You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
881 lines
30 KiB
881 lines
30 KiB
// xed25519.cpp - written and placed in public domain by Jeffrey Walton |
|
// Crypto++ specific implementation wrapped around Andrew |
|
// Moon's public domain curve25519-donna and ed25519-donna, |
|
// https://github.com/floodyberry/curve25519-donna and |
|
// https://github.com/floodyberry/ed25519-donna. |
|
|
|
#include "pch.h" |
|
|
|
#include "cryptlib.h" |
|
#include "asn.h" |
|
#include "integer.h" |
|
#include "filters.h" |
|
#include "stdcpp.h" |
|
|
|
#include "xed25519.h" |
|
#include "donna.h" |
|
|
|
ANONYMOUS_NAMESPACE_BEGIN |
|
|
|
using CryptoPP::byte; |
|
|
|
CRYPTOPP_ALIGN_DATA(16) |
|
const byte blacklist[][32] = { |
|
{ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, |
|
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }, |
|
{ 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, |
|
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }, |
|
{ 0xe0, 0xeb, 0x7a, 0x7c, 0x3b, 0x41, 0xb8, 0xae, 0x16, 0x56, 0xe3, 0xfa, 0xf1, 0x9f, 0xc4, 0x6a, |
|
0xda, 0x09, 0x8d, 0xeb, 0x9c, 0x32, 0xb1, 0xfd, 0x86, 0x62, 0x05, 0x16, 0x5f, 0x49, 0xb8, 0x00 }, |
|
{ 0x5f, 0x9c, 0x95, 0xbc, 0xa3, 0x50, 0x8c, 0x24, 0xb1, 0xd0, 0xb1, 0x55, 0x9c, 0x83, 0xef, 0x5b, |
|
0x04, 0x44, 0x5c, 0xc4, 0x58, 0x1c, 0x8e, 0x86, 0xd8, 0x22, 0x4e, 0xdd, 0xd0, 0x9f, 0x11, 0x57 }, |
|
{ 0xec, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, |
|
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x7f }, |
|
{ 0xed, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, |
|
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x7f }, |
|
{ 0xee, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, |
|
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x7f }, |
|
{ 0xcd, 0xeb, 0x7a, 0x7c, 0x3b, 0x41, 0xb8, 0xae, 0x16, 0x56, 0xe3, 0xfa, 0xf1, 0x9f, 0xc4, 0x6a, |
|
0xda, 0x09, 0x8d, 0xeb, 0x9c, 0x32, 0xb1, 0xfd, 0x86, 0x62, 0x05, 0x16, 0x5f, 0x49, 0xb8, 0x80 }, |
|
{ 0x4c, 0x9c, 0x95, 0xbc, 0xa3, 0x50, 0x8c, 0x24, 0xb1, 0xd0, 0xb1, 0x55, 0x9c, 0x83, 0xef, 0x5b, |
|
0x04, 0x44, 0x5c, 0xc4, 0x58, 0x1c, 0x8e, 0x86, 0xd8, 0x22, 0x4e, 0xdd, 0xd0, 0x9f, 0x11, 0xd7 }, |
|
{ 0xd9, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, |
|
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff }, |
|
{ 0xda, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, |
|
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff }, |
|
{ 0xdb, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, |
|
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff } |
|
}; |
|
|
|
bool HasSmallOrder(const byte y[32]) |
|
{ |
|
// The magic 12 is the count of blaklisted points |
|
byte c[12] = { 0 }; |
|
for (size_t j = 0; j < 32; j++) { |
|
for (size_t i = 0; i < COUNTOF(blacklist); i++) { |
|
c[i] |= y[j] ^ blacklist[i][j]; |
|
} |
|
} |
|
|
|
unsigned int k = 0; |
|
for (size_t i = 0; i < COUNTOF(blacklist); i++) { |
|
k |= (c[i] - 1); |
|
} |
|
|
|
return (bool)((k >> 8) & 1); |
|
} |
|
|
|
ANONYMOUS_NAMESPACE_END |
|
|
|
NAMESPACE_BEGIN(CryptoPP) |
|
|
|
// ******************** x25519 Agreement ************************* // |
|
|
|
x25519::x25519(const byte y[PUBLIC_KEYLENGTH], const byte x[SECRET_KEYLENGTH]) |
|
{ |
|
std::memcpy(m_pk, y, SECRET_KEYLENGTH); |
|
std::memcpy(m_sk, x, PUBLIC_KEYLENGTH); |
|
|
|
CRYPTOPP_ASSERT(IsClamped(m_sk) == true); |
|
CRYPTOPP_ASSERT(IsSmallOrder(m_pk) == false); |
|
} |
|
|
|
x25519::x25519(const byte x[SECRET_KEYLENGTH]) |
|
{ |
|
std::memcpy(m_sk, x, SECRET_KEYLENGTH); |
|
Donna::curve25519_mult(m_pk, m_sk); |
|
|
|
CRYPTOPP_ASSERT(IsClamped(m_sk) == true); |
|
CRYPTOPP_ASSERT(IsSmallOrder(m_pk) == false); |
|
} |
|
|
|
x25519::x25519(const Integer &y, const Integer &x) |
|
{ |
|
CRYPTOPP_ASSERT(y.MinEncodedSize() <= PUBLIC_KEYLENGTH); |
|
CRYPTOPP_ASSERT(x.MinEncodedSize() <= SECRET_KEYLENGTH); |
|
|
|
y.Encode(m_pk, PUBLIC_KEYLENGTH); std::reverse(m_pk+0, m_pk+PUBLIC_KEYLENGTH); |
|
x.Encode(m_sk, SECRET_KEYLENGTH); std::reverse(m_sk+0, m_sk+SECRET_KEYLENGTH); |
|
|
|
CRYPTOPP_ASSERT(IsClamped(m_sk) == true); |
|
CRYPTOPP_ASSERT(IsSmallOrder(m_pk) == false); |
|
} |
|
|
|
x25519::x25519(const Integer &x) |
|
{ |
|
CRYPTOPP_ASSERT(x.MinEncodedSize() <= SECRET_KEYLENGTH); |
|
|
|
x.Encode(m_sk, SECRET_KEYLENGTH); |
|
std::reverse(m_sk+0, m_sk+SECRET_KEYLENGTH); |
|
Donna::curve25519_mult(m_pk, m_sk); |
|
|
|
CRYPTOPP_ASSERT(IsClamped(m_sk) == true); |
|
CRYPTOPP_ASSERT(IsSmallOrder(m_pk) == false); |
|
} |
|
|
|
x25519::x25519(RandomNumberGenerator &rng) |
|
{ |
|
rng.GenerateBlock(m_sk, SECRET_KEYLENGTH); |
|
ClampKey(m_sk); |
|
SecretToPublicKey(m_pk, m_sk); |
|
} |
|
|
|
x25519::x25519(BufferedTransformation ¶ms) |
|
{ |
|
Load(params); |
|
} |
|
|
|
void x25519::ClampKey(byte x[SECRET_KEYLENGTH]) const |
|
{ |
|
x[0] &= 248; x[31] &= 127; x[31] |= 64; |
|
} |
|
|
|
bool x25519::IsClamped(const byte x[SECRET_KEYLENGTH]) const |
|
{ |
|
return (x[0] & 248) == x[0] && (x[31] & 127) == x[31] && (x[31] | 64) == x[31]; |
|
} |
|
|
|
bool x25519::IsSmallOrder(const byte y[PUBLIC_KEYLENGTH]) const |
|
{ |
|
return HasSmallOrder(y); |
|
} |
|
|
|
void x25519::SecretToPublicKey(byte y[PUBLIC_KEYLENGTH], const byte x[SECRET_KEYLENGTH]) const |
|
{ |
|
Donna::curve25519_mult(y, x); |
|
} |
|
|
|
void x25519::BERDecodeAndCheckAlgorithmID(BufferedTransformation &bt) |
|
{ |
|
// We have not yet determined the OID to use for this object. |
|
// We can't use OID's decoder because it throws BERDecodeError |
|
// if the OIDs do not match. |
|
OID oid(bt); |
|
|
|
if (!m_oid.Empty() && m_oid != oid) |
|
BERDecodeError(); // Only accept user specified OID |
|
else if (oid == ASN1::curve25519() || oid == ASN1::X25519()) |
|
m_oid = oid; // Accept any of the x25519 OIDs |
|
else |
|
BERDecodeError(); |
|
} |
|
|
|
void x25519::BERDecode(BufferedTransformation &bt) |
|
{ |
|
// https://tools.ietf.org/html/rfc8410, section 7 and |
|
// https://www.cryptopp.com/wiki/curve25519_keys |
|
BERSequenceDecoder privateKeyInfo(bt); |
|
word32 version; |
|
BERDecodeUnsigned<word32>(privateKeyInfo, version, INTEGER, 0, 1); // check version |
|
|
|
BERSequenceDecoder algorithm(privateKeyInfo); |
|
// GetAlgorithmID().BERDecodeAndCheck(algorithm); |
|
BERDecodeAndCheckAlgorithmID(algorithm); |
|
algorithm.MessageEnd(); |
|
|
|
BERGeneralDecoder octetString(privateKeyInfo, OCTET_STRING); |
|
BERDecodePrivateKey(octetString, false, (size_t)privateKeyInfo.RemainingLength()); |
|
octetString.MessageEnd(); |
|
|
|
// publicKey [1] IMPLICIT PublicKey OPTIONAL |
|
bool generatePublicKey = true; |
|
if (privateKeyInfo.EndReached() == false /*version == 1?*/) |
|
{ |
|
// Should we test this before decoding? In either case we |
|
// just throw a BERDecodeErr() when we can't parse it. |
|
BERGeneralDecoder publicKey(privateKeyInfo, CONTEXT_SPECIFIC | CONSTRUCTED | 1); |
|
SecByteBlock subjectPublicKey; |
|
unsigned int unusedBits; |
|
BERDecodeBitString(publicKey, subjectPublicKey, unusedBits); |
|
CRYPTOPP_ASSERT(unusedBits == 0); |
|
CRYPTOPP_ASSERT(subjectPublicKey.size() == PUBLIC_KEYLENGTH); |
|
if (subjectPublicKey.size() != PUBLIC_KEYLENGTH) |
|
BERDecodeError(); |
|
std::memcpy(m_pk.begin(), subjectPublicKey, PUBLIC_KEYLENGTH); |
|
generatePublicKey = false; |
|
publicKey.MessageEnd(); |
|
} |
|
|
|
privateKeyInfo.MessageEnd(); |
|
|
|
if (generatePublicKey) |
|
Donna::curve25519_mult(m_pk, m_sk); |
|
|
|
CRYPTOPP_ASSERT(IsClamped(m_sk) == true); |
|
CRYPTOPP_ASSERT(IsSmallOrder(m_pk) == false); |
|
} |
|
|
|
void x25519::DEREncode(BufferedTransformation &bt, int version) const |
|
{ |
|
// https://tools.ietf.org/html/rfc8410, section 7 and |
|
// https://www.cryptopp.com/wiki/curve25519_keys |
|
CRYPTOPP_ASSERT(version == 0 || version == 1); |
|
|
|
DERSequenceEncoder privateKeyInfo(bt); |
|
DEREncodeUnsigned<word32>(privateKeyInfo, version); |
|
|
|
DERSequenceEncoder algorithm(privateKeyInfo); |
|
GetAlgorithmID().DEREncode(algorithm); |
|
algorithm.MessageEnd(); |
|
|
|
DERGeneralEncoder octetString(privateKeyInfo, OCTET_STRING); |
|
DEREncodePrivateKey(octetString); |
|
octetString.MessageEnd(); |
|
|
|
if (version == 1) |
|
{ |
|
DERGeneralEncoder publicKey(privateKeyInfo, CONTEXT_SPECIFIC | CONSTRUCTED | 1); |
|
DEREncodeBitString(publicKey, m_pk, PUBLIC_KEYLENGTH); |
|
publicKey.MessageEnd(); |
|
} |
|
|
|
privateKeyInfo.MessageEnd(); |
|
} |
|
|
|
void x25519::BERDecodePrivateKey(BufferedTransformation &bt, bool parametersPresent, size_t /*size*/) |
|
{ |
|
// https://tools.ietf.org/html/rfc8410 and |
|
// https://www.cryptopp.com/wiki/curve25519_keys |
|
|
|
BERGeneralDecoder privateKey(bt, OCTET_STRING); |
|
|
|
if (!privateKey.IsDefiniteLength()) |
|
BERDecodeError(); |
|
|
|
size_t size = privateKey.Get(m_sk, SECRET_KEYLENGTH); |
|
if (size != SECRET_KEYLENGTH) |
|
BERDecodeError(); |
|
|
|
// We don't know how to decode them |
|
if (parametersPresent) |
|
BERDecodeError(); |
|
|
|
privateKey.MessageEnd(); |
|
} |
|
|
|
void x25519::DEREncodePrivateKey(BufferedTransformation &bt) const |
|
{ |
|
// https://tools.ietf.org/html/rfc8410 |
|
DERGeneralEncoder privateKey(bt, OCTET_STRING); |
|
privateKey.Put(m_sk, SECRET_KEYLENGTH); |
|
privateKey.MessageEnd(); |
|
} |
|
|
|
bool x25519::Validate(RandomNumberGenerator &rng, unsigned int level) const |
|
{ |
|
CRYPTOPP_UNUSED(rng); |
|
CRYPTOPP_ASSERT(IsClamped(m_sk) == true); |
|
CRYPTOPP_ASSERT(IsSmallOrder(m_pk) == false); |
|
|
|
if (level >= 1 && IsClamped(m_sk) == false) |
|
return false; |
|
if (level >= 2 && IsSmallOrder(m_pk) == true) |
|
return false; |
|
if (level >= 3) |
|
{ |
|
// Verify m_pk is pairwise consistent with m_sk |
|
SecByteBlock pk(PUBLIC_KEYLENGTH); |
|
SecretToPublicKey(pk, m_sk); |
|
|
|
if (VerifyBufsEqual(pk, m_pk, PUBLIC_KEYLENGTH) == false) |
|
return false; |
|
} |
|
|
|
return true; |
|
} |
|
|
|
bool x25519::GetVoidValue(const char *name, const std::type_info &valueType, void *pValue) const |
|
{ |
|
if (std::strcmp(name, Name::PrivateExponent()) == 0 || std::strcmp(name, "SecretKey") == 0) |
|
{ |
|
this->ThrowIfTypeMismatch(name, typeid(ConstByteArrayParameter), valueType); |
|
reinterpret_cast<ConstByteArrayParameter*>(pValue)->Assign(m_sk, SECRET_KEYLENGTH, false); |
|
return true; |
|
} |
|
|
|
if (std::strcmp(name, Name::PublicElement()) == 0) |
|
{ |
|
this->ThrowIfTypeMismatch(name, typeid(ConstByteArrayParameter), valueType); |
|
reinterpret_cast<ConstByteArrayParameter*>(pValue)->Assign(m_pk, PUBLIC_KEYLENGTH, false); |
|
return true; |
|
} |
|
|
|
if (std::strcmp(name, Name::GroupOID()) == 0) |
|
{ |
|
if (m_oid.Empty()) |
|
return false; |
|
|
|
this->ThrowIfTypeMismatch(name, typeid(OID), valueType); |
|
*reinterpret_cast<OID *>(pValue) = m_oid; |
|
return true; |
|
} |
|
|
|
return false; |
|
} |
|
|
|
void x25519::AssignFrom(const NameValuePairs &source) |
|
{ |
|
ConstByteArrayParameter val; |
|
if (source.GetValue(Name::PrivateExponent(), val) || source.GetValue("SecretKey", val)) |
|
{ |
|
std::memcpy(m_sk, val.begin(), SECRET_KEYLENGTH); |
|
} |
|
|
|
if (source.GetValue(Name::PublicElement(), val)) |
|
{ |
|
std::memcpy(m_pk, val.begin(), PUBLIC_KEYLENGTH); |
|
} |
|
|
|
OID oid; |
|
if (source.GetValue(Name::GroupOID(), oid)) |
|
{ |
|
m_oid = oid; |
|
} |
|
|
|
bool derive = false; |
|
if (source.GetValue("DerivePublicKey", derive) && derive == true) |
|
SecretToPublicKey(m_pk, m_sk); |
|
} |
|
|
|
void x25519::GenerateRandom(RandomNumberGenerator &rng, const NameValuePairs ¶ms) |
|
{ |
|
ConstByteArrayParameter seed; |
|
if (params.GetValue(Name::Seed(), seed) && rng.CanIncorporateEntropy()) |
|
rng.IncorporateEntropy(seed.begin(), seed.size()); |
|
|
|
rng.GenerateBlock(m_sk, SECRET_KEYLENGTH); |
|
ClampKey(m_sk); |
|
SecretToPublicKey(m_pk, m_sk); |
|
} |
|
|
|
void x25519::GeneratePrivateKey(RandomNumberGenerator &rng, byte *privateKey) const |
|
{ |
|
rng.GenerateBlock(privateKey, SECRET_KEYLENGTH); |
|
ClampKey(privateKey); |
|
} |
|
|
|
void x25519::GeneratePublicKey(RandomNumberGenerator &rng, const byte *privateKey, byte *publicKey) const |
|
{ |
|
CRYPTOPP_UNUSED(rng); |
|
SecretToPublicKey(publicKey, privateKey); |
|
} |
|
|
|
bool x25519::Agree(byte *agreedValue, const byte *privateKey, const byte *otherPublicKey, bool validateOtherPublicKey) const |
|
{ |
|
CRYPTOPP_ASSERT(agreedValue != NULLPTR); |
|
CRYPTOPP_ASSERT(otherPublicKey != NULLPTR); |
|
|
|
if (validateOtherPublicKey && IsSmallOrder(otherPublicKey)) |
|
return false; |
|
|
|
return Donna::curve25519_mult(agreedValue, privateKey, otherPublicKey) == 0; |
|
} |
|
|
|
// ******************** ed25519 Signer ************************* // |
|
|
|
void ed25519PrivateKey::SecretToPublicKey(byte y[PUBLIC_KEYLENGTH], const byte x[SECRET_KEYLENGTH]) const |
|
{ |
|
int ret = Donna::ed25519_publickey(y, x); |
|
CRYPTOPP_ASSERT(ret == 0); CRYPTOPP_UNUSED(ret); |
|
} |
|
|
|
bool ed25519PrivateKey::IsSmallOrder(const byte y[PUBLIC_KEYLENGTH]) const |
|
{ |
|
return HasSmallOrder(y); |
|
} |
|
|
|
bool ed25519PrivateKey::Validate(RandomNumberGenerator &rng, unsigned int level) const |
|
{ |
|
CRYPTOPP_UNUSED(rng); |
|
CRYPTOPP_ASSERT(IsSmallOrder(m_pk) == false); |
|
|
|
if (level >= 1 && IsSmallOrder(m_pk) == true) |
|
return false; |
|
if (level >= 3) |
|
{ |
|
// Verify m_pk is pairwise consistent with m_sk |
|
SecByteBlock pk(PUBLIC_KEYLENGTH); |
|
SecretToPublicKey(pk, m_sk); |
|
|
|
if (VerifyBufsEqual(pk, m_pk, PUBLIC_KEYLENGTH) == false) |
|
return false; |
|
} |
|
|
|
return true; |
|
} |
|
|
|
bool ed25519PrivateKey::GetVoidValue(const char *name, const std::type_info &valueType, void *pValue) const |
|
{ |
|
if (std::strcmp(name, Name::PrivateExponent()) == 0 || std::strcmp(name, "SecretKey") == 0) |
|
{ |
|
this->ThrowIfTypeMismatch(name, typeid(ConstByteArrayParameter), valueType); |
|
reinterpret_cast<ConstByteArrayParameter*>(pValue)->Assign(m_sk, SECRET_KEYLENGTH, false); |
|
return true; |
|
} |
|
|
|
if (std::strcmp(name, Name::PublicElement()) == 0) |
|
{ |
|
this->ThrowIfTypeMismatch(name, typeid(ConstByteArrayParameter), valueType); |
|
reinterpret_cast<ConstByteArrayParameter*>(pValue)->Assign(m_pk, PUBLIC_KEYLENGTH, false); |
|
return true; |
|
} |
|
|
|
if (std::strcmp(name, Name::GroupOID()) == 0) |
|
{ |
|
if (m_oid.Empty()) |
|
return false; |
|
|
|
this->ThrowIfTypeMismatch(name, typeid(OID), valueType); |
|
*reinterpret_cast<OID *>(pValue) = m_oid; |
|
return true; |
|
} |
|
|
|
return false; |
|
} |
|
|
|
void ed25519PrivateKey::AssignFrom(const NameValuePairs &source) |
|
{ |
|
ConstByteArrayParameter val; |
|
if (source.GetValue(Name::PrivateExponent(), val) || source.GetValue("SecretKey", val)) |
|
{ |
|
CRYPTOPP_ASSERT(val.size() == SECRET_KEYLENGTH); |
|
std::memcpy(m_sk, val.begin(), SECRET_KEYLENGTH); |
|
} |
|
if (source.GetValue(Name::PublicElement(), val)) |
|
{ |
|
CRYPTOPP_ASSERT(val.size() == PUBLIC_KEYLENGTH); |
|
std::memcpy(m_pk, val.begin(), PUBLIC_KEYLENGTH); |
|
} |
|
|
|
OID oid; |
|
if (source.GetValue(Name::GroupOID(), oid)) |
|
{ |
|
m_oid = oid; |
|
} |
|
|
|
bool derive = false; |
|
if (source.GetValue("DerivePublicKey", derive) && derive == true) |
|
SecretToPublicKey(m_pk, m_sk); |
|
|
|
CRYPTOPP_ASSERT(IsSmallOrder(m_pk) == false); |
|
} |
|
|
|
void ed25519PrivateKey::GenerateRandom(RandomNumberGenerator &rng, const NameValuePairs ¶ms=g_nullNameValuePairs) |
|
{ |
|
ConstByteArrayParameter seed; |
|
if (params.GetValue(Name::Seed(), seed) && rng.CanIncorporateEntropy()) |
|
rng.IncorporateEntropy(seed.begin(), seed.size()); |
|
|
|
rng.GenerateBlock(m_sk, SECRET_KEYLENGTH); |
|
int ret = Donna::ed25519_publickey(m_pk, m_sk); |
|
CRYPTOPP_ASSERT(ret == 0); CRYPTOPP_UNUSED(ret); |
|
} |
|
|
|
void ed25519PrivateKey::MakePublicKey (PublicKey &pub) const |
|
{ |
|
pub.AssignFrom(MakeParameters |
|
(Name::PublicElement(), ConstByteArrayParameter(m_pk.begin(), PUBLIC_KEYLENGTH)) |
|
(Name::GroupOID(), GetAlgorithmID())); |
|
} |
|
|
|
void ed25519PrivateKey::BERDecodeAndCheckAlgorithmID(BufferedTransformation &bt) |
|
{ |
|
// We have not yet determined the OID to use for this object. |
|
// We can't use OID's decoder because it throws BERDecodeError |
|
// if the OIDs do not match. |
|
OID oid(bt); |
|
|
|
if (!m_oid.Empty() && m_oid != oid) |
|
BERDecodeError(); // Only accept user specified OID |
|
else if (oid == ASN1::curve25519() || oid == ASN1::Ed25519()) |
|
m_oid = oid; // Accept any of the ed25519PrivateKey OIDs |
|
else |
|
BERDecodeError(); |
|
} |
|
|
|
void ed25519PrivateKey::BERDecode(BufferedTransformation &bt) |
|
{ |
|
// https://tools.ietf.org/html/rfc8410, section 7 and |
|
// https://www.cryptopp.com/wiki/curve25519_keys |
|
BERSequenceDecoder privateKeyInfo(bt); |
|
word32 version; |
|
BERDecodeUnsigned<word32>(privateKeyInfo, version, INTEGER, 0, 1); // check version |
|
|
|
BERSequenceDecoder algorithm(privateKeyInfo); |
|
// GetAlgorithmID().BERDecodeAndCheck(algorithm); |
|
BERDecodeAndCheckAlgorithmID(algorithm); |
|
algorithm.MessageEnd(); |
|
|
|
BERGeneralDecoder octetString(privateKeyInfo, OCTET_STRING); |
|
BERDecodePrivateKey(octetString, false, (size_t)privateKeyInfo.RemainingLength()); |
|
octetString.MessageEnd(); |
|
|
|
// publicKey [1] IMPLICIT PublicKey OPTIONAL |
|
bool generatePublicKey = true; |
|
if (privateKeyInfo.EndReached() == false /*version == 1?*/) |
|
{ |
|
// Should we test this before decoding? In either case we |
|
// just throw a BERDecodeErr() when we can't parse it. |
|
BERGeneralDecoder publicKey(privateKeyInfo, CONTEXT_SPECIFIC | CONSTRUCTED | 1); |
|
SecByteBlock subjectPublicKey; |
|
unsigned int unusedBits; |
|
BERDecodeBitString(publicKey, subjectPublicKey, unusedBits); |
|
CRYPTOPP_ASSERT(unusedBits == 0); |
|
CRYPTOPP_ASSERT(subjectPublicKey.size() == PUBLIC_KEYLENGTH); |
|
if (subjectPublicKey.size() != PUBLIC_KEYLENGTH) |
|
BERDecodeError(); |
|
std::memcpy(m_pk.begin(), subjectPublicKey, PUBLIC_KEYLENGTH); |
|
generatePublicKey = false; |
|
publicKey.MessageEnd(); |
|
} |
|
|
|
privateKeyInfo.MessageEnd(); |
|
|
|
if (generatePublicKey) |
|
Donna::ed25519_publickey(m_pk, m_sk); |
|
|
|
CRYPTOPP_ASSERT(IsSmallOrder(m_pk) == false); |
|
} |
|
|
|
void ed25519PrivateKey::DEREncode(BufferedTransformation &bt, int version) const |
|
{ |
|
// https://tools.ietf.org/html/rfc8410, section 7 and |
|
// https://www.cryptopp.com/wiki/curve25519_keys |
|
CRYPTOPP_ASSERT(version == 0 || version == 1); |
|
|
|
DERSequenceEncoder privateKeyInfo(bt); |
|
DEREncodeUnsigned<word32>(privateKeyInfo, version); |
|
|
|
DERSequenceEncoder algorithm(privateKeyInfo); |
|
GetAlgorithmID().DEREncode(algorithm); |
|
algorithm.MessageEnd(); |
|
|
|
DERGeneralEncoder octetString(privateKeyInfo, OCTET_STRING); |
|
DEREncodePrivateKey(octetString); |
|
octetString.MessageEnd(); |
|
|
|
if (version == 1) |
|
{ |
|
DERGeneralEncoder publicKey(privateKeyInfo, CONTEXT_SPECIFIC | CONSTRUCTED | 1); |
|
DEREncodeBitString(publicKey, m_pk, PUBLIC_KEYLENGTH); |
|
publicKey.MessageEnd(); |
|
} |
|
|
|
privateKeyInfo.MessageEnd(); |
|
} |
|
|
|
void ed25519PrivateKey::BERDecodePrivateKey(BufferedTransformation &bt, bool parametersPresent, size_t /*size*/) |
|
{ |
|
// https://tools.ietf.org/html/rfc8410 and |
|
// https://www.cryptopp.com/wiki/curve25519_keys |
|
|
|
BERGeneralDecoder privateKey(bt, OCTET_STRING); |
|
|
|
if (!privateKey.IsDefiniteLength()) |
|
BERDecodeError(); |
|
|
|
size_t size = privateKey.Get(m_sk, SECRET_KEYLENGTH); |
|
if (size != SECRET_KEYLENGTH) |
|
BERDecodeError(); |
|
|
|
// We don't know how to decode them |
|
if (parametersPresent) |
|
BERDecodeError(); |
|
|
|
privateKey.MessageEnd(); |
|
} |
|
|
|
void ed25519PrivateKey::DEREncodePrivateKey(BufferedTransformation &bt) const |
|
{ |
|
// https://tools.ietf.org/html/rfc8410 |
|
DERGeneralEncoder privateKey(bt, OCTET_STRING); |
|
privateKey.Put(m_sk, SECRET_KEYLENGTH); |
|
privateKey.MessageEnd(); |
|
} |
|
|
|
void ed25519PrivateKey::SetPrivateExponent (const byte x[SECRET_KEYLENGTH]) |
|
{ |
|
AssignFrom(MakeParameters |
|
(Name::PrivateExponent(), ConstByteArrayParameter(x, SECRET_KEYLENGTH)) |
|
("DerivePublicKey", true)); |
|
} |
|
|
|
void ed25519PrivateKey::SetPrivateExponent (const Integer &x) |
|
{ |
|
CRYPTOPP_ASSERT(x.MinEncodedSize() <= SECRET_KEYLENGTH); |
|
|
|
SecByteBlock bx(SECRET_KEYLENGTH); |
|
x.Encode(bx, SECRET_KEYLENGTH); std::reverse(bx+0, bx+SECRET_KEYLENGTH); |
|
|
|
AssignFrom(MakeParameters |
|
(Name::PrivateExponent(), ConstByteArrayParameter(bx, SECRET_KEYLENGTH, false)) |
|
("DerivePublicKey", true)); |
|
} |
|
|
|
const Integer& ed25519PrivateKey::GetPrivateExponent() const |
|
{ |
|
m_x = Integer(m_sk, SECRET_KEYLENGTH, Integer::UNSIGNED, LITTLE_ENDIAN_ORDER); |
|
return m_x; |
|
} |
|
|
|
//////////////////////// |
|
|
|
ed25519Signer::ed25519Signer(const byte y[PUBLIC_KEYLENGTH], const byte x[SECRET_KEYLENGTH]) |
|
{ |
|
AccessPrivateKey().AssignFrom(MakeParameters |
|
(Name::PrivateExponent(), ConstByteArrayParameter(x, SECRET_KEYLENGTH, false)) |
|
(Name::PublicElement(), ConstByteArrayParameter(y, PUBLIC_KEYLENGTH, false))); |
|
} |
|
|
|
ed25519Signer::ed25519Signer(const byte x[SECRET_KEYLENGTH]) |
|
{ |
|
AccessPrivateKey().AssignFrom(MakeParameters |
|
(Name::PrivateExponent(), ConstByteArrayParameter(x, SECRET_KEYLENGTH, false)) |
|
("DerivePublicKey", true)); |
|
} |
|
|
|
ed25519Signer::ed25519Signer(const Integer &y, const Integer &x) |
|
{ |
|
CRYPTOPP_ASSERT(y.MinEncodedSize() <= PUBLIC_KEYLENGTH); |
|
CRYPTOPP_ASSERT(x.MinEncodedSize() <= SECRET_KEYLENGTH); |
|
|
|
SecByteBlock by(PUBLIC_KEYLENGTH), bx(SECRET_KEYLENGTH); |
|
y.Encode(by, PUBLIC_KEYLENGTH); std::reverse(by+0, by+PUBLIC_KEYLENGTH); |
|
x.Encode(bx, SECRET_KEYLENGTH); std::reverse(bx+0, bx+SECRET_KEYLENGTH); |
|
|
|
AccessPrivateKey().AssignFrom(MakeParameters |
|
(Name::PublicElement(), ConstByteArrayParameter(by, PUBLIC_KEYLENGTH, false)) |
|
(Name::PrivateExponent(), ConstByteArrayParameter(bx, SECRET_KEYLENGTH, false))); |
|
} |
|
|
|
ed25519Signer::ed25519Signer(const Integer &x) |
|
{ |
|
CRYPTOPP_ASSERT(x.MinEncodedSize() <= SECRET_KEYLENGTH); |
|
|
|
SecByteBlock bx(SECRET_KEYLENGTH); |
|
x.Encode(bx, SECRET_KEYLENGTH); std::reverse(bx+0, bx+SECRET_KEYLENGTH); |
|
|
|
AccessPrivateKey().AssignFrom(MakeParameters |
|
(Name::PrivateExponent(), ConstByteArrayParameter(bx, SECRET_KEYLENGTH, false)) |
|
("DerivePublicKey", true)); |
|
} |
|
|
|
ed25519Signer::ed25519Signer(RandomNumberGenerator &rng) |
|
{ |
|
AccessPrivateKey().GenerateRandom(rng); |
|
} |
|
|
|
ed25519Signer::ed25519Signer(BufferedTransformation ¶ms) |
|
{ |
|
AccessPrivateKey().Load(params); |
|
} |
|
|
|
size_t ed25519Signer::SignAndRestart(RandomNumberGenerator &rng, PK_MessageAccumulator &messageAccumulator, byte *signature, bool restart) const |
|
{ |
|
CRYPTOPP_ASSERT(signature != NULLPTR); CRYPTOPP_UNUSED(rng); |
|
|
|
ed25519_MessageAccumulator& accum = dynamic_cast<ed25519_MessageAccumulator&>(messageAccumulator); |
|
const ed25519PrivateKey& pk = dynamic_cast<const ed25519PrivateKey&>(GetPrivateKey()); |
|
int ret = Donna::ed25519_sign(accum.data(), accum.size(), pk.GetPrivateKeyBytePtr(), pk.GetPublicKeyBytePtr(), signature); |
|
CRYPTOPP_ASSERT(ret == 0); |
|
|
|
if (restart) |
|
accum.Restart(); |
|
|
|
return ret == 0 ? SIGNATURE_LENGTH : 0; |
|
} |
|
|
|
size_t ed25519Signer::SignStream (RandomNumberGenerator &rng, std::istream& stream, byte *signature) const |
|
{ |
|
CRYPTOPP_ASSERT(signature != NULLPTR); CRYPTOPP_UNUSED(rng); |
|
|
|
const ed25519PrivateKey& pk = dynamic_cast<const ed25519PrivateKey&>(GetPrivateKey()); |
|
int ret = Donna::ed25519_sign(stream, pk.GetPrivateKeyBytePtr(), pk.GetPublicKeyBytePtr(), signature); |
|
CRYPTOPP_ASSERT(ret == 0); |
|
|
|
return ret == 0 ? SIGNATURE_LENGTH : 0; |
|
} |
|
|
|
// ******************** ed25519 Verifier ************************* // |
|
|
|
bool ed25519PublicKey::GetVoidValue(const char *name, const std::type_info &valueType, void *pValue) const |
|
{ |
|
if (std::strcmp(name, Name::PublicElement()) == 0) |
|
{ |
|
this->ThrowIfTypeMismatch(name, typeid(ConstByteArrayParameter), valueType); |
|
reinterpret_cast<ConstByteArrayParameter*>(pValue)->Assign(m_pk, PUBLIC_KEYLENGTH, false); |
|
return true; |
|
} |
|
|
|
if (std::strcmp(name, Name::GroupOID()) == 0) |
|
{ |
|
if (m_oid.Empty()) |
|
return false; |
|
|
|
this->ThrowIfTypeMismatch(name, typeid(OID), valueType); |
|
*reinterpret_cast<OID *>(pValue) = m_oid; |
|
return true; |
|
} |
|
|
|
return false; |
|
} |
|
|
|
void ed25519PublicKey::AssignFrom(const NameValuePairs &source) |
|
{ |
|
ConstByteArrayParameter ba; |
|
if (source.GetValue(Name::PublicElement(), ba)) |
|
{ |
|
std::memcpy(m_pk, ba.begin(), PUBLIC_KEYLENGTH); |
|
} |
|
|
|
OID oid; |
|
if (source.GetValue(Name::GroupOID(), oid)) |
|
{ |
|
m_oid = oid; |
|
} |
|
} |
|
|
|
void ed25519PublicKey::BERDecodeAndCheckAlgorithmID(BufferedTransformation& bt) |
|
{ |
|
// We have not yet determined the OID to use for this object. |
|
// We can't use OID's decoder because it throws BERDecodeError |
|
// if the OIDs do not match. |
|
OID oid(bt); |
|
|
|
if (!m_oid.Empty() && m_oid != oid) |
|
BERDecodeError(); // Only accept user specified OID |
|
else if (oid == ASN1::curve25519() || oid == ASN1::Ed25519()) |
|
m_oid = oid; // Accept any of the ed25519PublicKey OIDs |
|
else |
|
BERDecodeError(); |
|
} |
|
|
|
void ed25519PublicKey::BERDecode(BufferedTransformation &bt) |
|
{ |
|
BERSequenceDecoder publicKeyInfo(bt); |
|
|
|
BERSequenceDecoder algorithm(publicKeyInfo); |
|
// GetAlgorithmID().BERDecodeAndCheck(algorithm); |
|
BERDecodeAndCheckAlgorithmID(algorithm); |
|
algorithm.MessageEnd(); |
|
|
|
BERDecodePublicKey(publicKeyInfo, false, (size_t)publicKeyInfo.RemainingLength()); |
|
|
|
publicKeyInfo.MessageEnd(); |
|
} |
|
|
|
void ed25519PublicKey::DEREncode(BufferedTransformation &bt) const |
|
{ |
|
DERSequenceEncoder publicKeyInfo(bt); |
|
|
|
DERSequenceEncoder algorithm(publicKeyInfo); |
|
GetAlgorithmID().DEREncode(algorithm); |
|
algorithm.MessageEnd(); |
|
|
|
DEREncodePublicKey(publicKeyInfo); |
|
|
|
publicKeyInfo.MessageEnd(); |
|
} |
|
|
|
void ed25519PublicKey::BERDecodePublicKey(BufferedTransformation &bt, bool parametersPresent, size_t /*size*/) |
|
{ |
|
// We don't know how to decode them |
|
if (parametersPresent) |
|
BERDecodeError(); |
|
|
|
SecByteBlock subjectPublicKey; |
|
unsigned int unusedBits; |
|
BERDecodeBitString(bt, subjectPublicKey, unusedBits); |
|
|
|
CRYPTOPP_ASSERT(unusedBits == 0); |
|
CRYPTOPP_ASSERT(subjectPublicKey.size() == PUBLIC_KEYLENGTH); |
|
if (subjectPublicKey.size() != PUBLIC_KEYLENGTH) |
|
BERDecodeError(); |
|
|
|
std::memcpy(m_pk.begin(), subjectPublicKey, PUBLIC_KEYLENGTH); |
|
} |
|
|
|
void ed25519PublicKey::DEREncodePublicKey(BufferedTransformation &bt) const |
|
{ |
|
DEREncodeBitString(bt, m_pk, PUBLIC_KEYLENGTH); |
|
} |
|
|
|
void ed25519PublicKey::SetPublicElement (const byte y[PUBLIC_KEYLENGTH]) |
|
{ |
|
std::memcpy(m_pk, y, PUBLIC_KEYLENGTH); |
|
} |
|
|
|
void ed25519PublicKey::SetPublicElement (const Integer &y) |
|
{ |
|
CRYPTOPP_ASSERT(y.MinEncodedSize() <= PUBLIC_KEYLENGTH); |
|
|
|
SecByteBlock by(PUBLIC_KEYLENGTH); |
|
y.Encode(by, PUBLIC_KEYLENGTH); std::reverse(by+0, by+PUBLIC_KEYLENGTH); |
|
|
|
std::memcpy(m_pk, by, PUBLIC_KEYLENGTH); |
|
} |
|
|
|
const Integer& ed25519PublicKey::GetPublicElement() const |
|
{ |
|
m_y = Integer(m_pk, PUBLIC_KEYLENGTH, Integer::UNSIGNED, LITTLE_ENDIAN_ORDER); |
|
return m_y; |
|
} |
|
|
|
bool ed25519PublicKey::Validate(RandomNumberGenerator &rng, unsigned int level) const |
|
{ |
|
CRYPTOPP_UNUSED(rng); CRYPTOPP_UNUSED(level); |
|
return true; |
|
} |
|
|
|
//////////////////////// |
|
|
|
ed25519Verifier::ed25519Verifier(const byte y[PUBLIC_KEYLENGTH]) |
|
{ |
|
AccessPublicKey().AssignFrom(MakeParameters |
|
(Name::PublicElement(), ConstByteArrayParameter(y, PUBLIC_KEYLENGTH))); |
|
} |
|
|
|
ed25519Verifier::ed25519Verifier(const Integer &y) |
|
{ |
|
CRYPTOPP_ASSERT(y.MinEncodedSize() <= PUBLIC_KEYLENGTH); |
|
|
|
SecByteBlock by(PUBLIC_KEYLENGTH); |
|
y.Encode(by, PUBLIC_KEYLENGTH); std::reverse(by+0, by+PUBLIC_KEYLENGTH); |
|
|
|
AccessPublicKey().AssignFrom(MakeParameters |
|
(Name::PublicElement(), ConstByteArrayParameter(by, PUBLIC_KEYLENGTH, false))); |
|
} |
|
|
|
ed25519Verifier::ed25519Verifier(BufferedTransformation ¶ms) |
|
{ |
|
AccessPublicKey().Load(params); |
|
} |
|
|
|
ed25519Verifier::ed25519Verifier(const ed25519Signer& signer) |
|
{ |
|
const ed25519PrivateKey& priv = dynamic_cast<const ed25519PrivateKey&>(signer.GetPrivateKey()); |
|
priv.MakePublicKey(AccessPublicKey()); |
|
} |
|
|
|
bool ed25519Verifier::VerifyAndRestart(PK_MessageAccumulator &messageAccumulator) const |
|
{ |
|
ed25519_MessageAccumulator& accum = static_cast<ed25519_MessageAccumulator&>(messageAccumulator); |
|
const ed25519PublicKey& pk = dynamic_cast<const ed25519PublicKey&>(GetPublicKey()); |
|
int ret = Donna::ed25519_sign_open(accum.data(), accum.size(), pk.GetPublicKeyBytePtr(), accum.signature()); |
|
accum.Restart(); |
|
|
|
return ret == 0; |
|
} |
|
|
|
bool ed25519Verifier::VerifyStream(std::istream& stream, const byte *signature, size_t signatureLen) const |
|
{ |
|
CRYPTOPP_ASSERT(signatureLen == SIGNATURE_LENGTH); |
|
CRYPTOPP_UNUSED(signatureLen); |
|
|
|
const ed25519PublicKey& pk = static_cast<const ed25519PublicKey&>(GetPublicKey()); |
|
int ret = Donna::ed25519_sign_open(stream, pk.GetPublicKeyBytePtr(), signature); |
|
|
|
return ret == 0; |
|
} |
|
|
|
NAMESPACE_END // CryptoPP
|
|
|