You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
477 lines
15 KiB
477 lines
15 KiB
/* crypto/bn/bn_div.c */ |
|
/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com) |
|
* All rights reserved. |
|
* |
|
* This package is an SSL implementation written |
|
* by Eric Young (eay@cryptsoft.com). |
|
* The implementation was written so as to conform with Netscapes SSL. |
|
* |
|
* This library is free for commercial and non-commercial use as long as |
|
* the following conditions are aheared to. The following conditions |
|
* apply to all code found in this distribution, be it the RC4, RSA, |
|
* lhash, DES, etc., code; not just the SSL code. The SSL documentation |
|
* included with this distribution is covered by the same copyright terms |
|
* except that the holder is Tim Hudson (tjh@cryptsoft.com). |
|
* |
|
* Copyright remains Eric Young's, and as such any Copyright notices in |
|
* the code are not to be removed. |
|
* If this package is used in a product, Eric Young should be given attribution |
|
* as the author of the parts of the library used. |
|
* This can be in the form of a textual message at program startup or |
|
* in documentation (online or textual) provided with the package. |
|
* |
|
* Redistribution and use in source and binary forms, with or without |
|
* modification, are permitted provided that the following conditions |
|
* are met: |
|
* 1. Redistributions of source code must retain the copyright |
|
* notice, this list of conditions and the following disclaimer. |
|
* 2. Redistributions in binary form must reproduce the above copyright |
|
* notice, this list of conditions and the following disclaimer in the |
|
* documentation and/or other materials provided with the distribution. |
|
* 3. All advertising materials mentioning features or use of this software |
|
* must display the following acknowledgement: |
|
* "This product includes cryptographic software written by |
|
* Eric Young (eay@cryptsoft.com)" |
|
* The word 'cryptographic' can be left out if the rouines from the library |
|
* being used are not cryptographic related :-). |
|
* 4. If you include any Windows specific code (or a derivative thereof) from |
|
* the apps directory (application code) you must include an acknowledgement: |
|
* "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" |
|
* |
|
* THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND |
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE |
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL |
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS |
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY |
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF |
|
* SUCH DAMAGE. |
|
* |
|
* The licence and distribution terms for any publically available version or |
|
* derivative of this code cannot be changed. i.e. this code cannot simply be |
|
* copied and put under another distribution licence |
|
* [including the GNU Public Licence.] |
|
*/ |
|
|
|
#include <stdio.h> |
|
#include <openssl/bn.h> |
|
#include "cryptlib.h" |
|
#include "bn_lcl.h" |
|
|
|
/* The old slow way */ |
|
#if 0 |
|
int BN_div(BIGNUM *dv, BIGNUM *rem, const BIGNUM *m, const BIGNUM *d, |
|
BN_CTX *ctx) |
|
{ |
|
int i, nm, nd; |
|
int ret = 0; |
|
BIGNUM *D; |
|
|
|
bn_check_top(m); |
|
bn_check_top(d); |
|
if (BN_is_zero(d)) { |
|
BNerr(BN_F_BN_DIV, BN_R_DIV_BY_ZERO); |
|
return (0); |
|
} |
|
|
|
if (BN_ucmp(m, d) < 0) { |
|
if (rem != NULL) { |
|
if (BN_copy(rem, m) == NULL) |
|
return (0); |
|
} |
|
if (dv != NULL) |
|
BN_zero(dv); |
|
return (1); |
|
} |
|
|
|
BN_CTX_start(ctx); |
|
D = BN_CTX_get(ctx); |
|
if (dv == NULL) |
|
dv = BN_CTX_get(ctx); |
|
if (rem == NULL) |
|
rem = BN_CTX_get(ctx); |
|
if (D == NULL || dv == NULL || rem == NULL) |
|
goto end; |
|
|
|
nd = BN_num_bits(d); |
|
nm = BN_num_bits(m); |
|
if (BN_copy(D, d) == NULL) |
|
goto end; |
|
if (BN_copy(rem, m) == NULL) |
|
goto end; |
|
|
|
/* |
|
* The next 2 are needed so we can do a dv->d[0]|=1 later since |
|
* BN_lshift1 will only work once there is a value :-) |
|
*/ |
|
BN_zero(dv); |
|
if (bn_wexpand(dv, 1) == NULL) |
|
goto end; |
|
dv->top = 1; |
|
|
|
if (!BN_lshift(D, D, nm - nd)) |
|
goto end; |
|
for (i = nm - nd; i >= 0; i--) { |
|
if (!BN_lshift1(dv, dv)) |
|
goto end; |
|
if (BN_ucmp(rem, D) >= 0) { |
|
dv->d[0] |= 1; |
|
if (!BN_usub(rem, rem, D)) |
|
goto end; |
|
} |
|
/* CAN IMPROVE (and have now :=) */ |
|
if (!BN_rshift1(D, D)) |
|
goto end; |
|
} |
|
rem->neg = BN_is_zero(rem) ? 0 : m->neg; |
|
dv->neg = m->neg ^ d->neg; |
|
ret = 1; |
|
end: |
|
BN_CTX_end(ctx); |
|
return (ret); |
|
} |
|
|
|
#else |
|
|
|
# if !defined(OPENSSL_NO_ASM) && !defined(OPENSSL_NO_INLINE_ASM) \ |
|
&& !defined(PEDANTIC) && !defined(BN_DIV3W) |
|
# if defined(__GNUC__) && __GNUC__>=2 |
|
# if defined(__i386) || defined (__i386__) |
|
/*- |
|
* There were two reasons for implementing this template: |
|
* - GNU C generates a call to a function (__udivdi3 to be exact) |
|
* in reply to ((((BN_ULLONG)n0)<<BN_BITS2)|n1)/d0 (I fail to |
|
* understand why...); |
|
* - divl doesn't only calculate quotient, but also leaves |
|
* remainder in %edx which we can definitely use here:-) |
|
* |
|
* <appro@fy.chalmers.se> |
|
*/ |
|
# undef bn_div_words |
|
# define bn_div_words(n0,n1,d0) \ |
|
({ asm volatile ( \ |
|
"divl %4" \ |
|
: "=a"(q), "=d"(rem) \ |
|
: "a"(n1), "d"(n0), "g"(d0) \ |
|
: "cc"); \ |
|
q; \ |
|
}) |
|
# define REMAINDER_IS_ALREADY_CALCULATED |
|
# elif defined(__x86_64) && defined(SIXTY_FOUR_BIT_LONG) |
|
/* |
|
* Same story here, but it's 128-bit by 64-bit division. Wow! |
|
* <appro@fy.chalmers.se> |
|
*/ |
|
# undef bn_div_words |
|
# define bn_div_words(n0,n1,d0) \ |
|
({ asm volatile ( \ |
|
"divq %4" \ |
|
: "=a"(q), "=d"(rem) \ |
|
: "a"(n1), "d"(n0), "g"(d0) \ |
|
: "cc"); \ |
|
q; \ |
|
}) |
|
# define REMAINDER_IS_ALREADY_CALCULATED |
|
# endif /* __<cpu> */ |
|
# endif /* __GNUC__ */ |
|
# endif /* OPENSSL_NO_ASM */ |
|
|
|
/*- |
|
* BN_div computes dv := num / divisor, rounding towards |
|
* zero, and sets up rm such that dv*divisor + rm = num holds. |
|
* Thus: |
|
* dv->neg == num->neg ^ divisor->neg (unless the result is zero) |
|
* rm->neg == num->neg (unless the remainder is zero) |
|
* If 'dv' or 'rm' is NULL, the respective value is not returned. |
|
*/ |
|
int BN_div(BIGNUM *dv, BIGNUM *rm, const BIGNUM *num, const BIGNUM *divisor, |
|
BN_CTX *ctx) |
|
{ |
|
int norm_shift, i, loop; |
|
BIGNUM *tmp, wnum, *snum, *sdiv, *res; |
|
BN_ULONG *resp, *wnump; |
|
BN_ULONG d0, d1; |
|
int num_n, div_n; |
|
int no_branch = 0; |
|
|
|
/* |
|
* Invalid zero-padding would have particularly bad consequences so don't |
|
* just rely on bn_check_top() here (bn_check_top() works only for |
|
* BN_DEBUG builds) |
|
*/ |
|
if ((num->top > 0 && num->d[num->top - 1] == 0) || |
|
(divisor->top > 0 && divisor->d[divisor->top - 1] == 0)) { |
|
BNerr(BN_F_BN_DIV, BN_R_NOT_INITIALIZED); |
|
return 0; |
|
} |
|
|
|
bn_check_top(num); |
|
bn_check_top(divisor); |
|
|
|
if ((BN_get_flags(num, BN_FLG_CONSTTIME) != 0) |
|
|| (BN_get_flags(divisor, BN_FLG_CONSTTIME) != 0)) { |
|
no_branch = 1; |
|
} |
|
|
|
bn_check_top(dv); |
|
bn_check_top(rm); |
|
/*- bn_check_top(num); *//* |
|
* 'num' has been checked already |
|
*/ |
|
/*- bn_check_top(divisor); *//* |
|
* 'divisor' has been checked already |
|
*/ |
|
|
|
if (BN_is_zero(divisor)) { |
|
BNerr(BN_F_BN_DIV, BN_R_DIV_BY_ZERO); |
|
return (0); |
|
} |
|
|
|
if (!no_branch && BN_ucmp(num, divisor) < 0) { |
|
if (rm != NULL) { |
|
if (BN_copy(rm, num) == NULL) |
|
return (0); |
|
} |
|
if (dv != NULL) |
|
BN_zero(dv); |
|
return (1); |
|
} |
|
|
|
BN_CTX_start(ctx); |
|
tmp = BN_CTX_get(ctx); |
|
snum = BN_CTX_get(ctx); |
|
sdiv = BN_CTX_get(ctx); |
|
if (dv == NULL) |
|
res = BN_CTX_get(ctx); |
|
else |
|
res = dv; |
|
if (sdiv == NULL || res == NULL || tmp == NULL || snum == NULL) |
|
goto err; |
|
|
|
/* First we normalise the numbers */ |
|
norm_shift = BN_BITS2 - ((BN_num_bits(divisor)) % BN_BITS2); |
|
if (!(BN_lshift(sdiv, divisor, norm_shift))) |
|
goto err; |
|
sdiv->neg = 0; |
|
norm_shift += BN_BITS2; |
|
if (!(BN_lshift(snum, num, norm_shift))) |
|
goto err; |
|
snum->neg = 0; |
|
|
|
if (no_branch) { |
|
/* |
|
* Since we don't know whether snum is larger than sdiv, we pad snum |
|
* with enough zeroes without changing its value. |
|
*/ |
|
if (snum->top <= sdiv->top + 1) { |
|
if (bn_wexpand(snum, sdiv->top + 2) == NULL) |
|
goto err; |
|
for (i = snum->top; i < sdiv->top + 2; i++) |
|
snum->d[i] = 0; |
|
snum->top = sdiv->top + 2; |
|
} else { |
|
if (bn_wexpand(snum, snum->top + 1) == NULL) |
|
goto err; |
|
snum->d[snum->top] = 0; |
|
snum->top++; |
|
} |
|
} |
|
|
|
div_n = sdiv->top; |
|
num_n = snum->top; |
|
loop = num_n - div_n; |
|
/* |
|
* Lets setup a 'window' into snum This is the part that corresponds to |
|
* the current 'area' being divided |
|
*/ |
|
wnum.neg = 0; |
|
wnum.d = &(snum->d[loop]); |
|
wnum.top = div_n; |
|
/* |
|
* only needed when BN_ucmp messes up the values between top and max |
|
*/ |
|
wnum.dmax = snum->dmax - loop; /* so we don't step out of bounds */ |
|
|
|
/* Get the top 2 words of sdiv */ |
|
/* div_n=sdiv->top; */ |
|
d0 = sdiv->d[div_n - 1]; |
|
d1 = (div_n == 1) ? 0 : sdiv->d[div_n - 2]; |
|
|
|
/* pointer to the 'top' of snum */ |
|
wnump = &(snum->d[num_n - 1]); |
|
|
|
/* Setup to 'res' */ |
|
res->neg = (num->neg ^ divisor->neg); |
|
if (!bn_wexpand(res, (loop + 1))) |
|
goto err; |
|
res->top = loop - no_branch; |
|
resp = &(res->d[loop - 1]); |
|
|
|
/* space for temp */ |
|
if (!bn_wexpand(tmp, (div_n + 1))) |
|
goto err; |
|
|
|
if (!no_branch) { |
|
if (BN_ucmp(&wnum, sdiv) >= 0) { |
|
/* |
|
* If BN_DEBUG_RAND is defined BN_ucmp changes (via bn_pollute) |
|
* the const bignum arguments => clean the values between top and |
|
* max again |
|
*/ |
|
bn_clear_top2max(&wnum); |
|
bn_sub_words(wnum.d, wnum.d, sdiv->d, div_n); |
|
*resp = 1; |
|
} else |
|
res->top--; |
|
} |
|
|
|
/* |
|
* if res->top == 0 then clear the neg value otherwise decrease the resp |
|
* pointer |
|
*/ |
|
if (res->top == 0) |
|
res->neg = 0; |
|
else |
|
resp--; |
|
|
|
for (i = 0; i < loop - 1; i++, wnump--, resp--) { |
|
BN_ULONG q, l0; |
|
/* |
|
* the first part of the loop uses the top two words of snum and sdiv |
|
* to calculate a BN_ULONG q such that | wnum - sdiv * q | < sdiv |
|
*/ |
|
# if defined(BN_DIV3W) && !defined(OPENSSL_NO_ASM) |
|
BN_ULONG bn_div_3_words(BN_ULONG *, BN_ULONG, BN_ULONG); |
|
q = bn_div_3_words(wnump, d1, d0); |
|
# else |
|
BN_ULONG n0, n1, rem = 0; |
|
|
|
n0 = wnump[0]; |
|
n1 = wnump[-1]; |
|
if (n0 == d0) |
|
q = BN_MASK2; |
|
else { /* n0 < d0 */ |
|
|
|
# ifdef BN_LLONG |
|
BN_ULLONG t2; |
|
|
|
# if defined(BN_LLONG) && defined(BN_DIV2W) && !defined(bn_div_words) |
|
q = (BN_ULONG)(((((BN_ULLONG) n0) << BN_BITS2) | n1) / d0); |
|
# else |
|
q = bn_div_words(n0, n1, d0); |
|
# ifdef BN_DEBUG_LEVITTE |
|
fprintf(stderr, "DEBUG: bn_div_words(0x%08X,0x%08X,0x%08\ |
|
X) -> 0x%08X\n", n0, n1, d0, q); |
|
# endif |
|
# endif |
|
|
|
# ifndef REMAINDER_IS_ALREADY_CALCULATED |
|
/* |
|
* rem doesn't have to be BN_ULLONG. The least we |
|
* know it's less that d0, isn't it? |
|
*/ |
|
rem = (n1 - q * d0) & BN_MASK2; |
|
# endif |
|
t2 = (BN_ULLONG) d1 *q; |
|
|
|
for (;;) { |
|
if (t2 <= ((((BN_ULLONG) rem) << BN_BITS2) | wnump[-2])) |
|
break; |
|
q--; |
|
rem += d0; |
|
if (rem < d0) |
|
break; /* don't let rem overflow */ |
|
t2 -= d1; |
|
} |
|
# else /* !BN_LLONG */ |
|
BN_ULONG t2l, t2h; |
|
|
|
q = bn_div_words(n0, n1, d0); |
|
# ifdef BN_DEBUG_LEVITTE |
|
fprintf(stderr, "DEBUG: bn_div_words(0x%08X,0x%08X,0x%08\ |
|
X) -> 0x%08X\n", n0, n1, d0, q); |
|
# endif |
|
# ifndef REMAINDER_IS_ALREADY_CALCULATED |
|
rem = (n1 - q * d0) & BN_MASK2; |
|
# endif |
|
|
|
# if defined(BN_UMULT_LOHI) |
|
BN_UMULT_LOHI(t2l, t2h, d1, q); |
|
# elif defined(BN_UMULT_HIGH) |
|
t2l = d1 * q; |
|
t2h = BN_UMULT_HIGH(d1, q); |
|
# else |
|
{ |
|
BN_ULONG ql, qh; |
|
t2l = LBITS(d1); |
|
t2h = HBITS(d1); |
|
ql = LBITS(q); |
|
qh = HBITS(q); |
|
mul64(t2l, t2h, ql, qh); /* t2=(BN_ULLONG)d1*q; */ |
|
} |
|
# endif |
|
|
|
for (;;) { |
|
if ((t2h < rem) || ((t2h == rem) && (t2l <= wnump[-2]))) |
|
break; |
|
q--; |
|
rem += d0; |
|
if (rem < d0) |
|
break; /* don't let rem overflow */ |
|
if (t2l < d1) |
|
t2h--; |
|
t2l -= d1; |
|
} |
|
# endif /* !BN_LLONG */ |
|
} |
|
# endif /* !BN_DIV3W */ |
|
|
|
l0 = bn_mul_words(tmp->d, sdiv->d, div_n, q); |
|
tmp->d[div_n] = l0; |
|
wnum.d--; |
|
/* |
|
* ingore top values of the bignums just sub the two BN_ULONG arrays |
|
* with bn_sub_words |
|
*/ |
|
if (bn_sub_words(wnum.d, wnum.d, tmp->d, div_n + 1)) { |
|
/* |
|
* Note: As we have considered only the leading two BN_ULONGs in |
|
* the calculation of q, sdiv * q might be greater than wnum (but |
|
* then (q-1) * sdiv is less or equal than wnum) |
|
*/ |
|
q--; |
|
if (bn_add_words(wnum.d, wnum.d, sdiv->d, div_n)) |
|
/* |
|
* we can't have an overflow here (assuming that q != 0, but |
|
* if q == 0 then tmp is zero anyway) |
|
*/ |
|
(*wnump)++; |
|
} |
|
/* store part of the result */ |
|
*resp = q; |
|
} |
|
bn_correct_top(snum); |
|
if (rm != NULL) { |
|
/* |
|
* Keep a copy of the neg flag in num because if rm==num BN_rshift() |
|
* will overwrite it. |
|
*/ |
|
int neg = num->neg; |
|
BN_rshift(rm, snum, norm_shift); |
|
if (!BN_is_zero(rm)) |
|
rm->neg = neg; |
|
bn_check_top(rm); |
|
} |
|
if (no_branch) |
|
bn_correct_top(res); |
|
BN_CTX_end(ctx); |
|
return (1); |
|
err: |
|
bn_check_top(rm); |
|
BN_CTX_end(ctx); |
|
return (0); |
|
} |
|
#endif
|
|
|