You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
1183 lines
37 KiB
1183 lines
37 KiB
/* crypto/bn/bn_exp.c */ |
|
/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com) |
|
* All rights reserved. |
|
* |
|
* This package is an SSL implementation written |
|
* by Eric Young (eay@cryptsoft.com). |
|
* The implementation was written so as to conform with Netscapes SSL. |
|
* |
|
* This library is free for commercial and non-commercial use as long as |
|
* the following conditions are aheared to. The following conditions |
|
* apply to all code found in this distribution, be it the RC4, RSA, |
|
* lhash, DES, etc., code; not just the SSL code. The SSL documentation |
|
* included with this distribution is covered by the same copyright terms |
|
* except that the holder is Tim Hudson (tjh@cryptsoft.com). |
|
* |
|
* Copyright remains Eric Young's, and as such any Copyright notices in |
|
* the code are not to be removed. |
|
* If this package is used in a product, Eric Young should be given attribution |
|
* as the author of the parts of the library used. |
|
* This can be in the form of a textual message at program startup or |
|
* in documentation (online or textual) provided with the package. |
|
* |
|
* Redistribution and use in source and binary forms, with or without |
|
* modification, are permitted provided that the following conditions |
|
* are met: |
|
* 1. Redistributions of source code must retain the copyright |
|
* notice, this list of conditions and the following disclaimer. |
|
* 2. Redistributions in binary form must reproduce the above copyright |
|
* notice, this list of conditions and the following disclaimer in the |
|
* documentation and/or other materials provided with the distribution. |
|
* 3. All advertising materials mentioning features or use of this software |
|
* must display the following acknowledgement: |
|
* "This product includes cryptographic software written by |
|
* Eric Young (eay@cryptsoft.com)" |
|
* The word 'cryptographic' can be left out if the rouines from the library |
|
* being used are not cryptographic related :-). |
|
* 4. If you include any Windows specific code (or a derivative thereof) from |
|
* the apps directory (application code) you must include an acknowledgement: |
|
* "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" |
|
* |
|
* THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND |
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE |
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL |
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS |
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY |
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF |
|
* SUCH DAMAGE. |
|
* |
|
* The licence and distribution terms for any publically available version or |
|
* derivative of this code cannot be changed. i.e. this code cannot simply be |
|
* copied and put under another distribution licence |
|
* [including the GNU Public Licence.] |
|
*/ |
|
/* ==================================================================== |
|
* Copyright (c) 1998-2005 The OpenSSL Project. All rights reserved. |
|
* |
|
* Redistribution and use in source and binary forms, with or without |
|
* modification, are permitted provided that the following conditions |
|
* are met: |
|
* |
|
* 1. Redistributions of source code must retain the above copyright |
|
* notice, this list of conditions and the following disclaimer. |
|
* |
|
* 2. Redistributions in binary form must reproduce the above copyright |
|
* notice, this list of conditions and the following disclaimer in |
|
* the documentation and/or other materials provided with the |
|
* distribution. |
|
* |
|
* 3. All advertising materials mentioning features or use of this |
|
* software must display the following acknowledgment: |
|
* "This product includes software developed by the OpenSSL Project |
|
* for use in the OpenSSL Toolkit. (http://www.openssl.org/)" |
|
* |
|
* 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to |
|
* endorse or promote products derived from this software without |
|
* prior written permission. For written permission, please contact |
|
* openssl-core@openssl.org. |
|
* |
|
* 5. Products derived from this software may not be called "OpenSSL" |
|
* nor may "OpenSSL" appear in their names without prior written |
|
* permission of the OpenSSL Project. |
|
* |
|
* 6. Redistributions of any form whatsoever must retain the following |
|
* acknowledgment: |
|
* "This product includes software developed by the OpenSSL Project |
|
* for use in the OpenSSL Toolkit (http://www.openssl.org/)" |
|
* |
|
* THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY |
|
* EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR |
|
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR |
|
* ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
|
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT |
|
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; |
|
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, |
|
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
|
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED |
|
* OF THE POSSIBILITY OF SUCH DAMAGE. |
|
* ==================================================================== |
|
* |
|
* This product includes cryptographic software written by Eric Young |
|
* (eay@cryptsoft.com). This product includes software written by Tim |
|
* Hudson (tjh@cryptsoft.com). |
|
* |
|
*/ |
|
|
|
#include "cryptlib.h" |
|
#include "constant_time_locl.h" |
|
#include "bn_lcl.h" |
|
|
|
#include <stdlib.h> |
|
#ifdef _WIN32 |
|
# include <malloc.h> |
|
# ifndef alloca |
|
# define alloca _alloca |
|
# endif |
|
#elif defined(__GNUC__) |
|
# ifndef alloca |
|
# define alloca(s) __builtin_alloca((s)) |
|
# endif |
|
#endif |
|
|
|
/* maximum precomputation table size for *variable* sliding windows */ |
|
#define TABLE_SIZE 32 |
|
|
|
/* this one works - simple but works */ |
|
int BN_exp(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx) |
|
{ |
|
int i, bits, ret = 0; |
|
BIGNUM *v, *rr; |
|
|
|
if (BN_get_flags(p, BN_FLG_CONSTTIME) != 0) { |
|
/* BN_FLG_CONSTTIME only supported by BN_mod_exp_mont() */ |
|
BNerr(BN_F_BN_EXP, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); |
|
return -1; |
|
} |
|
|
|
BN_CTX_start(ctx); |
|
if ((r == a) || (r == p)) |
|
rr = BN_CTX_get(ctx); |
|
else |
|
rr = r; |
|
v = BN_CTX_get(ctx); |
|
if (rr == NULL || v == NULL) |
|
goto err; |
|
|
|
if (BN_copy(v, a) == NULL) |
|
goto err; |
|
bits = BN_num_bits(p); |
|
|
|
if (BN_is_odd(p)) { |
|
if (BN_copy(rr, a) == NULL) |
|
goto err; |
|
} else { |
|
if (!BN_one(rr)) |
|
goto err; |
|
} |
|
|
|
for (i = 1; i < bits; i++) { |
|
if (!BN_sqr(v, v, ctx)) |
|
goto err; |
|
if (BN_is_bit_set(p, i)) { |
|
if (!BN_mul(rr, rr, v, ctx)) |
|
goto err; |
|
} |
|
} |
|
if (r != rr) |
|
BN_copy(r, rr); |
|
ret = 1; |
|
err: |
|
BN_CTX_end(ctx); |
|
bn_check_top(r); |
|
return (ret); |
|
} |
|
|
|
int BN_mod_exp(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, const BIGNUM *m, |
|
BN_CTX *ctx) |
|
{ |
|
int ret; |
|
|
|
bn_check_top(a); |
|
bn_check_top(p); |
|
bn_check_top(m); |
|
|
|
/*- |
|
* For even modulus m = 2^k*m_odd, it might make sense to compute |
|
* a^p mod m_odd and a^p mod 2^k separately (with Montgomery |
|
* exponentiation for the odd part), using appropriate exponent |
|
* reductions, and combine the results using the CRT. |
|
* |
|
* For now, we use Montgomery only if the modulus is odd; otherwise, |
|
* exponentiation using the reciprocal-based quick remaindering |
|
* algorithm is used. |
|
* |
|
* (Timing obtained with expspeed.c [computations a^p mod m |
|
* where a, p, m are of the same length: 256, 512, 1024, 2048, |
|
* 4096, 8192 bits], compared to the running time of the |
|
* standard algorithm: |
|
* |
|
* BN_mod_exp_mont 33 .. 40 % [AMD K6-2, Linux, debug configuration] |
|
* 55 .. 77 % [UltraSparc processor, but |
|
* debug-solaris-sparcv8-gcc conf.] |
|
* |
|
* BN_mod_exp_recp 50 .. 70 % [AMD K6-2, Linux, debug configuration] |
|
* 62 .. 118 % [UltraSparc, debug-solaris-sparcv8-gcc] |
|
* |
|
* On the Sparc, BN_mod_exp_recp was faster than BN_mod_exp_mont |
|
* at 2048 and more bits, but at 512 and 1024 bits, it was |
|
* slower even than the standard algorithm! |
|
* |
|
* "Real" timings [linux-elf, solaris-sparcv9-gcc configurations] |
|
* should be obtained when the new Montgomery reduction code |
|
* has been integrated into OpenSSL.) |
|
*/ |
|
|
|
#define MONT_MUL_MOD |
|
#define MONT_EXP_WORD |
|
#define RECP_MUL_MOD |
|
|
|
#ifdef MONT_MUL_MOD |
|
/* |
|
* I have finally been able to take out this pre-condition of the top bit |
|
* being set. It was caused by an error in BN_div with negatives. There |
|
* was also another problem when for a^b%m a >= m. eay 07-May-97 |
|
*/ |
|
/* if ((m->d[m->top-1]&BN_TBIT) && BN_is_odd(m)) */ |
|
|
|
if (BN_is_odd(m)) { |
|
# ifdef MONT_EXP_WORD |
|
if (a->top == 1 && !a->neg |
|
&& (BN_get_flags(p, BN_FLG_CONSTTIME) == 0)) { |
|
BN_ULONG A = a->d[0]; |
|
ret = BN_mod_exp_mont_word(r, A, p, m, ctx, NULL); |
|
} else |
|
# endif |
|
ret = BN_mod_exp_mont(r, a, p, m, ctx, NULL); |
|
} else |
|
#endif |
|
#ifdef RECP_MUL_MOD |
|
{ |
|
ret = BN_mod_exp_recp(r, a, p, m, ctx); |
|
} |
|
#else |
|
{ |
|
ret = BN_mod_exp_simple(r, a, p, m, ctx); |
|
} |
|
#endif |
|
|
|
bn_check_top(r); |
|
return (ret); |
|
} |
|
|
|
int BN_mod_exp_recp(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, |
|
const BIGNUM *m, BN_CTX *ctx) |
|
{ |
|
int i, j, bits, ret = 0, wstart, wend, window, wvalue; |
|
int start = 1; |
|
BIGNUM *aa; |
|
/* Table of variables obtained from 'ctx' */ |
|
BIGNUM *val[TABLE_SIZE]; |
|
BN_RECP_CTX recp; |
|
|
|
if (BN_get_flags(p, BN_FLG_CONSTTIME) != 0) { |
|
/* BN_FLG_CONSTTIME only supported by BN_mod_exp_mont() */ |
|
BNerr(BN_F_BN_MOD_EXP_RECP, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); |
|
return -1; |
|
} |
|
|
|
bits = BN_num_bits(p); |
|
if (bits == 0) { |
|
/* x**0 mod 1 is still zero. */ |
|
if (BN_is_one(m)) { |
|
ret = 1; |
|
BN_zero(r); |
|
} else { |
|
ret = BN_one(r); |
|
} |
|
return ret; |
|
} |
|
|
|
BN_CTX_start(ctx); |
|
aa = BN_CTX_get(ctx); |
|
val[0] = BN_CTX_get(ctx); |
|
if (!aa || !val[0]) |
|
goto err; |
|
|
|
BN_RECP_CTX_init(&recp); |
|
if (m->neg) { |
|
/* ignore sign of 'm' */ |
|
if (!BN_copy(aa, m)) |
|
goto err; |
|
aa->neg = 0; |
|
if (BN_RECP_CTX_set(&recp, aa, ctx) <= 0) |
|
goto err; |
|
} else { |
|
if (BN_RECP_CTX_set(&recp, m, ctx) <= 0) |
|
goto err; |
|
} |
|
|
|
if (!BN_nnmod(val[0], a, m, ctx)) |
|
goto err; /* 1 */ |
|
if (BN_is_zero(val[0])) { |
|
BN_zero(r); |
|
ret = 1; |
|
goto err; |
|
} |
|
|
|
window = BN_window_bits_for_exponent_size(bits); |
|
if (window > 1) { |
|
if (!BN_mod_mul_reciprocal(aa, val[0], val[0], &recp, ctx)) |
|
goto err; /* 2 */ |
|
j = 1 << (window - 1); |
|
for (i = 1; i < j; i++) { |
|
if (((val[i] = BN_CTX_get(ctx)) == NULL) || |
|
!BN_mod_mul_reciprocal(val[i], val[i - 1], aa, &recp, ctx)) |
|
goto err; |
|
} |
|
} |
|
|
|
start = 1; /* This is used to avoid multiplication etc |
|
* when there is only the value '1' in the |
|
* buffer. */ |
|
wvalue = 0; /* The 'value' of the window */ |
|
wstart = bits - 1; /* The top bit of the window */ |
|
wend = 0; /* The bottom bit of the window */ |
|
|
|
if (!BN_one(r)) |
|
goto err; |
|
|
|
for (;;) { |
|
if (BN_is_bit_set(p, wstart) == 0) { |
|
if (!start) |
|
if (!BN_mod_mul_reciprocal(r, r, r, &recp, ctx)) |
|
goto err; |
|
if (wstart == 0) |
|
break; |
|
wstart--; |
|
continue; |
|
} |
|
/* |
|
* We now have wstart on a 'set' bit, we now need to work out how bit |
|
* a window to do. To do this we need to scan forward until the last |
|
* set bit before the end of the window |
|
*/ |
|
j = wstart; |
|
wvalue = 1; |
|
wend = 0; |
|
for (i = 1; i < window; i++) { |
|
if (wstart - i < 0) |
|
break; |
|
if (BN_is_bit_set(p, wstart - i)) { |
|
wvalue <<= (i - wend); |
|
wvalue |= 1; |
|
wend = i; |
|
} |
|
} |
|
|
|
/* wend is the size of the current window */ |
|
j = wend + 1; |
|
/* add the 'bytes above' */ |
|
if (!start) |
|
for (i = 0; i < j; i++) { |
|
if (!BN_mod_mul_reciprocal(r, r, r, &recp, ctx)) |
|
goto err; |
|
} |
|
|
|
/* wvalue will be an odd number < 2^window */ |
|
if (!BN_mod_mul_reciprocal(r, r, val[wvalue >> 1], &recp, ctx)) |
|
goto err; |
|
|
|
/* move the 'window' down further */ |
|
wstart -= wend + 1; |
|
wvalue = 0; |
|
start = 0; |
|
if (wstart < 0) |
|
break; |
|
} |
|
ret = 1; |
|
err: |
|
BN_CTX_end(ctx); |
|
BN_RECP_CTX_free(&recp); |
|
bn_check_top(r); |
|
return (ret); |
|
} |
|
|
|
int BN_mod_exp_mont(BIGNUM *rr, const BIGNUM *a, const BIGNUM *p, |
|
const BIGNUM *m, BN_CTX *ctx, BN_MONT_CTX *in_mont) |
|
{ |
|
int i, j, bits, ret = 0, wstart, wend, window, wvalue; |
|
int start = 1; |
|
BIGNUM *d, *r; |
|
const BIGNUM *aa; |
|
/* Table of variables obtained from 'ctx' */ |
|
BIGNUM *val[TABLE_SIZE]; |
|
BN_MONT_CTX *mont = NULL; |
|
|
|
if (BN_get_flags(p, BN_FLG_CONSTTIME) != 0) { |
|
return BN_mod_exp_mont_consttime(rr, a, p, m, ctx, in_mont); |
|
} |
|
|
|
bn_check_top(a); |
|
bn_check_top(p); |
|
bn_check_top(m); |
|
|
|
if (!BN_is_odd(m)) { |
|
BNerr(BN_F_BN_MOD_EXP_MONT, BN_R_CALLED_WITH_EVEN_MODULUS); |
|
return (0); |
|
} |
|
bits = BN_num_bits(p); |
|
if (bits == 0) { |
|
/* x**0 mod 1 is still zero. */ |
|
if (BN_is_one(m)) { |
|
ret = 1; |
|
BN_zero(rr); |
|
} else { |
|
ret = BN_one(rr); |
|
} |
|
return ret; |
|
} |
|
|
|
BN_CTX_start(ctx); |
|
d = BN_CTX_get(ctx); |
|
r = BN_CTX_get(ctx); |
|
val[0] = BN_CTX_get(ctx); |
|
if (!d || !r || !val[0]) |
|
goto err; |
|
|
|
/* |
|
* If this is not done, things will break in the montgomery part |
|
*/ |
|
|
|
if (in_mont != NULL) |
|
mont = in_mont; |
|
else { |
|
if ((mont = BN_MONT_CTX_new()) == NULL) |
|
goto err; |
|
if (!BN_MONT_CTX_set(mont, m, ctx)) |
|
goto err; |
|
} |
|
|
|
if (a->neg || BN_ucmp(a, m) >= 0) { |
|
if (!BN_nnmod(val[0], a, m, ctx)) |
|
goto err; |
|
aa = val[0]; |
|
} else |
|
aa = a; |
|
if (BN_is_zero(aa)) { |
|
BN_zero(rr); |
|
ret = 1; |
|
goto err; |
|
} |
|
if (!BN_to_montgomery(val[0], aa, mont, ctx)) |
|
goto err; /* 1 */ |
|
|
|
window = BN_window_bits_for_exponent_size(bits); |
|
if (window > 1) { |
|
if (!BN_mod_mul_montgomery(d, val[0], val[0], mont, ctx)) |
|
goto err; /* 2 */ |
|
j = 1 << (window - 1); |
|
for (i = 1; i < j; i++) { |
|
if (((val[i] = BN_CTX_get(ctx)) == NULL) || |
|
!BN_mod_mul_montgomery(val[i], val[i - 1], d, mont, ctx)) |
|
goto err; |
|
} |
|
} |
|
|
|
start = 1; /* This is used to avoid multiplication etc |
|
* when there is only the value '1' in the |
|
* buffer. */ |
|
wvalue = 0; /* The 'value' of the window */ |
|
wstart = bits - 1; /* The top bit of the window */ |
|
wend = 0; /* The bottom bit of the window */ |
|
|
|
if (!BN_to_montgomery(r, BN_value_one(), mont, ctx)) |
|
goto err; |
|
for (;;) { |
|
if (BN_is_bit_set(p, wstart) == 0) { |
|
if (!start) { |
|
if (!BN_mod_mul_montgomery(r, r, r, mont, ctx)) |
|
goto err; |
|
} |
|
if (wstart == 0) |
|
break; |
|
wstart--; |
|
continue; |
|
} |
|
/* |
|
* We now have wstart on a 'set' bit, we now need to work out how bit |
|
* a window to do. To do this we need to scan forward until the last |
|
* set bit before the end of the window |
|
*/ |
|
j = wstart; |
|
wvalue = 1; |
|
wend = 0; |
|
for (i = 1; i < window; i++) { |
|
if (wstart - i < 0) |
|
break; |
|
if (BN_is_bit_set(p, wstart - i)) { |
|
wvalue <<= (i - wend); |
|
wvalue |= 1; |
|
wend = i; |
|
} |
|
} |
|
|
|
/* wend is the size of the current window */ |
|
j = wend + 1; |
|
/* add the 'bytes above' */ |
|
if (!start) |
|
for (i = 0; i < j; i++) { |
|
if (!BN_mod_mul_montgomery(r, r, r, mont, ctx)) |
|
goto err; |
|
} |
|
|
|
/* wvalue will be an odd number < 2^window */ |
|
if (!BN_mod_mul_montgomery(r, r, val[wvalue >> 1], mont, ctx)) |
|
goto err; |
|
|
|
/* move the 'window' down further */ |
|
wstart -= wend + 1; |
|
wvalue = 0; |
|
start = 0; |
|
if (wstart < 0) |
|
break; |
|
} |
|
if (!BN_from_montgomery(rr, r, mont, ctx)) |
|
goto err; |
|
ret = 1; |
|
err: |
|
if ((in_mont == NULL) && (mont != NULL)) |
|
BN_MONT_CTX_free(mont); |
|
BN_CTX_end(ctx); |
|
bn_check_top(rr); |
|
return (ret); |
|
} |
|
|
|
/* |
|
* BN_mod_exp_mont_consttime() stores the precomputed powers in a specific |
|
* layout so that accessing any of these table values shows the same access |
|
* pattern as far as cache lines are concerned. The following functions are |
|
* used to transfer a BIGNUM from/to that table. |
|
*/ |
|
|
|
static int MOD_EXP_CTIME_COPY_TO_PREBUF(const BIGNUM *b, int top, |
|
unsigned char *buf, int idx, |
|
int window) |
|
{ |
|
int i, j; |
|
int width = 1 << window; |
|
BN_ULONG *table = (BN_ULONG *)buf; |
|
|
|
if (top > b->top) |
|
top = b->top; /* this works because 'buf' is explicitly |
|
* zeroed */ |
|
for (i = 0, j = idx; i < top; i++, j += width) { |
|
table[j] = b->d[i]; |
|
} |
|
|
|
return 1; |
|
} |
|
|
|
static int MOD_EXP_CTIME_COPY_FROM_PREBUF(BIGNUM *b, int top, |
|
unsigned char *buf, int idx, |
|
int window) |
|
{ |
|
int i, j; |
|
int width = 1 << window; |
|
volatile BN_ULONG *table = (volatile BN_ULONG *)buf; |
|
|
|
if (bn_wexpand(b, top) == NULL) |
|
return 0; |
|
|
|
if (window <= 3) { |
|
for (i = 0; i < top; i++, table += width) { |
|
BN_ULONG acc = 0; |
|
|
|
for (j = 0; j < width; j++) { |
|
acc |= table[j] & |
|
((BN_ULONG)0 - (constant_time_eq_int(j,idx)&1)); |
|
} |
|
|
|
b->d[i] = acc; |
|
} |
|
} else { |
|
int xstride = 1 << (window - 2); |
|
BN_ULONG y0, y1, y2, y3; |
|
|
|
i = idx >> (window - 2); /* equivalent of idx / xstride */ |
|
idx &= xstride - 1; /* equivalent of idx % xstride */ |
|
|
|
y0 = (BN_ULONG)0 - (constant_time_eq_int(i,0)&1); |
|
y1 = (BN_ULONG)0 - (constant_time_eq_int(i,1)&1); |
|
y2 = (BN_ULONG)0 - (constant_time_eq_int(i,2)&1); |
|
y3 = (BN_ULONG)0 - (constant_time_eq_int(i,3)&1); |
|
|
|
for (i = 0; i < top; i++, table += width) { |
|
BN_ULONG acc = 0; |
|
|
|
for (j = 0; j < xstride; j++) { |
|
acc |= ( (table[j + 0 * xstride] & y0) | |
|
(table[j + 1 * xstride] & y1) | |
|
(table[j + 2 * xstride] & y2) | |
|
(table[j + 3 * xstride] & y3) ) |
|
& ((BN_ULONG)0 - (constant_time_eq_int(j,idx)&1)); |
|
} |
|
|
|
b->d[i] = acc; |
|
} |
|
} |
|
|
|
b->top = top; |
|
bn_correct_top(b); |
|
return 1; |
|
} |
|
|
|
/* |
|
* Given a pointer value, compute the next address that is a cache line |
|
* multiple. |
|
*/ |
|
#define MOD_EXP_CTIME_ALIGN(x_) \ |
|
((unsigned char*)(x_) + (MOD_EXP_CTIME_MIN_CACHE_LINE_WIDTH - (((size_t)(x_)) & (MOD_EXP_CTIME_MIN_CACHE_LINE_MASK)))) |
|
|
|
/* |
|
* This variant of BN_mod_exp_mont() uses fixed windows and the special |
|
* precomputation memory layout to limit data-dependency to a minimum to |
|
* protect secret exponents (cf. the hyper-threading timing attacks pointed |
|
* out by Colin Percival, |
|
* http://www.daemonology.net/hyperthreading-considered-harmful/) |
|
*/ |
|
int BN_mod_exp_mont_consttime(BIGNUM *rr, const BIGNUM *a, const BIGNUM *p, |
|
const BIGNUM *m, BN_CTX *ctx, |
|
BN_MONT_CTX *in_mont) |
|
{ |
|
int i, bits, ret = 0, window, wvalue; |
|
int top; |
|
BN_MONT_CTX *mont = NULL; |
|
|
|
int numPowers; |
|
unsigned char *powerbufFree = NULL; |
|
int powerbufLen = 0; |
|
unsigned char *powerbuf = NULL; |
|
BIGNUM tmp, am; |
|
|
|
bn_check_top(a); |
|
bn_check_top(p); |
|
bn_check_top(m); |
|
|
|
if (!BN_is_odd(m)) { |
|
BNerr(BN_F_BN_MOD_EXP_MONT_CONSTTIME, BN_R_CALLED_WITH_EVEN_MODULUS); |
|
return (0); |
|
} |
|
|
|
top = m->top; |
|
|
|
bits = BN_num_bits(p); |
|
if (bits == 0) { |
|
/* x**0 mod 1 is still zero. */ |
|
if (BN_is_one(m)) { |
|
ret = 1; |
|
BN_zero(rr); |
|
} else { |
|
ret = BN_one(rr); |
|
} |
|
return ret; |
|
} |
|
|
|
BN_CTX_start(ctx); |
|
|
|
/* |
|
* Allocate a montgomery context if it was not supplied by the caller. If |
|
* this is not done, things will break in the montgomery part. |
|
*/ |
|
if (in_mont != NULL) |
|
mont = in_mont; |
|
else { |
|
if ((mont = BN_MONT_CTX_new()) == NULL) |
|
goto err; |
|
if (!BN_MONT_CTX_set(mont, m, ctx)) |
|
goto err; |
|
} |
|
|
|
/* Get the window size to use with size of p. */ |
|
window = BN_window_bits_for_ctime_exponent_size(bits); |
|
#if defined(OPENSSL_BN_ASM_MONT5) |
|
if (window == 6 && bits <= 1024) |
|
window = 5; /* ~5% improvement of 2048-bit RSA sign */ |
|
#endif |
|
|
|
/* |
|
* Allocate a buffer large enough to hold all of the pre-computed powers |
|
* of am, am itself and tmp. |
|
*/ |
|
numPowers = 1 << window; |
|
powerbufLen = sizeof(m->d[0]) * (top * numPowers + |
|
((2 * top) > |
|
numPowers ? (2 * top) : numPowers)); |
|
#ifdef alloca |
|
if (powerbufLen < 3072) |
|
powerbufFree = |
|
alloca(powerbufLen + MOD_EXP_CTIME_MIN_CACHE_LINE_WIDTH); |
|
else |
|
#endif |
|
if ((powerbufFree = |
|
(unsigned char *)OPENSSL_malloc(powerbufLen + |
|
MOD_EXP_CTIME_MIN_CACHE_LINE_WIDTH)) |
|
== NULL) |
|
goto err; |
|
|
|
powerbuf = MOD_EXP_CTIME_ALIGN(powerbufFree); |
|
memset(powerbuf, 0, powerbufLen); |
|
|
|
#ifdef alloca |
|
if (powerbufLen < 3072) |
|
powerbufFree = NULL; |
|
#endif |
|
|
|
/* lay down tmp and am right after powers table */ |
|
tmp.d = (BN_ULONG *)(powerbuf + sizeof(m->d[0]) * top * numPowers); |
|
am.d = tmp.d + top; |
|
tmp.top = am.top = 0; |
|
tmp.dmax = am.dmax = top; |
|
tmp.neg = am.neg = 0; |
|
tmp.flags = am.flags = BN_FLG_STATIC_DATA; |
|
|
|
/* prepare a^0 in Montgomery domain */ |
|
#if 1 |
|
if (!BN_to_montgomery(&tmp, BN_value_one(), mont, ctx)) |
|
goto err; |
|
#else |
|
tmp.d[0] = (0 - m->d[0]) & BN_MASK2; /* 2^(top*BN_BITS2) - m */ |
|
for (i = 1; i < top; i++) |
|
tmp.d[i] = (~m->d[i]) & BN_MASK2; |
|
tmp.top = top; |
|
#endif |
|
|
|
/* prepare a^1 in Montgomery domain */ |
|
if (a->neg || BN_ucmp(a, m) >= 0) { |
|
if (!BN_mod(&am, a, m, ctx)) |
|
goto err; |
|
if (!BN_to_montgomery(&am, &am, mont, ctx)) |
|
goto err; |
|
} else if (!BN_to_montgomery(&am, a, mont, ctx)) |
|
goto err; |
|
|
|
#if defined(OPENSSL_BN_ASM_MONT5) |
|
if (window == 5 && top > 1) { |
|
/* |
|
* This optimization uses ideas from http://eprint.iacr.org/2011/239, |
|
* specifically optimization of cache-timing attack countermeasures |
|
* and pre-computation optimization. |
|
*/ |
|
|
|
/* |
|
* Dedicated window==4 case improves 512-bit RSA sign by ~15%, but as |
|
* 512-bit RSA is hardly relevant, we omit it to spare size... |
|
*/ |
|
void bn_mul_mont_gather5(BN_ULONG *rp, const BN_ULONG *ap, |
|
const void *table, const BN_ULONG *np, |
|
const BN_ULONG *n0, int num, int power); |
|
void bn_scatter5(const BN_ULONG *inp, size_t num, |
|
void *table, size_t power); |
|
void bn_gather5(BN_ULONG *out, size_t num, void *table, size_t power); |
|
|
|
BN_ULONG *np = mont->N.d, *n0 = mont->n0; |
|
|
|
/* |
|
* BN_to_montgomery can contaminate words above .top [in |
|
* BN_DEBUG[_DEBUG] build]... |
|
*/ |
|
for (i = am.top; i < top; i++) |
|
am.d[i] = 0; |
|
for (i = tmp.top; i < top; i++) |
|
tmp.d[i] = 0; |
|
|
|
bn_scatter5(tmp.d, top, powerbuf, 0); |
|
bn_scatter5(am.d, am.top, powerbuf, 1); |
|
bn_mul_mont(tmp.d, am.d, am.d, np, n0, top); |
|
bn_scatter5(tmp.d, top, powerbuf, 2); |
|
|
|
# if 0 |
|
for (i = 3; i < 32; i++) { |
|
/* Calculate a^i = a^(i-1) * a */ |
|
bn_mul_mont_gather5(tmp.d, am.d, powerbuf, np, n0, top, i - 1); |
|
bn_scatter5(tmp.d, top, powerbuf, i); |
|
} |
|
# else |
|
/* same as above, but uses squaring for 1/2 of operations */ |
|
for (i = 4; i < 32; i *= 2) { |
|
bn_mul_mont(tmp.d, tmp.d, tmp.d, np, n0, top); |
|
bn_scatter5(tmp.d, top, powerbuf, i); |
|
} |
|
for (i = 3; i < 8; i += 2) { |
|
int j; |
|
bn_mul_mont_gather5(tmp.d, am.d, powerbuf, np, n0, top, i - 1); |
|
bn_scatter5(tmp.d, top, powerbuf, i); |
|
for (j = 2 * i; j < 32; j *= 2) { |
|
bn_mul_mont(tmp.d, tmp.d, tmp.d, np, n0, top); |
|
bn_scatter5(tmp.d, top, powerbuf, j); |
|
} |
|
} |
|
for (; i < 16; i += 2) { |
|
bn_mul_mont_gather5(tmp.d, am.d, powerbuf, np, n0, top, i - 1); |
|
bn_scatter5(tmp.d, top, powerbuf, i); |
|
bn_mul_mont(tmp.d, tmp.d, tmp.d, np, n0, top); |
|
bn_scatter5(tmp.d, top, powerbuf, 2 * i); |
|
} |
|
for (; i < 32; i += 2) { |
|
bn_mul_mont_gather5(tmp.d, am.d, powerbuf, np, n0, top, i - 1); |
|
bn_scatter5(tmp.d, top, powerbuf, i); |
|
} |
|
# endif |
|
bits--; |
|
for (wvalue = 0, i = bits % 5; i >= 0; i--, bits--) |
|
wvalue = (wvalue << 1) + BN_is_bit_set(p, bits); |
|
bn_gather5(tmp.d, top, powerbuf, wvalue); |
|
|
|
/* |
|
* Scan the exponent one window at a time starting from the most |
|
* significant bits. |
|
*/ |
|
while (bits >= 0) { |
|
for (wvalue = 0, i = 0; i < 5; i++, bits--) |
|
wvalue = (wvalue << 1) + BN_is_bit_set(p, bits); |
|
|
|
bn_mul_mont(tmp.d, tmp.d, tmp.d, np, n0, top); |
|
bn_mul_mont(tmp.d, tmp.d, tmp.d, np, n0, top); |
|
bn_mul_mont(tmp.d, tmp.d, tmp.d, np, n0, top); |
|
bn_mul_mont(tmp.d, tmp.d, tmp.d, np, n0, top); |
|
bn_mul_mont(tmp.d, tmp.d, tmp.d, np, n0, top); |
|
bn_mul_mont_gather5(tmp.d, tmp.d, powerbuf, np, n0, top, wvalue); |
|
} |
|
|
|
tmp.top = top; |
|
bn_correct_top(&tmp); |
|
} else |
|
#endif |
|
{ |
|
if (!MOD_EXP_CTIME_COPY_TO_PREBUF(&tmp, top, powerbuf, 0, window)) |
|
goto err; |
|
if (!MOD_EXP_CTIME_COPY_TO_PREBUF(&am, top, powerbuf, 1, window)) |
|
goto err; |
|
|
|
/* |
|
* If the window size is greater than 1, then calculate |
|
* val[i=2..2^winsize-1]. Powers are computed as a*a^(i-1) (even |
|
* powers could instead be computed as (a^(i/2))^2 to use the slight |
|
* performance advantage of sqr over mul). |
|
*/ |
|
if (window > 1) { |
|
if (!BN_mod_mul_montgomery(&tmp, &am, &am, mont, ctx)) |
|
goto err; |
|
if (!MOD_EXP_CTIME_COPY_TO_PREBUF(&tmp, top, powerbuf, 2, |
|
window)) |
|
goto err; |
|
for (i = 3; i < numPowers; i++) { |
|
/* Calculate a^i = a^(i-1) * a */ |
|
if (!BN_mod_mul_montgomery(&tmp, &am, &tmp, mont, ctx)) |
|
goto err; |
|
if (!MOD_EXP_CTIME_COPY_TO_PREBUF(&tmp, top, powerbuf, i, |
|
window)) |
|
goto err; |
|
} |
|
} |
|
|
|
bits--; |
|
for (wvalue = 0, i = bits % window; i >= 0; i--, bits--) |
|
wvalue = (wvalue << 1) + BN_is_bit_set(p, bits); |
|
if (!MOD_EXP_CTIME_COPY_FROM_PREBUF(&tmp, top, powerbuf, wvalue, |
|
window)) |
|
goto err; |
|
|
|
/* |
|
* Scan the exponent one window at a time starting from the most |
|
* significant bits. |
|
*/ |
|
while (bits >= 0) { |
|
wvalue = 0; /* The 'value' of the window */ |
|
|
|
/* Scan the window, squaring the result as we go */ |
|
for (i = 0; i < window; i++, bits--) { |
|
if (!BN_mod_mul_montgomery(&tmp, &tmp, &tmp, mont, ctx)) |
|
goto err; |
|
wvalue = (wvalue << 1) + BN_is_bit_set(p, bits); |
|
} |
|
|
|
/* |
|
* Fetch the appropriate pre-computed value from the pre-buf |
|
*/ |
|
if (!MOD_EXP_CTIME_COPY_FROM_PREBUF(&am, top, powerbuf, wvalue, |
|
window)) |
|
goto err; |
|
|
|
/* Multiply the result into the intermediate result */ |
|
if (!BN_mod_mul_montgomery(&tmp, &tmp, &am, mont, ctx)) |
|
goto err; |
|
} |
|
} |
|
|
|
/* Convert the final result from montgomery to standard format */ |
|
if (!BN_from_montgomery(rr, &tmp, mont, ctx)) |
|
goto err; |
|
ret = 1; |
|
err: |
|
if ((in_mont == NULL) && (mont != NULL)) |
|
BN_MONT_CTX_free(mont); |
|
if (powerbuf != NULL) { |
|
OPENSSL_cleanse(powerbuf, powerbufLen); |
|
if (powerbufFree) |
|
OPENSSL_free(powerbufFree); |
|
} |
|
BN_CTX_end(ctx); |
|
return (ret); |
|
} |
|
|
|
int BN_mod_exp_mont_word(BIGNUM *rr, BN_ULONG a, const BIGNUM *p, |
|
const BIGNUM *m, BN_CTX *ctx, BN_MONT_CTX *in_mont) |
|
{ |
|
BN_MONT_CTX *mont = NULL; |
|
int b, bits, ret = 0; |
|
int r_is_one; |
|
BN_ULONG w, next_w; |
|
BIGNUM *d, *r, *t; |
|
BIGNUM *swap_tmp; |
|
#define BN_MOD_MUL_WORD(r, w, m) \ |
|
(BN_mul_word(r, (w)) && \ |
|
(/* BN_ucmp(r, (m)) < 0 ? 1 :*/ \ |
|
(BN_mod(t, r, m, ctx) && (swap_tmp = r, r = t, t = swap_tmp, 1)))) |
|
/* |
|
* BN_MOD_MUL_WORD is only used with 'w' large, so the BN_ucmp test is |
|
* probably more overhead than always using BN_mod (which uses BN_copy if |
|
* a similar test returns true). |
|
*/ |
|
/* |
|
* We can use BN_mod and do not need BN_nnmod because our accumulator is |
|
* never negative (the result of BN_mod does not depend on the sign of |
|
* the modulus). |
|
*/ |
|
#define BN_TO_MONTGOMERY_WORD(r, w, mont) \ |
|
(BN_set_word(r, (w)) && BN_to_montgomery(r, r, (mont), ctx)) |
|
|
|
if (BN_get_flags(p, BN_FLG_CONSTTIME) != 0) { |
|
/* BN_FLG_CONSTTIME only supported by BN_mod_exp_mont() */ |
|
BNerr(BN_F_BN_MOD_EXP_MONT_WORD, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); |
|
return -1; |
|
} |
|
|
|
bn_check_top(p); |
|
bn_check_top(m); |
|
|
|
if (!BN_is_odd(m)) { |
|
BNerr(BN_F_BN_MOD_EXP_MONT_WORD, BN_R_CALLED_WITH_EVEN_MODULUS); |
|
return (0); |
|
} |
|
if (m->top == 1) |
|
a %= m->d[0]; /* make sure that 'a' is reduced */ |
|
|
|
bits = BN_num_bits(p); |
|
if (bits == 0) { |
|
/* x**0 mod 1 is still zero. */ |
|
if (BN_is_one(m)) { |
|
ret = 1; |
|
BN_zero(rr); |
|
} else { |
|
ret = BN_one(rr); |
|
} |
|
return ret; |
|
} |
|
if (a == 0) { |
|
BN_zero(rr); |
|
ret = 1; |
|
return ret; |
|
} |
|
|
|
BN_CTX_start(ctx); |
|
d = BN_CTX_get(ctx); |
|
r = BN_CTX_get(ctx); |
|
t = BN_CTX_get(ctx); |
|
if (d == NULL || r == NULL || t == NULL) |
|
goto err; |
|
|
|
if (in_mont != NULL) |
|
mont = in_mont; |
|
else { |
|
if ((mont = BN_MONT_CTX_new()) == NULL) |
|
goto err; |
|
if (!BN_MONT_CTX_set(mont, m, ctx)) |
|
goto err; |
|
} |
|
|
|
r_is_one = 1; /* except for Montgomery factor */ |
|
|
|
/* bits-1 >= 0 */ |
|
|
|
/* The result is accumulated in the product r*w. */ |
|
w = a; /* bit 'bits-1' of 'p' is always set */ |
|
for (b = bits - 2; b >= 0; b--) { |
|
/* First, square r*w. */ |
|
next_w = w * w; |
|
if ((next_w / w) != w) { /* overflow */ |
|
if (r_is_one) { |
|
if (!BN_TO_MONTGOMERY_WORD(r, w, mont)) |
|
goto err; |
|
r_is_one = 0; |
|
} else { |
|
if (!BN_MOD_MUL_WORD(r, w, m)) |
|
goto err; |
|
} |
|
next_w = 1; |
|
} |
|
w = next_w; |
|
if (!r_is_one) { |
|
if (!BN_mod_mul_montgomery(r, r, r, mont, ctx)) |
|
goto err; |
|
} |
|
|
|
/* Second, multiply r*w by 'a' if exponent bit is set. */ |
|
if (BN_is_bit_set(p, b)) { |
|
next_w = w * a; |
|
if ((next_w / a) != w) { /* overflow */ |
|
if (r_is_one) { |
|
if (!BN_TO_MONTGOMERY_WORD(r, w, mont)) |
|
goto err; |
|
r_is_one = 0; |
|
} else { |
|
if (!BN_MOD_MUL_WORD(r, w, m)) |
|
goto err; |
|
} |
|
next_w = a; |
|
} |
|
w = next_w; |
|
} |
|
} |
|
|
|
/* Finally, set r:=r*w. */ |
|
if (w != 1) { |
|
if (r_is_one) { |
|
if (!BN_TO_MONTGOMERY_WORD(r, w, mont)) |
|
goto err; |
|
r_is_one = 0; |
|
} else { |
|
if (!BN_MOD_MUL_WORD(r, w, m)) |
|
goto err; |
|
} |
|
} |
|
|
|
if (r_is_one) { /* can happen only if a == 1 */ |
|
if (!BN_one(rr)) |
|
goto err; |
|
} else { |
|
if (!BN_from_montgomery(rr, r, mont, ctx)) |
|
goto err; |
|
} |
|
ret = 1; |
|
err: |
|
if ((in_mont == NULL) && (mont != NULL)) |
|
BN_MONT_CTX_free(mont); |
|
BN_CTX_end(ctx); |
|
bn_check_top(rr); |
|
return (ret); |
|
} |
|
|
|
/* The old fallback, simple version :-) */ |
|
int BN_mod_exp_simple(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, |
|
const BIGNUM *m, BN_CTX *ctx) |
|
{ |
|
int i, j, bits, ret = 0, wstart, wend, window, wvalue; |
|
int start = 1; |
|
BIGNUM *d; |
|
/* Table of variables obtained from 'ctx' */ |
|
BIGNUM *val[TABLE_SIZE]; |
|
|
|
if (BN_get_flags(p, BN_FLG_CONSTTIME) != 0) { |
|
/* BN_FLG_CONSTTIME only supported by BN_mod_exp_mont() */ |
|
BNerr(BN_F_BN_MOD_EXP_SIMPLE, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); |
|
return -1; |
|
} |
|
|
|
bits = BN_num_bits(p); |
|
if (bits == 0) { |
|
/* x**0 mod 1 is still zero. */ |
|
if (BN_is_one(m)) { |
|
ret = 1; |
|
BN_zero(r); |
|
} else { |
|
ret = BN_one(r); |
|
} |
|
return ret; |
|
} |
|
|
|
BN_CTX_start(ctx); |
|
d = BN_CTX_get(ctx); |
|
val[0] = BN_CTX_get(ctx); |
|
if (!d || !val[0]) |
|
goto err; |
|
|
|
if (!BN_nnmod(val[0], a, m, ctx)) |
|
goto err; /* 1 */ |
|
if (BN_is_zero(val[0])) { |
|
BN_zero(r); |
|
ret = 1; |
|
goto err; |
|
} |
|
|
|
window = BN_window_bits_for_exponent_size(bits); |
|
if (window > 1) { |
|
if (!BN_mod_mul(d, val[0], val[0], m, ctx)) |
|
goto err; /* 2 */ |
|
j = 1 << (window - 1); |
|
for (i = 1; i < j; i++) { |
|
if (((val[i] = BN_CTX_get(ctx)) == NULL) || |
|
!BN_mod_mul(val[i], val[i - 1], d, m, ctx)) |
|
goto err; |
|
} |
|
} |
|
|
|
start = 1; /* This is used to avoid multiplication etc |
|
* when there is only the value '1' in the |
|
* buffer. */ |
|
wvalue = 0; /* The 'value' of the window */ |
|
wstart = bits - 1; /* The top bit of the window */ |
|
wend = 0; /* The bottom bit of the window */ |
|
|
|
if (!BN_one(r)) |
|
goto err; |
|
|
|
for (;;) { |
|
if (BN_is_bit_set(p, wstart) == 0) { |
|
if (!start) |
|
if (!BN_mod_mul(r, r, r, m, ctx)) |
|
goto err; |
|
if (wstart == 0) |
|
break; |
|
wstart--; |
|
continue; |
|
} |
|
/* |
|
* We now have wstart on a 'set' bit, we now need to work out how bit |
|
* a window to do. To do this we need to scan forward until the last |
|
* set bit before the end of the window |
|
*/ |
|
j = wstart; |
|
wvalue = 1; |
|
wend = 0; |
|
for (i = 1; i < window; i++) { |
|
if (wstart - i < 0) |
|
break; |
|
if (BN_is_bit_set(p, wstart - i)) { |
|
wvalue <<= (i - wend); |
|
wvalue |= 1; |
|
wend = i; |
|
} |
|
} |
|
|
|
/* wend is the size of the current window */ |
|
j = wend + 1; |
|
/* add the 'bytes above' */ |
|
if (!start) |
|
for (i = 0; i < j; i++) { |
|
if (!BN_mod_mul(r, r, r, m, ctx)) |
|
goto err; |
|
} |
|
|
|
/* wvalue will be an odd number < 2^window */ |
|
if (!BN_mod_mul(r, r, val[wvalue >> 1], m, ctx)) |
|
goto err; |
|
|
|
/* move the 'window' down further */ |
|
wstart -= wend + 1; |
|
wvalue = 0; |
|
start = 0; |
|
if (wstart < 0) |
|
break; |
|
} |
|
ret = 1; |
|
err: |
|
BN_CTX_end(ctx); |
|
bn_check_top(r); |
|
return (ret); |
|
}
|
|
|