You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
314 lines
8.1 KiB
314 lines
8.1 KiB
// rw.cpp - originally written and placed in the public domain by Wei Dai |
|
|
|
#include "pch.h" |
|
|
|
#include "rw.h" |
|
#include "asn.h" |
|
#include "integer.h" |
|
#include "nbtheory.h" |
|
#include "modarith.h" |
|
#include "asn.h" |
|
|
|
#ifndef CRYPTOPP_IMPORTS |
|
|
|
#if defined(_OPENMP) |
|
# define CRYPTOPP_RW_USE_OMP 1 |
|
#else |
|
# define CRYPTOPP_RW_USE_OMP 0 |
|
#endif |
|
|
|
NAMESPACE_BEGIN(CryptoPP) |
|
|
|
void RWFunction::BERDecode(BufferedTransformation &bt) |
|
{ |
|
BERSequenceDecoder seq(bt); |
|
m_n.BERDecode(seq); |
|
seq.MessageEnd(); |
|
} |
|
|
|
void RWFunction::DEREncode(BufferedTransformation &bt) const |
|
{ |
|
DERSequenceEncoder seq(bt); |
|
m_n.DEREncode(seq); |
|
seq.MessageEnd(); |
|
} |
|
|
|
Integer RWFunction::ApplyFunction(const Integer &in) const |
|
{ |
|
DoQuickSanityCheck(); |
|
|
|
Integer out = in.Squared()%m_n; |
|
const word r = 12; |
|
// this code was written to handle both r = 6 and r = 12, |
|
// but now only r = 12 is used in P1363 |
|
const word r2 = r/2; |
|
const word r3a = (16 + 5 - r) % 16; // n%16 could be 5 or 13 |
|
const word r3b = (16 + 13 - r) % 16; |
|
const word r4 = (8 + 5 - r/2) % 8; // n%8 == 5 |
|
switch (out % 16) |
|
{ |
|
case r: |
|
break; |
|
case r2: |
|
case r2+8: |
|
out <<= 1; |
|
break; |
|
case r3a: |
|
case r3b: |
|
out.Negate(); |
|
out += m_n; |
|
break; |
|
case r4: |
|
case r4+8: |
|
out.Negate(); |
|
out += m_n; |
|
out <<= 1; |
|
break; |
|
default: |
|
out = Integer::Zero(); |
|
} |
|
return out; |
|
} |
|
|
|
bool RWFunction::Validate(RandomNumberGenerator &rng, unsigned int level) const |
|
{ |
|
CRYPTOPP_UNUSED(rng), CRYPTOPP_UNUSED(level); |
|
bool pass = true; |
|
pass = pass && m_n > Integer::One() && m_n%8 == 5; |
|
CRYPTOPP_ASSERT(pass); |
|
return pass; |
|
} |
|
|
|
bool RWFunction::GetVoidValue(const char *name, const std::type_info &valueType, void *pValue) const |
|
{ |
|
return GetValueHelper(this, name, valueType, pValue).Assignable() |
|
CRYPTOPP_GET_FUNCTION_ENTRY(Modulus) |
|
; |
|
} |
|
|
|
void RWFunction::AssignFrom(const NameValuePairs &source) |
|
{ |
|
AssignFromHelper(this, source) |
|
CRYPTOPP_SET_FUNCTION_ENTRY(Modulus) |
|
; |
|
} |
|
|
|
// ***************************************************************************** |
|
// private key operations: |
|
|
|
// generate a random private key |
|
void InvertibleRWFunction::GenerateRandom(RandomNumberGenerator &rng, const NameValuePairs &alg) |
|
{ |
|
int modulusSize = 2048; |
|
alg.GetIntValue("ModulusSize", modulusSize) || alg.GetIntValue("KeySize", modulusSize); |
|
|
|
if (modulusSize < 16) |
|
throw InvalidArgument("InvertibleRWFunction: specified modulus length is too small"); |
|
|
|
AlgorithmParameters primeParam = MakeParametersForTwoPrimesOfEqualSize(modulusSize); |
|
m_p.GenerateRandom(rng, CombinedNameValuePairs(primeParam, MakeParameters("EquivalentTo", 3)("Mod", 8))); |
|
m_q.GenerateRandom(rng, CombinedNameValuePairs(primeParam, MakeParameters("EquivalentTo", 7)("Mod", 8))); |
|
|
|
m_n = m_p * m_q; |
|
m_u = m_q.InverseMod(m_p); |
|
|
|
Precompute(); |
|
} |
|
|
|
void InvertibleRWFunction::Initialize(const Integer &n, const Integer &p, const Integer &q, const Integer &u) |
|
{ |
|
m_n = n; m_p = p; m_q = q; m_u = u; |
|
|
|
Precompute(); |
|
} |
|
|
|
void InvertibleRWFunction::PrecomputeTweakedRoots() const |
|
{ |
|
ModularArithmetic modp(m_p), modq(m_q); |
|
|
|
// GCC warning bug, https://stackoverflow.com/q/12842306/608639 |
|
#ifdef _OPENMP |
|
#pragma omp parallel sections if(CRYPTOPP_RW_USE_OMP) |
|
{ |
|
#pragma omp section |
|
m_pre_2_9p = modp.Exponentiate(2, (9 * m_p - 11)/8); |
|
#pragma omp section |
|
m_pre_2_3q = modq.Exponentiate(2, (3 * m_q - 5)/8); |
|
#pragma omp section |
|
m_pre_q_p = modp.Exponentiate(m_q, m_p - 2); |
|
} |
|
#else |
|
m_pre_2_9p = modp.Exponentiate(2, (9 * m_p - 11)/8); |
|
m_pre_2_3q = modq.Exponentiate(2, (3 * m_q - 5)/8); |
|
m_pre_q_p = modp.Exponentiate(m_q, m_p - 2); |
|
#endif |
|
|
|
m_precompute = true; |
|
} |
|
|
|
void InvertibleRWFunction::LoadPrecomputation(BufferedTransformation &bt) |
|
{ |
|
BERSequenceDecoder seq(bt); |
|
m_pre_2_9p.BERDecode(seq); |
|
m_pre_2_3q.BERDecode(seq); |
|
m_pre_q_p.BERDecode(seq); |
|
seq.MessageEnd(); |
|
|
|
m_precompute = true; |
|
} |
|
|
|
void InvertibleRWFunction::SavePrecomputation(BufferedTransformation &bt) const |
|
{ |
|
if(!m_precompute) |
|
Precompute(); |
|
|
|
DERSequenceEncoder seq(bt); |
|
m_pre_2_9p.DEREncode(seq); |
|
m_pre_2_3q.DEREncode(seq); |
|
m_pre_q_p.DEREncode(seq); |
|
seq.MessageEnd(); |
|
} |
|
|
|
void InvertibleRWFunction::BERDecode(BufferedTransformation &bt) |
|
{ |
|
BERSequenceDecoder seq(bt); |
|
m_n.BERDecode(seq); |
|
m_p.BERDecode(seq); |
|
m_q.BERDecode(seq); |
|
m_u.BERDecode(seq); |
|
seq.MessageEnd(); |
|
|
|
m_precompute = false; |
|
} |
|
|
|
void InvertibleRWFunction::DEREncode(BufferedTransformation &bt) const |
|
{ |
|
DERSequenceEncoder seq(bt); |
|
m_n.DEREncode(seq); |
|
m_p.DEREncode(seq); |
|
m_q.DEREncode(seq); |
|
m_u.DEREncode(seq); |
|
seq.MessageEnd(); |
|
} |
|
|
|
// DJB's "RSA signatures and Rabin-Williams signatures..." (http://cr.yp.to/sigs/rwsota-20080131.pdf). |
|
Integer InvertibleRWFunction::CalculateInverse(RandomNumberGenerator &rng, const Integer &x) const |
|
{ |
|
DoQuickSanityCheck(); |
|
|
|
if(!m_precompute) |
|
Precompute(); |
|
|
|
ModularArithmetic modn(m_n), modp(m_p), modq(m_q); |
|
Integer r, rInv; |
|
|
|
do |
|
{ |
|
// Do this in a loop for people using small numbers for testing |
|
r.Randomize(rng, Integer::One(), m_n - Integer::One()); |
|
// Fix for CVE-2015-2141. Thanks to Evgeny Sidorov for reporting. |
|
// Squaring to satisfy Jacobi requirements suggested by Jean-Pierre Munch. |
|
r = modn.Square(r); |
|
rInv = modn.MultiplicativeInverse(r); |
|
} while (rInv.IsZero()); |
|
|
|
Integer re = modn.Square(r); |
|
re = modn.Multiply(re, x); // blind |
|
|
|
const Integer &h = re, &p = m_p, &q = m_q; |
|
Integer e, f; |
|
|
|
const Integer U = modq.Exponentiate(h, (q+1)/8); |
|
if(((modq.Exponentiate(U, 4) - h) % q).IsZero()) |
|
e = Integer::One(); |
|
else |
|
e = -1; |
|
|
|
const Integer eh = e*h, V = modp.Exponentiate(eh, (p-3)/8); |
|
if(((modp.Multiply(modp.Exponentiate(V, 4), modp.Exponentiate(eh, 2)) - eh) % p).IsZero()) |
|
f = Integer::One(); |
|
else |
|
f = 2; |
|
|
|
#ifdef _OPENMP |
|
Integer W, X; |
|
#pragma omp parallel sections if(CRYPTOPP_RW_USE_OMP) |
|
{ |
|
#pragma omp section |
|
{ |
|
W = (f.IsUnit() ? U : modq.Multiply(m_pre_2_3q, U)); |
|
} |
|
#pragma omp section |
|
{ |
|
const Integer t = modp.Multiply(modp.Exponentiate(V, 3), eh); |
|
X = (f.IsUnit() ? t : modp.Multiply(m_pre_2_9p, t)); |
|
} |
|
} |
|
#else |
|
const Integer W = (f.IsUnit() ? U : modq.Multiply(m_pre_2_3q, U)); |
|
const Integer t = modp.Multiply(modp.Exponentiate(V, 3), eh); |
|
const Integer X = (f.IsUnit() ? t : modp.Multiply(m_pre_2_9p, t)); |
|
#endif |
|
|
|
const Integer Y = W + q * modp.Multiply(m_pre_q_p, (X - W)); |
|
|
|
// Signature |
|
Integer s = modn.Multiply(modn.Square(Y), rInv); |
|
CRYPTOPP_ASSERT((e * f * s.Squared()) % m_n == x); |
|
|
|
// IEEE P1363, Section 8.2.8 IFSP-RW, p.44 |
|
s = STDMIN(s, m_n - s); |
|
if (ApplyFunction(s) != x) // check |
|
throw Exception(Exception::OTHER_ERROR, "InvertibleRWFunction: computational error during private key operation"); |
|
|
|
return s; |
|
} |
|
|
|
bool InvertibleRWFunction::Validate(RandomNumberGenerator &rng, unsigned int level) const |
|
{ |
|
bool pass = RWFunction::Validate(rng, level); |
|
CRYPTOPP_ASSERT(pass); |
|
pass = pass && m_p > Integer::One() && m_p%8 == 3 && m_p < m_n; |
|
CRYPTOPP_ASSERT(pass); |
|
pass = pass && m_q > Integer::One() && m_q%8 == 7 && m_q < m_n; |
|
CRYPTOPP_ASSERT(pass); |
|
pass = pass && m_u.IsPositive() && m_u < m_p; |
|
CRYPTOPP_ASSERT(pass); |
|
if (level >= 1) |
|
{ |
|
pass = pass && m_p * m_q == m_n; |
|
CRYPTOPP_ASSERT(pass); |
|
pass = pass && m_u * m_q % m_p == 1; |
|
CRYPTOPP_ASSERT(pass); |
|
} |
|
if (level >= 2) |
|
{ |
|
pass = pass && VerifyPrime(rng, m_p, level-2) && VerifyPrime(rng, m_q, level-2); |
|
CRYPTOPP_ASSERT(pass); |
|
} |
|
return pass; |
|
} |
|
|
|
bool InvertibleRWFunction::GetVoidValue(const char *name, const std::type_info &valueType, void *pValue) const |
|
{ |
|
return GetValueHelper<RWFunction>(this, name, valueType, pValue).Assignable() |
|
CRYPTOPP_GET_FUNCTION_ENTRY(Prime1) |
|
CRYPTOPP_GET_FUNCTION_ENTRY(Prime2) |
|
CRYPTOPP_GET_FUNCTION_ENTRY(MultiplicativeInverseOfPrime2ModPrime1) |
|
; |
|
} |
|
|
|
void InvertibleRWFunction::AssignFrom(const NameValuePairs &source) |
|
{ |
|
AssignFromHelper<RWFunction>(this, source) |
|
CRYPTOPP_SET_FUNCTION_ENTRY(Prime1) |
|
CRYPTOPP_SET_FUNCTION_ENTRY(Prime2) |
|
CRYPTOPP_SET_FUNCTION_ENTRY(MultiplicativeInverseOfPrime2ModPrime1) |
|
; |
|
|
|
m_precompute = false; |
|
} |
|
|
|
NAMESPACE_END |
|
|
|
#endif
|
|
|