
|
return 0; |
|
i = n / BN_BITS2; |
|
j = n % BN_BITS2; |
|
if (a->top <= i) |
|
return 0; |
|
return (int)(((a->d[i]) >> j) & ((BN_ULONG)1)); |
|
} |
|
|
|
int BN_mask_bits(BIGNUM *a, int n) |
|
{ |
|
int b, w; |
|
|
|
bn_check_top(a); |
|
if (n < 0) |
|
return 0; |
|
|
|
w = n / BN_BITS2; |
|
b = n % BN_BITS2; |
|
if (w >= a->top) |
|
return 0; |
|
if (b == 0) |
|
a->top = w; |
|
else { |
|
a->top = w + 1; |
|
a->d[w] &= ~(BN_MASK2 << b); |
|
} |
|
bn_correct_top(a); |
|
return (1); |
|
} |
|
|
|
void BN_set_negative(BIGNUM *a, int b) |
|
{ |
|
if (b && !BN_is_zero(a)) |
|
a->neg = 1; |
|
else |
|
a->neg = 0; |
|
} |
|
|
|
int bn_cmp_words(const BN_ULONG *a, const BN_ULONG *b, int n) |
|
{ |
|
int i; |
|
BN_ULONG aa, bb; |
|
|
|
aa = a[n - 1]; |
|
bb = b[n - 1]; |
|
if (aa != bb) |
|
return ((aa > bb) ? 1 : -1); |
|
for (i = n - 2; i >= 0; i--) { |
|
aa = a[i]; |
|
bb = b[i]; |
|
if (aa != bb) |
|
return ((aa > bb) ? 1 : -1); |
|
} |
|
return (0); |
|
} |
|
|
|
/* |
|
* Here follows a specialised variants of bn_cmp_words(). It has the |
|
* property of performing the operation on arrays of different sizes. The |
|
* sizes of those arrays is expressed through cl, which is the common length |
|
* ( basicall, min(len(a),len(b)) ), and dl, which is the delta between the |
|
* two lengths, calculated as len(a)-len(b). All lengths are the number of |
|
* BN_ULONGs... |
|
*/ |
|
|
|
int bn_cmp_part_words(const BN_ULONG *a, const BN_ULONG *b, int cl, int dl) |
|
{ |
|
int n, i; |
|
n = cl - 1; |
|
|
|
if (dl < 0) { |
|
for (i = dl; i < 0; i++) { |
|
if (b[n - i] != 0) |
|
return -1; /* a < b */ |
|
} |
|
} |
|
if (dl > 0) { |
|
for (i = dl; i > 0; i--) { |
|
if (a[n + i] != 0) |
|
return 1; /* a > b */ |
|
} |
|
} |
|
return bn_cmp_words(a, b, cl); |
|
} |
|
|
|
/* |
|
* Constant-time conditional swap of a and b. |
|
* a and b are swapped if condition is not 0. The code assumes that at most one bit of condition is set. |
|
* nwords is the number of words to swap. The code assumes that at least nwords are allocated in both a and b, |
|
* and that no more than nwords are used by either a or b. |
|
* a and b cannot be the same number |
|
*/ |
|
void BN_consttime_swap(BN_ULONG condition, BIGNUM *a, BIGNUM *b, int nwords) |
|
{ |
|
BN_ULONG t; |
|
int i; |
|
|
|
bn_wcheck_size(a, nwords); |
|
bn_wcheck_size(b, nwords); |
|
|
|
assert(a != b); |
|
assert((condition & (condition - 1)) == 0); |
|
assert(sizeof(BN_ULONG) >= sizeof(int)); |
|
|
|
condition = ((condition - 1) >> (BN_BITS2 - 1)) - 1; |
|
|
|
t = (a->top ^ b->top) & condition; |
|
a->top ^= t; |
|
b->top ^= t; |
|
|
|
#define BN_CONSTTIME_SWAP(ind) \ |
|
do { \ |
|
t = (a->d[ind] ^ b->d[ind]) & condition; \ |
|
a->d[ind] ^= t; \ |
|
b->d[ind] ^= t; \ |
|
} while (0) |
|
|
|
switch (nwords) { |
|
default: |
|
for (i = 10; i < nwords; i++) |
|
BN_CONSTTIME_SWAP(i); |
|
/* Fallthrough */ |
|
case 10: |
|
BN_CONSTTIME_SWAP(9); /* Fallthrough */ |
|
case 9: |
|
BN_CONSTTIME_SWAP(8); /* Fallthrough */ |
|
case 8: |
|
BN_CONSTTIME_SWAP(7); /* Fallthrough */ |
|
case 7: |
|
BN_CONSTTIME_SWAP(6); /* Fallthrough */ |
|
case 6: |
|
BN_CONSTTIME_SWAP(5); /* Fallthrough */ |
|
case 5: |
|
BN_CONSTTIME_SWAP(4); /* Fallthrough */ |
|
case 4: |
|
BN_CONSTTIME_SWAP(3); /* Fallthrough */ |
|
case 3: |
|
BN_CONSTTIME_SWAP(2); /* Fallthrough */ |
|
case 2: |
|
BN_CONSTTIME_SWAP(1); /* Fallthrough */ |
|
case 1: |
|
BN_CONSTTIME_SWAP(0); |
|
} |
|
#undef BN_CONSTTIME_SWAP |
|
}
|
|
|