You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
477 lines
15 KiB
477 lines
15 KiB
/* |
|
* jcdctmgr.c |
|
* |
|
* Copyright (C) 1994-1996, Thomas G. Lane. |
|
* Modified 2003-2013 by Guido Vollbeding. |
|
* This file is part of the Independent JPEG Group's software. |
|
* For conditions of distribution and use, see the accompanying README file. |
|
* |
|
* This file contains the forward-DCT management logic. |
|
* This code selects a particular DCT implementation to be used, |
|
* and it performs related housekeeping chores including coefficient |
|
* quantization. |
|
*/ |
|
|
|
#define JPEG_INTERNALS |
|
#include "jinclude.h" |
|
#include "jpeglib.h" |
|
#include "jdct.h" /* Private declarations for DCT subsystem */ |
|
|
|
|
|
/* Private subobject for this module */ |
|
|
|
typedef struct { |
|
struct jpeg_forward_dct pub; /* public fields */ |
|
|
|
/* Pointer to the DCT routine actually in use */ |
|
forward_DCT_method_ptr do_dct[MAX_COMPONENTS]; |
|
|
|
#ifdef DCT_FLOAT_SUPPORTED |
|
/* Same as above for the floating-point case. */ |
|
float_DCT_method_ptr do_float_dct[MAX_COMPONENTS]; |
|
#endif |
|
} my_fdct_controller; |
|
|
|
typedef my_fdct_controller * my_fdct_ptr; |
|
|
|
|
|
/* The allocated post-DCT divisor tables -- big enough for any |
|
* supported variant and not identical to the quant table entries, |
|
* because of scaling (especially for an unnormalized DCT) -- |
|
* are pointed to by dct_table in the per-component comp_info |
|
* structures. Each table is given in normal array order. |
|
*/ |
|
|
|
typedef union { |
|
DCTELEM int_array[DCTSIZE2]; |
|
#ifdef DCT_FLOAT_SUPPORTED |
|
FAST_FLOAT float_array[DCTSIZE2]; |
|
#endif |
|
} divisor_table; |
|
|
|
|
|
/* The current scaled-DCT routines require ISLOW-style divisor tables, |
|
* so be sure to compile that code if either ISLOW or SCALING is requested. |
|
*/ |
|
#ifdef DCT_ISLOW_SUPPORTED |
|
#define PROVIDE_ISLOW_TABLES |
|
#else |
|
#ifdef DCT_SCALING_SUPPORTED |
|
#define PROVIDE_ISLOW_TABLES |
|
#endif |
|
#endif |
|
|
|
|
|
/* |
|
* Perform forward DCT on one or more blocks of a component. |
|
* |
|
* The input samples are taken from the sample_data[] array starting at |
|
* position start_row/start_col, and moving to the right for any additional |
|
* blocks. The quantized coefficients are returned in coef_blocks[]. |
|
*/ |
|
|
|
METHODDEF(void) |
|
forward_DCT (j_compress_ptr cinfo, jpeg_component_info * compptr, |
|
JSAMPARRAY sample_data, JBLOCKROW coef_blocks, |
|
JDIMENSION start_row, JDIMENSION start_col, |
|
JDIMENSION num_blocks) |
|
/* This version is used for integer DCT implementations. */ |
|
{ |
|
/* This routine is heavily used, so it's worth coding it tightly. */ |
|
my_fdct_ptr fdct = (my_fdct_ptr) cinfo->fdct; |
|
forward_DCT_method_ptr do_dct = fdct->do_dct[compptr->component_index]; |
|
DCTELEM * divisors = (DCTELEM *) compptr->dct_table; |
|
DCTELEM workspace[DCTSIZE2]; /* work area for FDCT subroutine */ |
|
JDIMENSION bi; |
|
|
|
sample_data += start_row; /* fold in the vertical offset once */ |
|
|
|
for (bi = 0; bi < num_blocks; bi++, start_col += compptr->DCT_h_scaled_size) { |
|
/* Perform the DCT */ |
|
(*do_dct) (workspace, sample_data, start_col); |
|
|
|
/* Quantize/descale the coefficients, and store into coef_blocks[] */ |
|
{ register DCTELEM temp, qval; |
|
register int i; |
|
register JCOEFPTR output_ptr = coef_blocks[bi]; |
|
|
|
for (i = 0; i < DCTSIZE2; i++) { |
|
qval = divisors[i]; |
|
temp = workspace[i]; |
|
/* Divide the coefficient value by qval, ensuring proper rounding. |
|
* Since C does not specify the direction of rounding for negative |
|
* quotients, we have to force the dividend positive for portability. |
|
* |
|
* In most files, at least half of the output values will be zero |
|
* (at default quantization settings, more like three-quarters...) |
|
* so we should ensure that this case is fast. On many machines, |
|
* a comparison is enough cheaper than a divide to make a special test |
|
* a win. Since both inputs will be nonnegative, we need only test |
|
* for a < b to discover whether a/b is 0. |
|
* If your machine's division is fast enough, define FAST_DIVIDE. |
|
*/ |
|
#ifdef FAST_DIVIDE |
|
#define DIVIDE_BY(a,b) a /= b |
|
#else |
|
#define DIVIDE_BY(a,b) if (a >= b) a /= b; else a = 0 |
|
#endif |
|
if (temp < 0) { |
|
temp = -temp; |
|
temp += qval>>1; /* for rounding */ |
|
DIVIDE_BY(temp, qval); |
|
temp = -temp; |
|
} else { |
|
temp += qval>>1; /* for rounding */ |
|
DIVIDE_BY(temp, qval); |
|
} |
|
output_ptr[i] = (JCOEF) temp; |
|
} |
|
} |
|
} |
|
} |
|
|
|
|
|
#ifdef DCT_FLOAT_SUPPORTED |
|
|
|
METHODDEF(void) |
|
forward_DCT_float (j_compress_ptr cinfo, jpeg_component_info * compptr, |
|
JSAMPARRAY sample_data, JBLOCKROW coef_blocks, |
|
JDIMENSION start_row, JDIMENSION start_col, |
|
JDIMENSION num_blocks) |
|
/* This version is used for floating-point DCT implementations. */ |
|
{ |
|
/* This routine is heavily used, so it's worth coding it tightly. */ |
|
my_fdct_ptr fdct = (my_fdct_ptr) cinfo->fdct; |
|
float_DCT_method_ptr do_dct = fdct->do_float_dct[compptr->component_index]; |
|
FAST_FLOAT * divisors = (FAST_FLOAT *) compptr->dct_table; |
|
FAST_FLOAT workspace[DCTSIZE2]; /* work area for FDCT subroutine */ |
|
JDIMENSION bi; |
|
|
|
sample_data += start_row; /* fold in the vertical offset once */ |
|
|
|
for (bi = 0; bi < num_blocks; bi++, start_col += compptr->DCT_h_scaled_size) { |
|
/* Perform the DCT */ |
|
(*do_dct) (workspace, sample_data, start_col); |
|
|
|
/* Quantize/descale the coefficients, and store into coef_blocks[] */ |
|
{ register FAST_FLOAT temp; |
|
register int i; |
|
register JCOEFPTR output_ptr = coef_blocks[bi]; |
|
|
|
for (i = 0; i < DCTSIZE2; i++) { |
|
/* Apply the quantization and scaling factor */ |
|
temp = workspace[i] * divisors[i]; |
|
/* Round to nearest integer. |
|
* Since C does not specify the direction of rounding for negative |
|
* quotients, we have to force the dividend positive for portability. |
|
* The maximum coefficient size is +-16K (for 12-bit data), so this |
|
* code should work for either 16-bit or 32-bit ints. |
|
*/ |
|
output_ptr[i] = (JCOEF) ((int) (temp + (FAST_FLOAT) 16384.5) - 16384); |
|
} |
|
} |
|
} |
|
} |
|
|
|
#endif /* DCT_FLOAT_SUPPORTED */ |
|
|
|
|
|
/* |
|
* Initialize for a processing pass. |
|
* Verify that all referenced Q-tables are present, and set up |
|
* the divisor table for each one. |
|
* In the current implementation, DCT of all components is done during |
|
* the first pass, even if only some components will be output in the |
|
* first scan. Hence all components should be examined here. |
|
*/ |
|
|
|
METHODDEF(void) |
|
start_pass_fdctmgr (j_compress_ptr cinfo) |
|
{ |
|
my_fdct_ptr fdct = (my_fdct_ptr) cinfo->fdct; |
|
int ci, qtblno, i; |
|
jpeg_component_info *compptr; |
|
int method = 0; |
|
JQUANT_TBL * qtbl; |
|
DCTELEM * dtbl; |
|
|
|
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; |
|
ci++, compptr++) { |
|
/* Select the proper DCT routine for this component's scaling */ |
|
switch ((compptr->DCT_h_scaled_size << 8) + compptr->DCT_v_scaled_size) { |
|
#ifdef DCT_SCALING_SUPPORTED |
|
case ((1 << 8) + 1): |
|
fdct->do_dct[ci] = jpeg_fdct_1x1; |
|
method = JDCT_ISLOW; /* jfdctint uses islow-style table */ |
|
break; |
|
case ((2 << 8) + 2): |
|
fdct->do_dct[ci] = jpeg_fdct_2x2; |
|
method = JDCT_ISLOW; /* jfdctint uses islow-style table */ |
|
break; |
|
case ((3 << 8) + 3): |
|
fdct->do_dct[ci] = jpeg_fdct_3x3; |
|
method = JDCT_ISLOW; /* jfdctint uses islow-style table */ |
|
break; |
|
case ((4 << 8) + 4): |
|
fdct->do_dct[ci] = jpeg_fdct_4x4; |
|
method = JDCT_ISLOW; /* jfdctint uses islow-style table */ |
|
break; |
|
case ((5 << 8) + 5): |
|
fdct->do_dct[ci] = jpeg_fdct_5x5; |
|
method = JDCT_ISLOW; /* jfdctint uses islow-style table */ |
|
break; |
|
case ((6 << 8) + 6): |
|
fdct->do_dct[ci] = jpeg_fdct_6x6; |
|
method = JDCT_ISLOW; /* jfdctint uses islow-style table */ |
|
break; |
|
case ((7 << 8) + 7): |
|
fdct->do_dct[ci] = jpeg_fdct_7x7; |
|
method = JDCT_ISLOW; /* jfdctint uses islow-style table */ |
|
break; |
|
case ((9 << 8) + 9): |
|
fdct->do_dct[ci] = jpeg_fdct_9x9; |
|
method = JDCT_ISLOW; /* jfdctint uses islow-style table */ |
|
break; |
|
case ((10 << 8) + 10): |
|
fdct->do_dct[ci] = jpeg_fdct_10x10; |
|
method = JDCT_ISLOW; /* jfdctint uses islow-style table */ |
|
break; |
|
case ((11 << 8) + 11): |
|
fdct->do_dct[ci] = jpeg_fdct_11x11; |
|
method = JDCT_ISLOW; /* jfdctint uses islow-style table */ |
|
break; |
|
case ((12 << 8) + 12): |
|
fdct->do_dct[ci] = jpeg_fdct_12x12; |
|
method = JDCT_ISLOW; /* jfdctint uses islow-style table */ |
|
break; |
|
case ((13 << 8) + 13): |
|
fdct->do_dct[ci] = jpeg_fdct_13x13; |
|
method = JDCT_ISLOW; /* jfdctint uses islow-style table */ |
|
break; |
|
case ((14 << 8) + 14): |
|
fdct->do_dct[ci] = jpeg_fdct_14x14; |
|
method = JDCT_ISLOW; /* jfdctint uses islow-style table */ |
|
break; |
|
case ((15 << 8) + 15): |
|
fdct->do_dct[ci] = jpeg_fdct_15x15; |
|
method = JDCT_ISLOW; /* jfdctint uses islow-style table */ |
|
break; |
|
case ((16 << 8) + 16): |
|
fdct->do_dct[ci] = jpeg_fdct_16x16; |
|
method = JDCT_ISLOW; /* jfdctint uses islow-style table */ |
|
break; |
|
case ((16 << 8) + 8): |
|
fdct->do_dct[ci] = jpeg_fdct_16x8; |
|
method = JDCT_ISLOW; /* jfdctint uses islow-style table */ |
|
break; |
|
case ((14 << 8) + 7): |
|
fdct->do_dct[ci] = jpeg_fdct_14x7; |
|
method = JDCT_ISLOW; /* jfdctint uses islow-style table */ |
|
break; |
|
case ((12 << 8) + 6): |
|
fdct->do_dct[ci] = jpeg_fdct_12x6; |
|
method = JDCT_ISLOW; /* jfdctint uses islow-style table */ |
|
break; |
|
case ((10 << 8) + 5): |
|
fdct->do_dct[ci] = jpeg_fdct_10x5; |
|
method = JDCT_ISLOW; /* jfdctint uses islow-style table */ |
|
break; |
|
case ((8 << 8) + 4): |
|
fdct->do_dct[ci] = jpeg_fdct_8x4; |
|
method = JDCT_ISLOW; /* jfdctint uses islow-style table */ |
|
break; |
|
case ((6 << 8) + 3): |
|
fdct->do_dct[ci] = jpeg_fdct_6x3; |
|
method = JDCT_ISLOW; /* jfdctint uses islow-style table */ |
|
break; |
|
case ((4 << 8) + 2): |
|
fdct->do_dct[ci] = jpeg_fdct_4x2; |
|
method = JDCT_ISLOW; /* jfdctint uses islow-style table */ |
|
break; |
|
case ((2 << 8) + 1): |
|
fdct->do_dct[ci] = jpeg_fdct_2x1; |
|
method = JDCT_ISLOW; /* jfdctint uses islow-style table */ |
|
break; |
|
case ((8 << 8) + 16): |
|
fdct->do_dct[ci] = jpeg_fdct_8x16; |
|
method = JDCT_ISLOW; /* jfdctint uses islow-style table */ |
|
break; |
|
case ((7 << 8) + 14): |
|
fdct->do_dct[ci] = jpeg_fdct_7x14; |
|
method = JDCT_ISLOW; /* jfdctint uses islow-style table */ |
|
break; |
|
case ((6 << 8) + 12): |
|
fdct->do_dct[ci] = jpeg_fdct_6x12; |
|
method = JDCT_ISLOW; /* jfdctint uses islow-style table */ |
|
break; |
|
case ((5 << 8) + 10): |
|
fdct->do_dct[ci] = jpeg_fdct_5x10; |
|
method = JDCT_ISLOW; /* jfdctint uses islow-style table */ |
|
break; |
|
case ((4 << 8) + 8): |
|
fdct->do_dct[ci] = jpeg_fdct_4x8; |
|
method = JDCT_ISLOW; /* jfdctint uses islow-style table */ |
|
break; |
|
case ((3 << 8) + 6): |
|
fdct->do_dct[ci] = jpeg_fdct_3x6; |
|
method = JDCT_ISLOW; /* jfdctint uses islow-style table */ |
|
break; |
|
case ((2 << 8) + 4): |
|
fdct->do_dct[ci] = jpeg_fdct_2x4; |
|
method = JDCT_ISLOW; /* jfdctint uses islow-style table */ |
|
break; |
|
case ((1 << 8) + 2): |
|
fdct->do_dct[ci] = jpeg_fdct_1x2; |
|
method = JDCT_ISLOW; /* jfdctint uses islow-style table */ |
|
break; |
|
#endif |
|
case ((DCTSIZE << 8) + DCTSIZE): |
|
switch (cinfo->dct_method) { |
|
#ifdef DCT_ISLOW_SUPPORTED |
|
case JDCT_ISLOW: |
|
fdct->do_dct[ci] = jpeg_fdct_islow; |
|
method = JDCT_ISLOW; |
|
break; |
|
#endif |
|
#ifdef DCT_IFAST_SUPPORTED |
|
case JDCT_IFAST: |
|
fdct->do_dct[ci] = jpeg_fdct_ifast; |
|
method = JDCT_IFAST; |
|
break; |
|
#endif |
|
#ifdef DCT_FLOAT_SUPPORTED |
|
case JDCT_FLOAT: |
|
fdct->do_float_dct[ci] = jpeg_fdct_float; |
|
method = JDCT_FLOAT; |
|
break; |
|
#endif |
|
default: |
|
ERREXIT(cinfo, JERR_NOT_COMPILED); |
|
break; |
|
} |
|
break; |
|
default: |
|
ERREXIT2(cinfo, JERR_BAD_DCTSIZE, |
|
compptr->DCT_h_scaled_size, compptr->DCT_v_scaled_size); |
|
break; |
|
} |
|
qtblno = compptr->quant_tbl_no; |
|
/* Make sure specified quantization table is present */ |
|
if (qtblno < 0 || qtblno >= NUM_QUANT_TBLS || |
|
cinfo->quant_tbl_ptrs[qtblno] == NULL) |
|
ERREXIT1(cinfo, JERR_NO_QUANT_TABLE, qtblno); |
|
qtbl = cinfo->quant_tbl_ptrs[qtblno]; |
|
/* Create divisor table from quant table */ |
|
switch (method) { |
|
#ifdef PROVIDE_ISLOW_TABLES |
|
case JDCT_ISLOW: |
|
/* For LL&M IDCT method, divisors are equal to raw quantization |
|
* coefficients multiplied by 8 (to counteract scaling). |
|
*/ |
|
dtbl = (DCTELEM *) compptr->dct_table; |
|
for (i = 0; i < DCTSIZE2; i++) { |
|
dtbl[i] = |
|
((DCTELEM) qtbl->quantval[i]) << (compptr->component_needed ? 4 : 3); |
|
} |
|
fdct->pub.forward_DCT[ci] = forward_DCT; |
|
break; |
|
#endif |
|
#ifdef DCT_IFAST_SUPPORTED |
|
case JDCT_IFAST: |
|
{ |
|
/* For AA&N IDCT method, divisors are equal to quantization |
|
* coefficients scaled by scalefactor[row]*scalefactor[col], where |
|
* scalefactor[0] = 1 |
|
* scalefactor[k] = cos(k*PI/16) * sqrt(2) for k=1..7 |
|
* We apply a further scale factor of 8. |
|
*/ |
|
#define CONST_BITS 14 |
|
static const INT16 aanscales[DCTSIZE2] = { |
|
/* precomputed values scaled up by 14 bits */ |
|
16384, 22725, 21407, 19266, 16384, 12873, 8867, 4520, |
|
22725, 31521, 29692, 26722, 22725, 17855, 12299, 6270, |
|
21407, 29692, 27969, 25172, 21407, 16819, 11585, 5906, |
|
19266, 26722, 25172, 22654, 19266, 15137, 10426, 5315, |
|
16384, 22725, 21407, 19266, 16384, 12873, 8867, 4520, |
|
12873, 17855, 16819, 15137, 12873, 10114, 6967, 3552, |
|
8867, 12299, 11585, 10426, 8867, 6967, 4799, 2446, |
|
4520, 6270, 5906, 5315, 4520, 3552, 2446, 1247 |
|
}; |
|
SHIFT_TEMPS |
|
|
|
dtbl = (DCTELEM *) compptr->dct_table; |
|
for (i = 0; i < DCTSIZE2; i++) { |
|
dtbl[i] = (DCTELEM) |
|
DESCALE(MULTIPLY16V16((INT32) qtbl->quantval[i], |
|
(INT32) aanscales[i]), |
|
compptr->component_needed ? CONST_BITS-4 : CONST_BITS-3); |
|
} |
|
} |
|
fdct->pub.forward_DCT[ci] = forward_DCT; |
|
break; |
|
#endif |
|
#ifdef DCT_FLOAT_SUPPORTED |
|
case JDCT_FLOAT: |
|
{ |
|
/* For float AA&N IDCT method, divisors are equal to quantization |
|
* coefficients scaled by scalefactor[row]*scalefactor[col], where |
|
* scalefactor[0] = 1 |
|
* scalefactor[k] = cos(k*PI/16) * sqrt(2) for k=1..7 |
|
* We apply a further scale factor of 8. |
|
* What's actually stored is 1/divisor so that the inner loop can |
|
* use a multiplication rather than a division. |
|
*/ |
|
FAST_FLOAT * fdtbl = (FAST_FLOAT *) compptr->dct_table; |
|
int row, col; |
|
static const double aanscalefactor[DCTSIZE] = { |
|
1.0, 1.387039845, 1.306562965, 1.175875602, |
|
1.0, 0.785694958, 0.541196100, 0.275899379 |
|
}; |
|
|
|
i = 0; |
|
for (row = 0; row < DCTSIZE; row++) { |
|
for (col = 0; col < DCTSIZE; col++) { |
|
fdtbl[i] = (FAST_FLOAT) |
|
(1.0 / ((double) qtbl->quantval[i] * |
|
aanscalefactor[row] * aanscalefactor[col] * |
|
(compptr->component_needed ? 16.0 : 8.0))); |
|
i++; |
|
} |
|
} |
|
} |
|
fdct->pub.forward_DCT[ci] = forward_DCT_float; |
|
break; |
|
#endif |
|
default: |
|
ERREXIT(cinfo, JERR_NOT_COMPILED); |
|
break; |
|
} |
|
} |
|
} |
|
|
|
|
|
/* |
|
* Initialize FDCT manager. |
|
*/ |
|
|
|
GLOBAL(void) |
|
jinit_forward_dct (j_compress_ptr cinfo) |
|
{ |
|
my_fdct_ptr fdct; |
|
int ci; |
|
jpeg_component_info *compptr; |
|
|
|
fdct = (my_fdct_ptr) |
|
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, |
|
SIZEOF(my_fdct_controller)); |
|
cinfo->fdct = &fdct->pub; |
|
fdct->pub.start_pass = start_pass_fdctmgr; |
|
|
|
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; |
|
ci++, compptr++) { |
|
/* Allocate a divisor table for each component */ |
|
compptr->dct_table = |
|
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, |
|
SIZEOF(divisor_table)); |
|
} |
|
}
|
|
|