You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
702 lines
22 KiB
702 lines
22 KiB
/* crypto/bn/bn_gcd.c */ |
|
/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com) |
|
* All rights reserved. |
|
* |
|
* This package is an SSL implementation written |
|
* by Eric Young (eay@cryptsoft.com). |
|
* The implementation was written so as to conform with Netscapes SSL. |
|
* |
|
* This library is free for commercial and non-commercial use as long as |
|
* the following conditions are aheared to. The following conditions |
|
* apply to all code found in this distribution, be it the RC4, RSA, |
|
* lhash, DES, etc., code; not just the SSL code. The SSL documentation |
|
* included with this distribution is covered by the same copyright terms |
|
* except that the holder is Tim Hudson (tjh@cryptsoft.com). |
|
* |
|
* Copyright remains Eric Young's, and as such any Copyright notices in |
|
* the code are not to be removed. |
|
* If this package is used in a product, Eric Young should be given attribution |
|
* as the author of the parts of the library used. |
|
* This can be in the form of a textual message at program startup or |
|
* in documentation (online or textual) provided with the package. |
|
* |
|
* Redistribution and use in source and binary forms, with or without |
|
* modification, are permitted provided that the following conditions |
|
* are met: |
|
* 1. Redistributions of source code must retain the copyright |
|
* notice, this list of conditions and the following disclaimer. |
|
* 2. Redistributions in binary form must reproduce the above copyright |
|
* notice, this list of conditions and the following disclaimer in the |
|
* documentation and/or other materials provided with the distribution. |
|
* 3. All advertising materials mentioning features or use of this software |
|
* must display the following acknowledgement: |
|
* "This product includes cryptographic software written by |
|
* Eric Young (eay@cryptsoft.com)" |
|
* The word 'cryptographic' can be left out if the rouines from the library |
|
* being used are not cryptographic related :-). |
|
* 4. If you include any Windows specific code (or a derivative thereof) from |
|
* the apps directory (application code) you must include an acknowledgement: |
|
* "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" |
|
* |
|
* THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND |
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE |
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL |
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS |
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY |
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF |
|
* SUCH DAMAGE. |
|
* |
|
* The licence and distribution terms for any publically available version or |
|
* derivative of this code cannot be changed. i.e. this code cannot simply be |
|
* copied and put under another distribution licence |
|
* [including the GNU Public Licence.] |
|
*/ |
|
/* ==================================================================== |
|
* Copyright (c) 1998-2001 The OpenSSL Project. All rights reserved. |
|
* |
|
* Redistribution and use in source and binary forms, with or without |
|
* modification, are permitted provided that the following conditions |
|
* are met: |
|
* |
|
* 1. Redistributions of source code must retain the above copyright |
|
* notice, this list of conditions and the following disclaimer. |
|
* |
|
* 2. Redistributions in binary form must reproduce the above copyright |
|
* notice, this list of conditions and the following disclaimer in |
|
* the documentation and/or other materials provided with the |
|
* distribution. |
|
* |
|
* 3. All advertising materials mentioning features or use of this |
|
* software must display the following acknowledgment: |
|
* "This product includes software developed by the OpenSSL Project |
|
* for use in the OpenSSL Toolkit. (http://www.openssl.org/)" |
|
* |
|
* 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to |
|
* endorse or promote products derived from this software without |
|
* prior written permission. For written permission, please contact |
|
* openssl-core@openssl.org. |
|
* |
|
* 5. Products derived from this software may not be called "OpenSSL" |
|
* nor may "OpenSSL" appear in their names without prior written |
|
* permission of the OpenSSL Project. |
|
* |
|
* 6. Redistributions of any form whatsoever must retain the following |
|
* acknowledgment: |
|
* "This product includes software developed by the OpenSSL Project |
|
* for use in the OpenSSL Toolkit (http://www.openssl.org/)" |
|
* |
|
* THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY |
|
* EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR |
|
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR |
|
* ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
|
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT |
|
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; |
|
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, |
|
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
|
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED |
|
* OF THE POSSIBILITY OF SUCH DAMAGE. |
|
* ==================================================================== |
|
* |
|
* This product includes cryptographic software written by Eric Young |
|
* (eay@cryptsoft.com). This product includes software written by Tim |
|
* Hudson (tjh@cryptsoft.com). |
|
* |
|
*/ |
|
|
|
#include "cryptlib.h" |
|
#include "bn_lcl.h" |
|
|
|
static BIGNUM *euclid(BIGNUM *a, BIGNUM *b); |
|
|
|
int BN_gcd(BIGNUM *r, const BIGNUM *in_a, const BIGNUM *in_b, BN_CTX *ctx) |
|
{ |
|
BIGNUM *a, *b, *t; |
|
int ret = 0; |
|
|
|
bn_check_top(in_a); |
|
bn_check_top(in_b); |
|
|
|
BN_CTX_start(ctx); |
|
a = BN_CTX_get(ctx); |
|
b = BN_CTX_get(ctx); |
|
if (a == NULL || b == NULL) |
|
goto err; |
|
|
|
if (BN_copy(a, in_a) == NULL) |
|
goto err; |
|
if (BN_copy(b, in_b) == NULL) |
|
goto err; |
|
a->neg = 0; |
|
b->neg = 0; |
|
|
|
if (BN_cmp(a, b) < 0) { |
|
t = a; |
|
a = b; |
|
b = t; |
|
} |
|
t = euclid(a, b); |
|
if (t == NULL) |
|
goto err; |
|
|
|
if (BN_copy(r, t) == NULL) |
|
goto err; |
|
ret = 1; |
|
err: |
|
BN_CTX_end(ctx); |
|
bn_check_top(r); |
|
return (ret); |
|
} |
|
|
|
static BIGNUM *euclid(BIGNUM *a, BIGNUM *b) |
|
{ |
|
BIGNUM *t; |
|
int shifts = 0; |
|
|
|
bn_check_top(a); |
|
bn_check_top(b); |
|
|
|
/* 0 <= b <= a */ |
|
while (!BN_is_zero(b)) { |
|
/* 0 < b <= a */ |
|
|
|
if (BN_is_odd(a)) { |
|
if (BN_is_odd(b)) { |
|
if (!BN_sub(a, a, b)) |
|
goto err; |
|
if (!BN_rshift1(a, a)) |
|
goto err; |
|
if (BN_cmp(a, b) < 0) { |
|
t = a; |
|
a = b; |
|
b = t; |
|
} |
|
} else { /* a odd - b even */ |
|
|
|
if (!BN_rshift1(b, b)) |
|
goto err; |
|
if (BN_cmp(a, b) < 0) { |
|
t = a; |
|
a = b; |
|
b = t; |
|
} |
|
} |
|
} else { /* a is even */ |
|
|
|
if (BN_is_odd(b)) { |
|
if (!BN_rshift1(a, a)) |
|
goto err; |
|
if (BN_cmp(a, b) < 0) { |
|
t = a; |
|
a = b; |
|
b = t; |
|
} |
|
} else { /* a even - b even */ |
|
|
|
if (!BN_rshift1(a, a)) |
|
goto err; |
|
if (!BN_rshift1(b, b)) |
|
goto err; |
|
shifts++; |
|
} |
|
} |
|
/* 0 <= b <= a */ |
|
} |
|
|
|
if (shifts) { |
|
if (!BN_lshift(a, a, shifts)) |
|
goto err; |
|
} |
|
bn_check_top(a); |
|
return (a); |
|
err: |
|
return (NULL); |
|
} |
|
|
|
/* solves ax == 1 (mod n) */ |
|
static BIGNUM *BN_mod_inverse_no_branch(BIGNUM *in, |
|
const BIGNUM *a, const BIGNUM *n, |
|
BN_CTX *ctx); |
|
|
|
BIGNUM *BN_mod_inverse(BIGNUM *in, |
|
const BIGNUM *a, const BIGNUM *n, BN_CTX *ctx) |
|
{ |
|
BIGNUM *A, *B, *X, *Y, *M, *D, *T, *R = NULL; |
|
BIGNUM *ret = NULL; |
|
int sign; |
|
|
|
if ((BN_get_flags(a, BN_FLG_CONSTTIME) != 0) |
|
|| (BN_get_flags(n, BN_FLG_CONSTTIME) != 0)) { |
|
return BN_mod_inverse_no_branch(in, a, n, ctx); |
|
} |
|
|
|
bn_check_top(a); |
|
bn_check_top(n); |
|
|
|
BN_CTX_start(ctx); |
|
A = BN_CTX_get(ctx); |
|
B = BN_CTX_get(ctx); |
|
X = BN_CTX_get(ctx); |
|
D = BN_CTX_get(ctx); |
|
M = BN_CTX_get(ctx); |
|
Y = BN_CTX_get(ctx); |
|
T = BN_CTX_get(ctx); |
|
if (T == NULL) |
|
goto err; |
|
|
|
if (in == NULL) |
|
R = BN_new(); |
|
else |
|
R = in; |
|
if (R == NULL) |
|
goto err; |
|
|
|
BN_one(X); |
|
BN_zero(Y); |
|
if (BN_copy(B, a) == NULL) |
|
goto err; |
|
if (BN_copy(A, n) == NULL) |
|
goto err; |
|
A->neg = 0; |
|
if (B->neg || (BN_ucmp(B, A) >= 0)) { |
|
if (!BN_nnmod(B, B, A, ctx)) |
|
goto err; |
|
} |
|
sign = -1; |
|
/*- |
|
* From B = a mod |n|, A = |n| it follows that |
|
* |
|
* 0 <= B < A, |
|
* -sign*X*a == B (mod |n|), |
|
* sign*Y*a == A (mod |n|). |
|
*/ |
|
|
|
if (BN_is_odd(n) && (BN_num_bits(n) <= (BN_BITS <= 32 ? 450 : 2048))) { |
|
/* |
|
* Binary inversion algorithm; requires odd modulus. This is faster |
|
* than the general algorithm if the modulus is sufficiently small |
|
* (about 400 .. 500 bits on 32-bit sytems, but much more on 64-bit |
|
* systems) |
|
*/ |
|
int shift; |
|
|
|
while (!BN_is_zero(B)) { |
|
/*- |
|
* 0 < B < |n|, |
|
* 0 < A <= |n|, |
|
* (1) -sign*X*a == B (mod |n|), |
|
* (2) sign*Y*a == A (mod |n|) |
|
*/ |
|
|
|
/* |
|
* Now divide B by the maximum possible power of two in the |
|
* integers, and divide X by the same value mod |n|. When we're |
|
* done, (1) still holds. |
|
*/ |
|
shift = 0; |
|
while (!BN_is_bit_set(B, shift)) { /* note that 0 < B */ |
|
shift++; |
|
|
|
if (BN_is_odd(X)) { |
|
if (!BN_uadd(X, X, n)) |
|
goto err; |
|
} |
|
/* |
|
* now X is even, so we can easily divide it by two |
|
*/ |
|
if (!BN_rshift1(X, X)) |
|
goto err; |
|
} |
|
if (shift > 0) { |
|
if (!BN_rshift(B, B, shift)) |
|
goto err; |
|
} |
|
|
|
/* |
|
* Same for A and Y. Afterwards, (2) still holds. |
|
*/ |
|
shift = 0; |
|
while (!BN_is_bit_set(A, shift)) { /* note that 0 < A */ |
|
shift++; |
|
|
|
if (BN_is_odd(Y)) { |
|
if (!BN_uadd(Y, Y, n)) |
|
goto err; |
|
} |
|
/* now Y is even */ |
|
if (!BN_rshift1(Y, Y)) |
|
goto err; |
|
} |
|
if (shift > 0) { |
|
if (!BN_rshift(A, A, shift)) |
|
goto err; |
|
} |
|
|
|
/*- |
|
* We still have (1) and (2). |
|
* Both A and B are odd. |
|
* The following computations ensure that |
|
* |
|
* 0 <= B < |n|, |
|
* 0 < A < |n|, |
|
* (1) -sign*X*a == B (mod |n|), |
|
* (2) sign*Y*a == A (mod |n|), |
|
* |
|
* and that either A or B is even in the next iteration. |
|
*/ |
|
if (BN_ucmp(B, A) >= 0) { |
|
/* -sign*(X + Y)*a == B - A (mod |n|) */ |
|
if (!BN_uadd(X, X, Y)) |
|
goto err; |
|
/* |
|
* NB: we could use BN_mod_add_quick(X, X, Y, n), but that |
|
* actually makes the algorithm slower |
|
*/ |
|
if (!BN_usub(B, B, A)) |
|
goto err; |
|
} else { |
|
/* sign*(X + Y)*a == A - B (mod |n|) */ |
|
if (!BN_uadd(Y, Y, X)) |
|
goto err; |
|
/* |
|
* as above, BN_mod_add_quick(Y, Y, X, n) would slow things |
|
* down |
|
*/ |
|
if (!BN_usub(A, A, B)) |
|
goto err; |
|
} |
|
} |
|
} else { |
|
/* general inversion algorithm */ |
|
|
|
while (!BN_is_zero(B)) { |
|
BIGNUM *tmp; |
|
|
|
/*- |
|
* 0 < B < A, |
|
* (*) -sign*X*a == B (mod |n|), |
|
* sign*Y*a == A (mod |n|) |
|
*/ |
|
|
|
/* (D, M) := (A/B, A%B) ... */ |
|
if (BN_num_bits(A) == BN_num_bits(B)) { |
|
if (!BN_one(D)) |
|
goto err; |
|
if (!BN_sub(M, A, B)) |
|
goto err; |
|
} else if (BN_num_bits(A) == BN_num_bits(B) + 1) { |
|
/* A/B is 1, 2, or 3 */ |
|
if (!BN_lshift1(T, B)) |
|
goto err; |
|
if (BN_ucmp(A, T) < 0) { |
|
/* A < 2*B, so D=1 */ |
|
if (!BN_one(D)) |
|
goto err; |
|
if (!BN_sub(M, A, B)) |
|
goto err; |
|
} else { |
|
/* A >= 2*B, so D=2 or D=3 */ |
|
if (!BN_sub(M, A, T)) |
|
goto err; |
|
if (!BN_add(D, T, B)) |
|
goto err; /* use D (:= 3*B) as temp */ |
|
if (BN_ucmp(A, D) < 0) { |
|
/* A < 3*B, so D=2 */ |
|
if (!BN_set_word(D, 2)) |
|
goto err; |
|
/* |
|
* M (= A - 2*B) already has the correct value |
|
*/ |
|
} else { |
|
/* only D=3 remains */ |
|
if (!BN_set_word(D, 3)) |
|
goto err; |
|
/* |
|
* currently M = A - 2*B, but we need M = A - 3*B |
|
*/ |
|
if (!BN_sub(M, M, B)) |
|
goto err; |
|
} |
|
} |
|
} else { |
|
if (!BN_div(D, M, A, B, ctx)) |
|
goto err; |
|
} |
|
|
|
/*- |
|
* Now |
|
* A = D*B + M; |
|
* thus we have |
|
* (**) sign*Y*a == D*B + M (mod |n|). |
|
*/ |
|
|
|
tmp = A; /* keep the BIGNUM object, the value does not |
|
* matter */ |
|
|
|
/* (A, B) := (B, A mod B) ... */ |
|
A = B; |
|
B = M; |
|
/* ... so we have 0 <= B < A again */ |
|
|
|
/*- |
|
* Since the former M is now B and the former B is now A, |
|
* (**) translates into |
|
* sign*Y*a == D*A + B (mod |n|), |
|
* i.e. |
|
* sign*Y*a - D*A == B (mod |n|). |
|
* Similarly, (*) translates into |
|
* -sign*X*a == A (mod |n|). |
|
* |
|
* Thus, |
|
* sign*Y*a + D*sign*X*a == B (mod |n|), |
|
* i.e. |
|
* sign*(Y + D*X)*a == B (mod |n|). |
|
* |
|
* So if we set (X, Y, sign) := (Y + D*X, X, -sign), we arrive back at |
|
* -sign*X*a == B (mod |n|), |
|
* sign*Y*a == A (mod |n|). |
|
* Note that X and Y stay non-negative all the time. |
|
*/ |
|
|
|
/* |
|
* most of the time D is very small, so we can optimize tmp := |
|
* D*X+Y |
|
*/ |
|
if (BN_is_one(D)) { |
|
if (!BN_add(tmp, X, Y)) |
|
goto err; |
|
} else { |
|
if (BN_is_word(D, 2)) { |
|
if (!BN_lshift1(tmp, X)) |
|
goto err; |
|
} else if (BN_is_word(D, 4)) { |
|
if (!BN_lshift(tmp, X, 2)) |
|
goto err; |
|
} else if (D->top == 1) { |
|
if (!BN_copy(tmp, X)) |
|
goto err; |
|
if (!BN_mul_word(tmp, D->d[0])) |
|
goto err; |
|
} else { |
|
if (!BN_mul(tmp, D, X, ctx)) |
|
goto err; |
|
} |
|
if (!BN_add(tmp, tmp, Y)) |
|
goto err; |
|
} |
|
|
|
M = Y; /* keep the BIGNUM object, the value does not |
|
* matter */ |
|
Y = X; |
|
X = tmp; |
|
sign = -sign; |
|
} |
|
} |
|
|
|
/*- |
|
* The while loop (Euclid's algorithm) ends when |
|
* A == gcd(a,n); |
|
* we have |
|
* sign*Y*a == A (mod |n|), |
|
* where Y is non-negative. |
|
*/ |
|
|
|
if (sign < 0) { |
|
if (!BN_sub(Y, n, Y)) |
|
goto err; |
|
} |
|
/* Now Y*a == A (mod |n|). */ |
|
|
|
if (BN_is_one(A)) { |
|
/* Y*a == 1 (mod |n|) */ |
|
if (!Y->neg && BN_ucmp(Y, n) < 0) { |
|
if (!BN_copy(R, Y)) |
|
goto err; |
|
} else { |
|
if (!BN_nnmod(R, Y, n, ctx)) |
|
goto err; |
|
} |
|
} else { |
|
BNerr(BN_F_BN_MOD_INVERSE, BN_R_NO_INVERSE); |
|
goto err; |
|
} |
|
ret = R; |
|
err: |
|
if ((ret == NULL) && (in == NULL)) |
|
BN_free(R); |
|
BN_CTX_end(ctx); |
|
bn_check_top(ret); |
|
return (ret); |
|
} |
|
|
|
/* |
|
* BN_mod_inverse_no_branch is a special version of BN_mod_inverse. It does |
|
* not contain branches that may leak sensitive information. |
|
*/ |
|
static BIGNUM *BN_mod_inverse_no_branch(BIGNUM *in, |
|
const BIGNUM *a, const BIGNUM *n, |
|
BN_CTX *ctx) |
|
{ |
|
BIGNUM *A, *B, *X, *Y, *M, *D, *T, *R = NULL; |
|
BIGNUM local_A, local_B; |
|
BIGNUM *pA, *pB; |
|
BIGNUM *ret = NULL; |
|
int sign; |
|
|
|
bn_check_top(a); |
|
bn_check_top(n); |
|
|
|
BN_CTX_start(ctx); |
|
A = BN_CTX_get(ctx); |
|
B = BN_CTX_get(ctx); |
|
X = BN_CTX_get(ctx); |
|
D = BN_CTX_get(ctx); |
|
M = BN_CTX_get(ctx); |
|
Y = BN_CTX_get(ctx); |
|
T = BN_CTX_get(ctx); |
|
if (T == NULL) |
|
goto err; |
|
|
|
if (in == NULL) |
|
R = BN_new(); |
|
else |
|
R = in; |
|
if (R == NULL) |
|
goto err; |
|
|
|
BN_one(X); |
|
BN_zero(Y); |
|
if (BN_copy(B, a) == NULL) |
|
goto err; |
|
if (BN_copy(A, n) == NULL) |
|
goto err; |
|
A->neg = 0; |
|
|
|
if (B->neg || (BN_ucmp(B, A) >= 0)) { |
|
/* |
|
* Turn BN_FLG_CONSTTIME flag on, so that when BN_div is invoked, |
|
* BN_div_no_branch will be called eventually. |
|
*/ |
|
pB = &local_B; |
|
local_B.flags = 0; |
|
BN_with_flags(pB, B, BN_FLG_CONSTTIME); |
|
if (!BN_nnmod(B, pB, A, ctx)) |
|
goto err; |
|
} |
|
sign = -1; |
|
/*- |
|
* From B = a mod |n|, A = |n| it follows that |
|
* |
|
* 0 <= B < A, |
|
* -sign*X*a == B (mod |n|), |
|
* sign*Y*a == A (mod |n|). |
|
*/ |
|
|
|
while (!BN_is_zero(B)) { |
|
BIGNUM *tmp; |
|
|
|
/*- |
|
* 0 < B < A, |
|
* (*) -sign*X*a == B (mod |n|), |
|
* sign*Y*a == A (mod |n|) |
|
*/ |
|
|
|
/* |
|
* Turn BN_FLG_CONSTTIME flag on, so that when BN_div is invoked, |
|
* BN_div_no_branch will be called eventually. |
|
*/ |
|
pA = &local_A; |
|
local_A.flags = 0; |
|
BN_with_flags(pA, A, BN_FLG_CONSTTIME); |
|
|
|
/* (D, M) := (A/B, A%B) ... */ |
|
if (!BN_div(D, M, pA, B, ctx)) |
|
goto err; |
|
|
|
/*- |
|
* Now |
|
* A = D*B + M; |
|
* thus we have |
|
* (**) sign*Y*a == D*B + M (mod |n|). |
|
*/ |
|
|
|
tmp = A; /* keep the BIGNUM object, the value does not |
|
* matter */ |
|
|
|
/* (A, B) := (B, A mod B) ... */ |
|
A = B; |
|
B = M; |
|
/* ... so we have 0 <= B < A again */ |
|
|
|
/*- |
|
* Since the former M is now B and the former B is now A, |
|
* (**) translates into |
|
* sign*Y*a == D*A + B (mod |n|), |
|
* i.e. |
|
* sign*Y*a - D*A == B (mod |n|). |
|
* Similarly, (*) translates into |
|
* -sign*X*a == A (mod |n|). |
|
* |
|
* Thus, |
|
* sign*Y*a + D*sign*X*a == B (mod |n|), |
|
* i.e. |
|
* sign*(Y + D*X)*a == B (mod |n|). |
|
* |
|
* So if we set (X, Y, sign) := (Y + D*X, X, -sign), we arrive back at |
|
* -sign*X*a == B (mod |n|), |
|
* sign*Y*a == A (mod |n|). |
|
* Note that X and Y stay non-negative all the time. |
|
*/ |
|
|
|
if (!BN_mul(tmp, D, X, ctx)) |
|
goto err; |
|
if (!BN_add(tmp, tmp, Y)) |
|
goto err; |
|
|
|
M = Y; /* keep the BIGNUM object, the value does not |
|
* matter */ |
|
Y = X; |
|
X = tmp; |
|
sign = -sign; |
|
} |
|
|
|
/*- |
|
* The while loop (Euclid's algorithm) ends when |
|
* A == gcd(a,n); |
|
* we have |
|
* sign*Y*a == A (mod |n|), |
|
* where Y is non-negative. |
|
*/ |
|
|
|
if (sign < 0) { |
|
if (!BN_sub(Y, n, Y)) |
|
goto err; |
|
} |
|
/* Now Y*a == A (mod |n|). */ |
|
|
|
if (BN_is_one(A)) { |
|
/* Y*a == 1 (mod |n|) */ |
|
if (!Y->neg && BN_ucmp(Y, n) < 0) { |
|
if (!BN_copy(R, Y)) |
|
goto err; |
|
} else { |
|
if (!BN_nnmod(R, Y, n, ctx)) |
|
goto err; |
|
} |
|
} else { |
|
BNerr(BN_F_BN_MOD_INVERSE_NO_BRANCH, BN_R_NO_INVERSE); |
|
goto err; |
|
} |
|
ret = R; |
|
err: |
|
if ((ret == NULL) && (in == NULL)) |
|
BN_free(R); |
|
BN_CTX_end(ctx); |
|
bn_check_top(ret); |
|
return (ret); |
|
}
|
|
|