You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
510 lines
19 KiB
510 lines
19 KiB
/* crypto/bn/bn_lcl.h */ |
|
/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com) |
|
* All rights reserved. |
|
* |
|
* This package is an SSL implementation written |
|
* by Eric Young (eay@cryptsoft.com). |
|
* The implementation was written so as to conform with Netscapes SSL. |
|
* |
|
* This library is free for commercial and non-commercial use as long as |
|
* the following conditions are aheared to. The following conditions |
|
* apply to all code found in this distribution, be it the RC4, RSA, |
|
* lhash, DES, etc., code; not just the SSL code. The SSL documentation |
|
* included with this distribution is covered by the same copyright terms |
|
* except that the holder is Tim Hudson (tjh@cryptsoft.com). |
|
* |
|
* Copyright remains Eric Young's, and as such any Copyright notices in |
|
* the code are not to be removed. |
|
* If this package is used in a product, Eric Young should be given attribution |
|
* as the author of the parts of the library used. |
|
* This can be in the form of a textual message at program startup or |
|
* in documentation (online or textual) provided with the package. |
|
* |
|
* Redistribution and use in source and binary forms, with or without |
|
* modification, are permitted provided that the following conditions |
|
* are met: |
|
* 1. Redistributions of source code must retain the copyright |
|
* notice, this list of conditions and the following disclaimer. |
|
* 2. Redistributions in binary form must reproduce the above copyright |
|
* notice, this list of conditions and the following disclaimer in the |
|
* documentation and/or other materials provided with the distribution. |
|
* 3. All advertising materials mentioning features or use of this software |
|
* must display the following acknowledgement: |
|
* "This product includes cryptographic software written by |
|
* Eric Young (eay@cryptsoft.com)" |
|
* The word 'cryptographic' can be left out if the rouines from the library |
|
* being used are not cryptographic related :-). |
|
* 4. If you include any Windows specific code (or a derivative thereof) from |
|
* the apps directory (application code) you must include an acknowledgement: |
|
* "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" |
|
* |
|
* THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND |
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE |
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL |
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS |
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY |
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF |
|
* SUCH DAMAGE. |
|
* |
|
* The licence and distribution terms for any publically available version or |
|
* derivative of this code cannot be changed. i.e. this code cannot simply be |
|
* copied and put under another distribution licence |
|
* [including the GNU Public Licence.] |
|
*/ |
|
/* ==================================================================== |
|
* Copyright (c) 1998-2000 The OpenSSL Project. All rights reserved. |
|
* |
|
* Redistribution and use in source and binary forms, with or without |
|
* modification, are permitted provided that the following conditions |
|
* are met: |
|
* |
|
* 1. Redistributions of source code must retain the above copyright |
|
* notice, this list of conditions and the following disclaimer. |
|
* |
|
* 2. Redistributions in binary form must reproduce the above copyright |
|
* notice, this list of conditions and the following disclaimer in |
|
* the documentation and/or other materials provided with the |
|
* distribution. |
|
* |
|
* 3. All advertising materials mentioning features or use of this |
|
* software must display the following acknowledgment: |
|
* "This product includes software developed by the OpenSSL Project |
|
* for use in the OpenSSL Toolkit. (http://www.openssl.org/)" |
|
* |
|
* 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to |
|
* endorse or promote products derived from this software without |
|
* prior written permission. For written permission, please contact |
|
* openssl-core@openssl.org. |
|
* |
|
* 5. Products derived from this software may not be called "OpenSSL" |
|
* nor may "OpenSSL" appear in their names without prior written |
|
* permission of the OpenSSL Project. |
|
* |
|
* 6. Redistributions of any form whatsoever must retain the following |
|
* acknowledgment: |
|
* "This product includes software developed by the OpenSSL Project |
|
* for use in the OpenSSL Toolkit (http://www.openssl.org/)" |
|
* |
|
* THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY |
|
* EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR |
|
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR |
|
* ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
|
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT |
|
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; |
|
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, |
|
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
|
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED |
|
* OF THE POSSIBILITY OF SUCH DAMAGE. |
|
* ==================================================================== |
|
* |
|
* This product includes cryptographic software written by Eric Young |
|
* (eay@cryptsoft.com). This product includes software written by Tim |
|
* Hudson (tjh@cryptsoft.com). |
|
* |
|
*/ |
|
|
|
#ifndef HEADER_BN_LCL_H |
|
# define HEADER_BN_LCL_H |
|
|
|
# include <openssl/bn.h> |
|
|
|
#ifdef __cplusplus |
|
extern "C" { |
|
#endif |
|
|
|
/*- |
|
* BN_window_bits_for_exponent_size -- macro for sliding window mod_exp functions |
|
* |
|
* |
|
* For window size 'w' (w >= 2) and a random 'b' bits exponent, |
|
* the number of multiplications is a constant plus on average |
|
* |
|
* 2^(w-1) + (b-w)/(w+1); |
|
* |
|
* here 2^(w-1) is for precomputing the table (we actually need |
|
* entries only for windows that have the lowest bit set), and |
|
* (b-w)/(w+1) is an approximation for the expected number of |
|
* w-bit windows, not counting the first one. |
|
* |
|
* Thus we should use |
|
* |
|
* w >= 6 if b > 671 |
|
* w = 5 if 671 > b > 239 |
|
* w = 4 if 239 > b > 79 |
|
* w = 3 if 79 > b > 23 |
|
* w <= 2 if 23 > b |
|
* |
|
* (with draws in between). Very small exponents are often selected |
|
* with low Hamming weight, so we use w = 1 for b <= 23. |
|
*/ |
|
# if 1 |
|
# define BN_window_bits_for_exponent_size(b) \ |
|
((b) > 671 ? 6 : \ |
|
(b) > 239 ? 5 : \ |
|
(b) > 79 ? 4 : \ |
|
(b) > 23 ? 3 : 1) |
|
# else |
|
/* |
|
* Old SSLeay/OpenSSL table. Maximum window size was 5, so this table differs |
|
* for b==1024; but it coincides for other interesting values (b==160, |
|
* b==512). |
|
*/ |
|
# define BN_window_bits_for_exponent_size(b) \ |
|
((b) > 255 ? 5 : \ |
|
(b) > 127 ? 4 : \ |
|
(b) > 17 ? 3 : 1) |
|
# endif |
|
|
|
/* |
|
* BN_mod_exp_mont_conttime is based on the assumption that the L1 data cache |
|
* line width of the target processor is at least the following value. |
|
*/ |
|
# define MOD_EXP_CTIME_MIN_CACHE_LINE_WIDTH ( 64 ) |
|
# define MOD_EXP_CTIME_MIN_CACHE_LINE_MASK (MOD_EXP_CTIME_MIN_CACHE_LINE_WIDTH - 1) |
|
|
|
/* |
|
* Window sizes optimized for fixed window size modular exponentiation |
|
* algorithm (BN_mod_exp_mont_consttime). To achieve the security goals of |
|
* BN_mode_exp_mont_consttime, the maximum size of the window must not exceed |
|
* log_2(MOD_EXP_CTIME_MIN_CACHE_LINE_WIDTH). Window size thresholds are |
|
* defined for cache line sizes of 32 and 64, cache line sizes where |
|
* log_2(32)=5 and log_2(64)=6 respectively. A window size of 7 should only be |
|
* used on processors that have a 128 byte or greater cache line size. |
|
*/ |
|
# if MOD_EXP_CTIME_MIN_CACHE_LINE_WIDTH == 64 |
|
|
|
# define BN_window_bits_for_ctime_exponent_size(b) \ |
|
((b) > 937 ? 6 : \ |
|
(b) > 306 ? 5 : \ |
|
(b) > 89 ? 4 : \ |
|
(b) > 22 ? 3 : 1) |
|
# define BN_MAX_WINDOW_BITS_FOR_CTIME_EXPONENT_SIZE (6) |
|
|
|
# elif MOD_EXP_CTIME_MIN_CACHE_LINE_WIDTH == 32 |
|
|
|
# define BN_window_bits_for_ctime_exponent_size(b) \ |
|
((b) > 306 ? 5 : \ |
|
(b) > 89 ? 4 : \ |
|
(b) > 22 ? 3 : 1) |
|
# define BN_MAX_WINDOW_BITS_FOR_CTIME_EXPONENT_SIZE (5) |
|
|
|
# endif |
|
|
|
/* Pentium pro 16,16,16,32,64 */ |
|
/* Alpha 16,16,16,16.64 */ |
|
# define BN_MULL_SIZE_NORMAL (16)/* 32 */ |
|
# define BN_MUL_RECURSIVE_SIZE_NORMAL (16)/* 32 less than */ |
|
# define BN_SQR_RECURSIVE_SIZE_NORMAL (16)/* 32 */ |
|
# define BN_MUL_LOW_RECURSIVE_SIZE_NORMAL (32)/* 32 */ |
|
# define BN_MONT_CTX_SET_SIZE_WORD (64)/* 32 */ |
|
|
|
# if !defined(OPENSSL_NO_ASM) && !defined(OPENSSL_NO_INLINE_ASM) && !defined(PEDANTIC) |
|
/* |
|
* BN_UMULT_HIGH section. |
|
* |
|
* No, I'm not trying to overwhelm you when stating that the |
|
* product of N-bit numbers is 2*N bits wide:-) No, I don't expect |
|
* you to be impressed when I say that if the compiler doesn't |
|
* support 2*N integer type, then you have to replace every N*N |
|
* multiplication with 4 (N/2)*(N/2) accompanied by some shifts |
|
* and additions which unavoidably results in severe performance |
|
* penalties. Of course provided that the hardware is capable of |
|
* producing 2*N result... That's when you normally start |
|
* considering assembler implementation. However! It should be |
|
* pointed out that some CPUs (most notably Alpha, PowerPC and |
|
* upcoming IA-64 family:-) provide *separate* instruction |
|
* calculating the upper half of the product placing the result |
|
* into a general purpose register. Now *if* the compiler supports |
|
* inline assembler, then it's not impossible to implement the |
|
* "bignum" routines (and have the compiler optimize 'em) |
|
* exhibiting "native" performance in C. That's what BN_UMULT_HIGH |
|
* macro is about:-) |
|
* |
|
* <appro@fy.chalmers.se> |
|
*/ |
|
# if defined(__alpha) && (defined(SIXTY_FOUR_BIT_LONG) || defined(SIXTY_FOUR_BIT)) |
|
# if defined(__DECC) |
|
# include <c_asm.h> |
|
# define BN_UMULT_HIGH(a,b) (BN_ULONG)asm("umulh %a0,%a1,%v0",(a),(b)) |
|
# elif defined(__GNUC__) && __GNUC__>=2 |
|
# define BN_UMULT_HIGH(a,b) ({ \ |
|
register BN_ULONG ret; \ |
|
asm ("umulh %1,%2,%0" \ |
|
: "=r"(ret) \ |
|
: "r"(a), "r"(b)); \ |
|
ret; }) |
|
# endif /* compiler */ |
|
# elif defined(_ARCH_PPC) && defined(__64BIT__) && defined(SIXTY_FOUR_BIT_LONG) |
|
# if defined(__GNUC__) && __GNUC__>=2 |
|
# define BN_UMULT_HIGH(a,b) ({ \ |
|
register BN_ULONG ret; \ |
|
asm ("mulhdu %0,%1,%2" \ |
|
: "=r"(ret) \ |
|
: "r"(a), "r"(b)); \ |
|
ret; }) |
|
# endif /* compiler */ |
|
# elif (defined(__x86_64) || defined(__x86_64__)) && \ |
|
(defined(SIXTY_FOUR_BIT_LONG) || defined(SIXTY_FOUR_BIT)) |
|
# if defined(__GNUC__) && __GNUC__>=2 |
|
# define BN_UMULT_HIGH(a,b) ({ \ |
|
register BN_ULONG ret,discard; \ |
|
asm ("mulq %3" \ |
|
: "=a"(discard),"=d"(ret) \ |
|
: "a"(a), "g"(b) \ |
|
: "cc"); \ |
|
ret; }) |
|
# define BN_UMULT_LOHI(low,high,a,b) \ |
|
asm ("mulq %3" \ |
|
: "=a"(low),"=d"(high) \ |
|
: "a"(a),"g"(b) \ |
|
: "cc"); |
|
# endif |
|
# elif (defined(_M_AMD64) || defined(_M_X64)) && defined(SIXTY_FOUR_BIT) |
|
# if defined(_MSC_VER) && _MSC_VER>=1400 |
|
unsigned __int64 __umulh(unsigned __int64 a, unsigned __int64 b); |
|
unsigned __int64 _umul128(unsigned __int64 a, unsigned __int64 b, |
|
unsigned __int64 *h); |
|
# pragma intrinsic(__umulh,_umul128) |
|
# define BN_UMULT_HIGH(a,b) __umulh((a),(b)) |
|
# define BN_UMULT_LOHI(low,high,a,b) ((low)=_umul128((a),(b),&(high))) |
|
# endif |
|
# elif defined(__mips) && (defined(SIXTY_FOUR_BIT) || defined(SIXTY_FOUR_BIT_LONG)) |
|
# if defined(__GNUC__) && __GNUC__>=2 |
|
# if __GNUC__>4 || (__GNUC__>=4 && __GNUC_MINOR__>=4) |
|
/* "h" constraint is no more since 4.4 */ |
|
# define BN_UMULT_HIGH(a,b) (((__uint128_t)(a)*(b))>>64) |
|
# define BN_UMULT_LOHI(low,high,a,b) ({ \ |
|
__uint128_t ret=(__uint128_t)(a)*(b); \ |
|
(high)=ret>>64; (low)=ret; }) |
|
# else |
|
# define BN_UMULT_HIGH(a,b) ({ \ |
|
register BN_ULONG ret; \ |
|
asm ("dmultu %1,%2" \ |
|
: "=h"(ret) \ |
|
: "r"(a), "r"(b) : "l"); \ |
|
ret; }) |
|
# define BN_UMULT_LOHI(low,high,a,b)\ |
|
asm ("dmultu %2,%3" \ |
|
: "=l"(low),"=h"(high) \ |
|
: "r"(a), "r"(b)); |
|
# endif |
|
# endif |
|
# endif /* cpu */ |
|
# endif /* OPENSSL_NO_ASM */ |
|
|
|
/************************************************************* |
|
* Using the long long type |
|
*/ |
|
# define Lw(t) (((BN_ULONG)(t))&BN_MASK2) |
|
# define Hw(t) (((BN_ULONG)((t)>>BN_BITS2))&BN_MASK2) |
|
|
|
# ifdef BN_DEBUG_RAND |
|
# define bn_clear_top2max(a) \ |
|
{ \ |
|
int ind = (a)->dmax - (a)->top; \ |
|
BN_ULONG *ftl = &(a)->d[(a)->top-1]; \ |
|
for (; ind != 0; ind--) \ |
|
*(++ftl) = 0x0; \ |
|
} |
|
# else |
|
# define bn_clear_top2max(a) |
|
# endif |
|
|
|
# ifdef BN_LLONG |
|
# define mul_add(r,a,w,c) { \ |
|
BN_ULLONG t; \ |
|
t=(BN_ULLONG)w * (a) + (r) + (c); \ |
|
(r)= Lw(t); \ |
|
(c)= Hw(t); \ |
|
} |
|
|
|
# define mul(r,a,w,c) { \ |
|
BN_ULLONG t; \ |
|
t=(BN_ULLONG)w * (a) + (c); \ |
|
(r)= Lw(t); \ |
|
(c)= Hw(t); \ |
|
} |
|
|
|
# define sqr(r0,r1,a) { \ |
|
BN_ULLONG t; \ |
|
t=(BN_ULLONG)(a)*(a); \ |
|
(r0)=Lw(t); \ |
|
(r1)=Hw(t); \ |
|
} |
|
|
|
# elif defined(BN_UMULT_LOHI) |
|
# define mul_add(r,a,w,c) { \ |
|
BN_ULONG high,low,ret,tmp=(a); \ |
|
ret = (r); \ |
|
BN_UMULT_LOHI(low,high,w,tmp); \ |
|
ret += (c); \ |
|
(c) = (ret<(c))?1:0; \ |
|
(c) += high; \ |
|
ret += low; \ |
|
(c) += (ret<low)?1:0; \ |
|
(r) = ret; \ |
|
} |
|
|
|
# define mul(r,a,w,c) { \ |
|
BN_ULONG high,low,ret,ta=(a); \ |
|
BN_UMULT_LOHI(low,high,w,ta); \ |
|
ret = low + (c); \ |
|
(c) = high; \ |
|
(c) += (ret<low)?1:0; \ |
|
(r) = ret; \ |
|
} |
|
|
|
# define sqr(r0,r1,a) { \ |
|
BN_ULONG tmp=(a); \ |
|
BN_UMULT_LOHI(r0,r1,tmp,tmp); \ |
|
} |
|
|
|
# elif defined(BN_UMULT_HIGH) |
|
# define mul_add(r,a,w,c) { \ |
|
BN_ULONG high,low,ret,tmp=(a); \ |
|
ret = (r); \ |
|
high= BN_UMULT_HIGH(w,tmp); \ |
|
ret += (c); \ |
|
low = (w) * tmp; \ |
|
(c) = (ret<(c))?1:0; \ |
|
(c) += high; \ |
|
ret += low; \ |
|
(c) += (ret<low)?1:0; \ |
|
(r) = ret; \ |
|
} |
|
|
|
# define mul(r,a,w,c) { \ |
|
BN_ULONG high,low,ret,ta=(a); \ |
|
low = (w) * ta; \ |
|
high= BN_UMULT_HIGH(w,ta); \ |
|
ret = low + (c); \ |
|
(c) = high; \ |
|
(c) += (ret<low)?1:0; \ |
|
(r) = ret; \ |
|
} |
|
|
|
# define sqr(r0,r1,a) { \ |
|
BN_ULONG tmp=(a); \ |
|
(r0) = tmp * tmp; \ |
|
(r1) = BN_UMULT_HIGH(tmp,tmp); \ |
|
} |
|
|
|
# else |
|
/************************************************************* |
|
* No long long type |
|
*/ |
|
|
|
# define LBITS(a) ((a)&BN_MASK2l) |
|
# define HBITS(a) (((a)>>BN_BITS4)&BN_MASK2l) |
|
# define L2HBITS(a) (((a)<<BN_BITS4)&BN_MASK2) |
|
|
|
# define LLBITS(a) ((a)&BN_MASKl) |
|
# define LHBITS(a) (((a)>>BN_BITS2)&BN_MASKl) |
|
# define LL2HBITS(a) ((BN_ULLONG)((a)&BN_MASKl)<<BN_BITS2) |
|
|
|
# define mul64(l,h,bl,bh) \ |
|
{ \ |
|
BN_ULONG m,m1,lt,ht; \ |
|
\ |
|
lt=l; \ |
|
ht=h; \ |
|
m =(bh)*(lt); \ |
|
lt=(bl)*(lt); \ |
|
m1=(bl)*(ht); \ |
|
ht =(bh)*(ht); \ |
|
m=(m+m1)&BN_MASK2; if (m < m1) ht+=L2HBITS((BN_ULONG)1); \ |
|
ht+=HBITS(m); \ |
|
m1=L2HBITS(m); \ |
|
lt=(lt+m1)&BN_MASK2; if (lt < m1) ht++; \ |
|
(l)=lt; \ |
|
(h)=ht; \ |
|
} |
|
|
|
# define sqr64(lo,ho,in) \ |
|
{ \ |
|
BN_ULONG l,h,m; \ |
|
\ |
|
h=(in); \ |
|
l=LBITS(h); \ |
|
h=HBITS(h); \ |
|
m =(l)*(h); \ |
|
l*=l; \ |
|
h*=h; \ |
|
h+=(m&BN_MASK2h1)>>(BN_BITS4-1); \ |
|
m =(m&BN_MASK2l)<<(BN_BITS4+1); \ |
|
l=(l+m)&BN_MASK2; if (l < m) h++; \ |
|
(lo)=l; \ |
|
(ho)=h; \ |
|
} |
|
|
|
# define mul_add(r,a,bl,bh,c) { \ |
|
BN_ULONG l,h; \ |
|
\ |
|
h= (a); \ |
|
l=LBITS(h); \ |
|
h=HBITS(h); \ |
|
mul64(l,h,(bl),(bh)); \ |
|
\ |
|
/* non-multiply part */ \ |
|
l=(l+(c))&BN_MASK2; if (l < (c)) h++; \ |
|
(c)=(r); \ |
|
l=(l+(c))&BN_MASK2; if (l < (c)) h++; \ |
|
(c)=h&BN_MASK2; \ |
|
(r)=l; \ |
|
} |
|
|
|
# define mul(r,a,bl,bh,c) { \ |
|
BN_ULONG l,h; \ |
|
\ |
|
h= (a); \ |
|
l=LBITS(h); \ |
|
h=HBITS(h); \ |
|
mul64(l,h,(bl),(bh)); \ |
|
\ |
|
/* non-multiply part */ \ |
|
l+=(c); if ((l&BN_MASK2) < (c)) h++; \ |
|
(c)=h&BN_MASK2; \ |
|
(r)=l&BN_MASK2; \ |
|
} |
|
# endif /* !BN_LLONG */ |
|
|
|
# if defined(OPENSSL_DOING_MAKEDEPEND) && defined(OPENSSL_FIPS) |
|
# undef bn_div_words |
|
# endif |
|
|
|
void bn_mul_normal(BN_ULONG *r, BN_ULONG *a, int na, BN_ULONG *b, int nb); |
|
void bn_mul_comba8(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b); |
|
void bn_mul_comba4(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b); |
|
void bn_sqr_normal(BN_ULONG *r, const BN_ULONG *a, int n, BN_ULONG *tmp); |
|
void bn_sqr_comba8(BN_ULONG *r, const BN_ULONG *a); |
|
void bn_sqr_comba4(BN_ULONG *r, const BN_ULONG *a); |
|
int bn_cmp_words(const BN_ULONG *a, const BN_ULONG *b, int n); |
|
int bn_cmp_part_words(const BN_ULONG *a, const BN_ULONG *b, int cl, int dl); |
|
void bn_mul_recursive(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n2, |
|
int dna, int dnb, BN_ULONG *t); |
|
void bn_mul_part_recursive(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, |
|
int n, int tna, int tnb, BN_ULONG *t); |
|
void bn_sqr_recursive(BN_ULONG *r, const BN_ULONG *a, int n2, BN_ULONG *t); |
|
void bn_mul_low_normal(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n); |
|
void bn_mul_low_recursive(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n2, |
|
BN_ULONG *t); |
|
void bn_mul_high(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, BN_ULONG *l, int n2, |
|
BN_ULONG *t); |
|
BN_ULONG bn_add_part_words(BN_ULONG *r, const BN_ULONG *a, const BN_ULONG *b, |
|
int cl, int dl); |
|
BN_ULONG bn_sub_part_words(BN_ULONG *r, const BN_ULONG *a, const BN_ULONG *b, |
|
int cl, int dl); |
|
int bn_mul_mont(BN_ULONG *rp, const BN_ULONG *ap, const BN_ULONG *bp, |
|
const BN_ULONG *np, const BN_ULONG *n0, int num); |
|
|
|
#ifdef __cplusplus |
|
} |
|
#endif |
|
|
|
#endif
|
|
|