You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
737 lines
25 KiB
737 lines
25 KiB
// rijndael_simd.cpp - written and placed in the public domain by |
|
// Jeffrey Walton, Uri Blumenthal and Marcel Raad. |
|
// AES-NI code originally written by Wei Dai. |
|
// |
|
// This source file uses intrinsics and built-ins to gain access to |
|
// AES-NI, ARMv8a AES and Power8 AES instructions. A separate source |
|
// file is needed because additional CXXFLAGS are required to enable |
|
// the appropriate instructions sets in some build configurations. |
|
// |
|
// ARMv8a AES code based on CriticalBlue code from Johannes Schneiders, |
|
// Skip Hovsmith and Barry O'Rourke for the mbedTLS project. Stepping |
|
// mbedTLS under a debugger was helped for us to determine problems |
|
// with our subkey generation and scheduling. |
|
// |
|
// AltiVec and Power8 code based on http://github.com/noloader/AES-Intrinsics and |
|
// http://www.ibm.com/developerworks/library/se-power8-in-core-cryptography/ |
|
// For Power8 do not remove the casts, even when const-ness is cast away. It causes |
|
// failed compiles and a 0.3 to 0.6 cpb drop in performance. The IBM documentation |
|
// absolutely sucks. Thanks to Andy Polyakov, Paul R and Trudeaun for answering |
|
// questions and filling the gaps in the IBM documentation. |
|
// |
|
|
|
#include "pch.h" |
|
#include "config.h" |
|
#include "misc.h" |
|
|
|
#if (CRYPTOPP_AESNI_AVAILABLE) |
|
# include "adv_simd.h" |
|
# include <emmintrin.h> |
|
# include <smmintrin.h> |
|
# include <wmmintrin.h> |
|
#endif |
|
|
|
#if (CRYPTOPP_ARM_NEON_HEADER) |
|
# include "adv_simd.h" |
|
# include <arm_neon.h> |
|
#endif |
|
|
|
#if (CRYPTOPP_ARM_ACLE_HEADER) |
|
# include "adv_simd.h" |
|
# include <stdint.h> |
|
# include <arm_acle.h> |
|
#endif |
|
|
|
#if defined(_M_ARM64) |
|
# include "adv_simd.h" |
|
#endif |
|
|
|
#if defined(CRYPTOPP_POWER8_AES_AVAILABLE) |
|
# include "adv_simd.h" |
|
# include "ppc_simd.h" |
|
#endif |
|
|
|
#ifdef CRYPTOPP_GNU_STYLE_INLINE_ASSEMBLY |
|
# include <signal.h> |
|
# include <setjmp.h> |
|
#endif |
|
|
|
#ifndef EXCEPTION_EXECUTE_HANDLER |
|
# define EXCEPTION_EXECUTE_HANDLER 1 |
|
#endif |
|
|
|
// Clang intrinsic casts, http://bugs.llvm.org/show_bug.cgi?id=20670 |
|
#define M128_CAST(x) ((__m128i *)(void *)(x)) |
|
#define CONST_M128_CAST(x) ((const __m128i *)(const void *)(x)) |
|
|
|
// Squash MS LNK4221 and libtool warnings |
|
extern const char RIJNDAEL_SIMD_FNAME[] = __FILE__; |
|
|
|
NAMESPACE_BEGIN(CryptoPP) |
|
|
|
// ************************* Feature Probes ************************* // |
|
|
|
#ifdef CRYPTOPP_GNU_STYLE_INLINE_ASSEMBLY |
|
extern "C" { |
|
typedef void (*SigHandler)(int); |
|
|
|
static jmp_buf s_jmpSIGILL; |
|
static void SigIllHandler(int) |
|
{ |
|
longjmp(s_jmpSIGILL, 1); |
|
} |
|
} |
|
#endif // Not CRYPTOPP_MS_STYLE_INLINE_ASSEMBLY |
|
|
|
#if (CRYPTOPP_BOOL_ARM32 || CRYPTOPP_BOOL_ARMV8) |
|
bool CPU_ProbeAES() |
|
{ |
|
#if defined(CRYPTOPP_NO_CPU_FEATURE_PROBES) |
|
return false; |
|
#elif (CRYPTOPP_ARM_AES_AVAILABLE) |
|
# if defined(CRYPTOPP_MS_STYLE_INLINE_ASSEMBLY) |
|
volatile bool result = true; |
|
__try |
|
{ |
|
// AES encrypt and decrypt |
|
uint8x16_t data = vdupq_n_u8(0), key = vdupq_n_u8(0); |
|
uint8x16_t r1 = vaeseq_u8(data, key); |
|
uint8x16_t r2 = vaesdq_u8(data, key); |
|
r1 = vaesmcq_u8(r1); |
|
r2 = vaesimcq_u8(r2); |
|
|
|
result = !!(vgetq_lane_u8(r1,0) | vgetq_lane_u8(r2,7)); |
|
} |
|
__except (EXCEPTION_EXECUTE_HANDLER) |
|
{ |
|
return false; |
|
} |
|
return result; |
|
# else |
|
|
|
// longjmp and clobber warnings. Volatile is required. |
|
// http://github.com/weidai11/cryptopp/issues/24 and http://stackoverflow.com/q/7721854 |
|
volatile bool result = true; |
|
|
|
volatile SigHandler oldHandler = signal(SIGILL, SigIllHandler); |
|
if (oldHandler == SIG_ERR) |
|
return false; |
|
|
|
volatile sigset_t oldMask; |
|
if (sigprocmask(0, NULLPTR, (sigset_t*)&oldMask)) |
|
{ |
|
signal(SIGILL, oldHandler); |
|
return false; |
|
} |
|
|
|
if (setjmp(s_jmpSIGILL)) |
|
result = false; |
|
else |
|
{ |
|
uint8x16_t data = vdupq_n_u8(0), key = vdupq_n_u8(0); |
|
uint8x16_t r1 = vaeseq_u8(data, key); |
|
uint8x16_t r2 = vaesdq_u8(data, key); |
|
r1 = vaesmcq_u8(r1); |
|
r2 = vaesimcq_u8(r2); |
|
|
|
// Hack... GCC optimizes away the code and returns true |
|
result = !!(vgetq_lane_u8(r1,0) | vgetq_lane_u8(r2,7)); |
|
} |
|
|
|
sigprocmask(SIG_SETMASK, (sigset_t*)&oldMask, NULLPTR); |
|
signal(SIGILL, oldHandler); |
|
return result; |
|
# endif |
|
#else |
|
return false; |
|
#endif // CRYPTOPP_ARM_AES_AVAILABLE |
|
} |
|
#endif // ARM32 or ARM64 |
|
|
|
// ***************************** ARMv8 ***************************** // |
|
|
|
#if (CRYPTOPP_ARM_AES_AVAILABLE) |
|
|
|
ANONYMOUS_NAMESPACE_BEGIN |
|
|
|
inline void ARMV8_Enc_Block(uint64x2_t &data, const word32 *subkeys, unsigned int rounds) |
|
{ |
|
CRYPTOPP_ASSERT(subkeys); |
|
const byte *keys = reinterpret_cast<const byte*>(subkeys); |
|
uint8x16_t block = vreinterpretq_u8_u64(data); |
|
|
|
// AES single round encryption |
|
block = vaeseq_u8(block, vld1q_u8(keys+0*16)); |
|
// AES mix columns |
|
block = vaesmcq_u8(block); |
|
|
|
for (unsigned int i=1; i<rounds-1; i+=2) |
|
{ |
|
// AES single round encryption |
|
block = vaeseq_u8(block, vld1q_u8(keys+i*16)); |
|
// AES mix columns |
|
block = vaesmcq_u8(block); |
|
// AES single round encryption |
|
block = vaeseq_u8(block, vld1q_u8(keys+(i+1)*16)); |
|
// AES mix columns |
|
block = vaesmcq_u8(block); |
|
} |
|
|
|
// AES single round encryption |
|
block = vaeseq_u8(block, vld1q_u8(keys+(rounds-1)*16)); |
|
// Final Add (bitwise Xor) |
|
block = veorq_u8(block, vld1q_u8(keys+rounds*16)); |
|
|
|
data = vreinterpretq_u64_u8(block); |
|
} |
|
|
|
inline void ARMV8_Enc_6_Blocks(uint64x2_t &data0, uint64x2_t &data1, |
|
uint64x2_t &data2, uint64x2_t &data3, uint64x2_t &data4, uint64x2_t &data5, |
|
const word32 *subkeys, unsigned int rounds) |
|
{ |
|
CRYPTOPP_ASSERT(subkeys); |
|
const byte *keys = reinterpret_cast<const byte*>(subkeys); |
|
|
|
uint8x16_t block0 = vreinterpretq_u8_u64(data0); |
|
uint8x16_t block1 = vreinterpretq_u8_u64(data1); |
|
uint8x16_t block2 = vreinterpretq_u8_u64(data2); |
|
uint8x16_t block3 = vreinterpretq_u8_u64(data3); |
|
uint8x16_t block4 = vreinterpretq_u8_u64(data4); |
|
uint8x16_t block5 = vreinterpretq_u8_u64(data5); |
|
|
|
uint8x16_t key; |
|
for (unsigned int i=0; i<rounds-1; ++i) |
|
{ |
|
key = vld1q_u8(keys+i*16); |
|
// AES single round encryption |
|
block0 = vaeseq_u8(block0, key); |
|
// AES mix columns |
|
block0 = vaesmcq_u8(block0); |
|
// AES single round encryption |
|
block1 = vaeseq_u8(block1, key); |
|
// AES mix columns |
|
block1 = vaesmcq_u8(block1); |
|
// AES single round encryption |
|
block2 = vaeseq_u8(block2, key); |
|
// AES mix columns |
|
block2 = vaesmcq_u8(block2); |
|
// AES single round encryption |
|
block3 = vaeseq_u8(block3, key); |
|
// AES mix columns |
|
block3 = vaesmcq_u8(block3); |
|
// AES single round encryption |
|
block4 = vaeseq_u8(block4, key); |
|
// AES mix columns |
|
block4 = vaesmcq_u8(block4); |
|
// AES single round encryption |
|
block5 = vaeseq_u8(block5, key); |
|
// AES mix columns |
|
block5 = vaesmcq_u8(block5); |
|
} |
|
|
|
// AES single round encryption |
|
key = vld1q_u8(keys+(rounds-1)*16); |
|
block0 = vaeseq_u8(block0, key); |
|
block1 = vaeseq_u8(block1, key); |
|
block2 = vaeseq_u8(block2, key); |
|
block3 = vaeseq_u8(block3, key); |
|
block4 = vaeseq_u8(block4, key); |
|
block5 = vaeseq_u8(block5, key); |
|
|
|
// Final Add (bitwise Xor) |
|
key = vld1q_u8(keys+rounds*16); |
|
data0 = vreinterpretq_u64_u8(veorq_u8(block0, key)); |
|
data1 = vreinterpretq_u64_u8(veorq_u8(block1, key)); |
|
data2 = vreinterpretq_u64_u8(veorq_u8(block2, key)); |
|
data3 = vreinterpretq_u64_u8(veorq_u8(block3, key)); |
|
data4 = vreinterpretq_u64_u8(veorq_u8(block4, key)); |
|
data5 = vreinterpretq_u64_u8(veorq_u8(block5, key)); |
|
} |
|
|
|
inline void ARMV8_Dec_Block(uint64x2_t &data, const word32 *subkeys, unsigned int rounds) |
|
{ |
|
CRYPTOPP_ASSERT(subkeys); |
|
const byte *keys = reinterpret_cast<const byte*>(subkeys); |
|
uint8x16_t block = vreinterpretq_u8_u64(data); |
|
|
|
// AES single round decryption |
|
block = vaesdq_u8(block, vld1q_u8(keys+0*16)); |
|
// AES inverse mix columns |
|
block = vaesimcq_u8(block); |
|
|
|
for (unsigned int i=1; i<rounds-1; i+=2) |
|
{ |
|
// AES single round decryption |
|
block = vaesdq_u8(block, vld1q_u8(keys+i*16)); |
|
// AES inverse mix columns |
|
block = vaesimcq_u8(block); |
|
// AES single round decryption |
|
block = vaesdq_u8(block, vld1q_u8(keys+(i+1)*16)); |
|
// AES inverse mix columns |
|
block = vaesimcq_u8(block); |
|
} |
|
|
|
// AES single round decryption |
|
block = vaesdq_u8(block, vld1q_u8(keys+(rounds-1)*16)); |
|
// Final Add (bitwise Xor) |
|
block = veorq_u8(block, vld1q_u8(keys+rounds*16)); |
|
|
|
data = vreinterpretq_u64_u8(block); |
|
} |
|
|
|
inline void ARMV8_Dec_6_Blocks(uint64x2_t &data0, uint64x2_t &data1, |
|
uint64x2_t &data2, uint64x2_t &data3, uint64x2_t &data4, uint64x2_t &data5, |
|
const word32 *subkeys, unsigned int rounds) |
|
{ |
|
CRYPTOPP_ASSERT(subkeys); |
|
const byte *keys = reinterpret_cast<const byte*>(subkeys); |
|
|
|
uint8x16_t block0 = vreinterpretq_u8_u64(data0); |
|
uint8x16_t block1 = vreinterpretq_u8_u64(data1); |
|
uint8x16_t block2 = vreinterpretq_u8_u64(data2); |
|
uint8x16_t block3 = vreinterpretq_u8_u64(data3); |
|
uint8x16_t block4 = vreinterpretq_u8_u64(data4); |
|
uint8x16_t block5 = vreinterpretq_u8_u64(data5); |
|
|
|
uint8x16_t key; |
|
for (unsigned int i=0; i<rounds-1; ++i) |
|
{ |
|
key = vld1q_u8(keys+i*16); |
|
// AES single round decryption |
|
block0 = vaesdq_u8(block0, key); |
|
// AES inverse mix columns |
|
block0 = vaesimcq_u8(block0); |
|
// AES single round decryption |
|
block1 = vaesdq_u8(block1, key); |
|
// AES inverse mix columns |
|
block1 = vaesimcq_u8(block1); |
|
// AES single round decryption |
|
block2 = vaesdq_u8(block2, key); |
|
// AES inverse mix columns |
|
block2 = vaesimcq_u8(block2); |
|
// AES single round decryption |
|
block3 = vaesdq_u8(block3, key); |
|
// AES inverse mix columns |
|
block3 = vaesimcq_u8(block3); |
|
// AES single round decryption |
|
block4 = vaesdq_u8(block4, key); |
|
// AES inverse mix columns |
|
block4 = vaesimcq_u8(block4); |
|
// AES single round decryption |
|
block5 = vaesdq_u8(block5, key); |
|
// AES inverse mix columns |
|
block5 = vaesimcq_u8(block5); |
|
} |
|
|
|
// AES single round decryption |
|
key = vld1q_u8(keys+(rounds-1)*16); |
|
block0 = vaesdq_u8(block0, key); |
|
block1 = vaesdq_u8(block1, key); |
|
block2 = vaesdq_u8(block2, key); |
|
block3 = vaesdq_u8(block3, key); |
|
block4 = vaesdq_u8(block4, key); |
|
block5 = vaesdq_u8(block5, key); |
|
|
|
// Final Add (bitwise Xor) |
|
key = vld1q_u8(keys+rounds*16); |
|
data0 = vreinterpretq_u64_u8(veorq_u8(block0, key)); |
|
data1 = vreinterpretq_u64_u8(veorq_u8(block1, key)); |
|
data2 = vreinterpretq_u64_u8(veorq_u8(block2, key)); |
|
data3 = vreinterpretq_u64_u8(veorq_u8(block3, key)); |
|
data4 = vreinterpretq_u64_u8(veorq_u8(block4, key)); |
|
data5 = vreinterpretq_u64_u8(veorq_u8(block5, key)); |
|
} |
|
|
|
ANONYMOUS_NAMESPACE_END |
|
|
|
size_t Rijndael_Enc_AdvancedProcessBlocks_ARMV8(const word32 *subKeys, size_t rounds, |
|
const byte *inBlocks, const byte *xorBlocks, byte *outBlocks, size_t length, word32 flags) |
|
{ |
|
return AdvancedProcessBlocks128_6x1_NEON(ARMV8_Enc_Block, ARMV8_Enc_6_Blocks, |
|
subKeys, rounds, inBlocks, xorBlocks, outBlocks, length, flags); |
|
} |
|
|
|
size_t Rijndael_Dec_AdvancedProcessBlocks_ARMV8(const word32 *subKeys, size_t rounds, |
|
const byte *inBlocks, const byte *xorBlocks, byte *outBlocks, size_t length, word32 flags) |
|
{ |
|
return AdvancedProcessBlocks128_6x1_NEON(ARMV8_Dec_Block, ARMV8_Dec_6_Blocks, |
|
subKeys, rounds, inBlocks, xorBlocks, outBlocks, length, flags); |
|
} |
|
|
|
#endif // CRYPTOPP_ARM_AES_AVAILABLE |
|
|
|
// ***************************** AES-NI ***************************** // |
|
|
|
#if (CRYPTOPP_AESNI_AVAILABLE) |
|
|
|
ANONYMOUS_NAMESPACE_BEGIN |
|
|
|
/* for 128-bit blocks, Rijndael never uses more than 10 rcon values */ |
|
CRYPTOPP_ALIGN_DATA(16) |
|
const word32 s_rconLE[] = { |
|
0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x1B, 0x36 |
|
}; |
|
|
|
inline void AESNI_Enc_Block(__m128i &block, MAYBE_CONST word32 *subkeys, unsigned int rounds) |
|
{ |
|
const __m128i* skeys = reinterpret_cast<const __m128i*>(subkeys); |
|
|
|
block = _mm_xor_si128(block, skeys[0]); |
|
for (unsigned int i=1; i<rounds-1; i+=2) |
|
{ |
|
block = _mm_aesenc_si128(block, skeys[i]); |
|
block = _mm_aesenc_si128(block, skeys[i+1]); |
|
} |
|
block = _mm_aesenc_si128(block, skeys[rounds-1]); |
|
block = _mm_aesenclast_si128(block, skeys[rounds]); |
|
} |
|
|
|
inline void AESNI_Enc_4_Blocks(__m128i &block0, __m128i &block1, __m128i &block2, __m128i &block3, |
|
MAYBE_CONST word32 *subkeys, unsigned int rounds) |
|
{ |
|
const __m128i* skeys = reinterpret_cast<const __m128i*>(subkeys); |
|
|
|
__m128i rk = skeys[0]; |
|
block0 = _mm_xor_si128(block0, rk); |
|
block1 = _mm_xor_si128(block1, rk); |
|
block2 = _mm_xor_si128(block2, rk); |
|
block3 = _mm_xor_si128(block3, rk); |
|
for (unsigned int i=1; i<rounds; i++) |
|
{ |
|
rk = skeys[i]; |
|
block0 = _mm_aesenc_si128(block0, rk); |
|
block1 = _mm_aesenc_si128(block1, rk); |
|
block2 = _mm_aesenc_si128(block2, rk); |
|
block3 = _mm_aesenc_si128(block3, rk); |
|
} |
|
rk = skeys[rounds]; |
|
block0 = _mm_aesenclast_si128(block0, rk); |
|
block1 = _mm_aesenclast_si128(block1, rk); |
|
block2 = _mm_aesenclast_si128(block2, rk); |
|
block3 = _mm_aesenclast_si128(block3, rk); |
|
} |
|
|
|
inline void AESNI_Dec_Block(__m128i &block, MAYBE_CONST word32 *subkeys, unsigned int rounds) |
|
{ |
|
const __m128i* skeys = reinterpret_cast<const __m128i*>(subkeys); |
|
|
|
block = _mm_xor_si128(block, skeys[0]); |
|
for (unsigned int i=1; i<rounds-1; i+=2) |
|
{ |
|
block = _mm_aesdec_si128(block, skeys[i]); |
|
block = _mm_aesdec_si128(block, skeys[i+1]); |
|
} |
|
block = _mm_aesdec_si128(block, skeys[rounds-1]); |
|
block = _mm_aesdeclast_si128(block, skeys[rounds]); |
|
} |
|
|
|
inline void AESNI_Dec_4_Blocks(__m128i &block0, __m128i &block1, __m128i &block2, __m128i &block3, |
|
MAYBE_CONST word32 *subkeys, unsigned int rounds) |
|
{ |
|
const __m128i* skeys = reinterpret_cast<const __m128i*>(subkeys); |
|
|
|
__m128i rk = skeys[0]; |
|
block0 = _mm_xor_si128(block0, rk); |
|
block1 = _mm_xor_si128(block1, rk); |
|
block2 = _mm_xor_si128(block2, rk); |
|
block3 = _mm_xor_si128(block3, rk); |
|
for (unsigned int i=1; i<rounds; i++) |
|
{ |
|
rk = skeys[i]; |
|
block0 = _mm_aesdec_si128(block0, rk); |
|
block1 = _mm_aesdec_si128(block1, rk); |
|
block2 = _mm_aesdec_si128(block2, rk); |
|
block3 = _mm_aesdec_si128(block3, rk); |
|
} |
|
rk = skeys[rounds]; |
|
block0 = _mm_aesdeclast_si128(block0, rk); |
|
block1 = _mm_aesdeclast_si128(block1, rk); |
|
block2 = _mm_aesdeclast_si128(block2, rk); |
|
block3 = _mm_aesdeclast_si128(block3, rk); |
|
} |
|
|
|
ANONYMOUS_NAMESPACE_END |
|
|
|
void Rijndael_UncheckedSetKey_SSE4_AESNI(const byte *userKey, size_t keyLen, word32 *rk) |
|
{ |
|
const size_t rounds = keyLen / 4 + 6; |
|
const word32 *rc = s_rconLE; |
|
|
|
__m128i temp = _mm_loadu_si128(M128_CAST(userKey+keyLen-16)); |
|
std::memcpy(rk, userKey, keyLen); |
|
|
|
// keySize: m_key allocates 4*(rounds+1) word32's. |
|
const size_t keySize = 4*(rounds+1); |
|
const word32* end = rk + keySize; |
|
|
|
while (true) |
|
{ |
|
rk[keyLen/4] = rk[0] ^ _mm_extract_epi32(_mm_aeskeygenassist_si128(temp, 0), 3) ^ *(rc++); |
|
rk[keyLen/4+1] = rk[1] ^ rk[keyLen/4]; |
|
rk[keyLen/4+2] = rk[2] ^ rk[keyLen/4+1]; |
|
rk[keyLen/4+3] = rk[3] ^ rk[keyLen/4+2]; |
|
|
|
if (rk + keyLen/4 + 4 == end) |
|
break; |
|
|
|
if (keyLen == 24) |
|
{ |
|
rk[10] = rk[ 4] ^ rk[ 9]; |
|
rk[11] = rk[ 5] ^ rk[10]; |
|
temp = _mm_insert_epi32(temp, rk[11], 3); |
|
} |
|
else if (keyLen == 32) |
|
{ |
|
temp = _mm_insert_epi32(temp, rk[11], 3); |
|
rk[12] = rk[ 4] ^ _mm_extract_epi32(_mm_aeskeygenassist_si128(temp, 0), 2); |
|
rk[13] = rk[ 5] ^ rk[12]; |
|
rk[14] = rk[ 6] ^ rk[13]; |
|
rk[15] = rk[ 7] ^ rk[14]; |
|
temp = _mm_insert_epi32(temp, rk[15], 3); |
|
} |
|
else |
|
{ |
|
temp = _mm_insert_epi32(temp, rk[7], 3); |
|
} |
|
|
|
rk += keyLen/4; |
|
} |
|
} |
|
|
|
void Rijndael_UncheckedSetKeyRev_AESNI(word32 *key, unsigned int rounds) |
|
{ |
|
unsigned int i, j; |
|
__m128i temp; |
|
|
|
vec_swap(*M128_CAST(key), *M128_CAST(key+4*rounds)); |
|
|
|
for (i = 4, j = 4*rounds-4; i < j; i += 4, j -= 4) |
|
{ |
|
temp = _mm_aesimc_si128(*M128_CAST(key+i)); |
|
*M128_CAST(key+i) = _mm_aesimc_si128(*M128_CAST(key+j)); |
|
*M128_CAST(key+j) = temp; |
|
} |
|
|
|
*M128_CAST(key+i) = _mm_aesimc_si128(*M128_CAST(key+i)); |
|
} |
|
|
|
size_t Rijndael_Enc_AdvancedProcessBlocks_AESNI(const word32 *subKeys, size_t rounds, |
|
const byte *inBlocks, const byte *xorBlocks, byte *outBlocks, size_t length, word32 flags) |
|
{ |
|
// SunCC workaround |
|
MAYBE_CONST word32* sk = MAYBE_UNCONST_CAST(word32*, subKeys); |
|
MAYBE_CONST byte* ib = MAYBE_UNCONST_CAST(byte*, inBlocks); |
|
MAYBE_CONST byte* xb = MAYBE_UNCONST_CAST(byte*, xorBlocks); |
|
|
|
return AdvancedProcessBlocks128_4x1_SSE(AESNI_Enc_Block, AESNI_Enc_4_Blocks, |
|
sk, rounds, ib, xb, outBlocks, length, flags); |
|
} |
|
|
|
size_t Rijndael_Dec_AdvancedProcessBlocks_AESNI(const word32 *subKeys, size_t rounds, |
|
const byte *inBlocks, const byte *xorBlocks, byte *outBlocks, size_t length, word32 flags) |
|
{ |
|
MAYBE_CONST word32* sk = MAYBE_UNCONST_CAST(word32*, subKeys); |
|
MAYBE_CONST byte* ib = MAYBE_UNCONST_CAST(byte*, inBlocks); |
|
MAYBE_CONST byte* xb = MAYBE_UNCONST_CAST(byte*, xorBlocks); |
|
|
|
return AdvancedProcessBlocks128_4x1_SSE(AESNI_Dec_Block, AESNI_Dec_4_Blocks, |
|
sk, rounds, ib, xb, outBlocks, length, flags); |
|
} |
|
|
|
#endif // CRYPTOPP_AESNI_AVAILABLE |
|
|
|
// ************************** Power 8 Crypto ************************** // |
|
|
|
#if (CRYPTOPP_POWER8_AES_AVAILABLE) |
|
|
|
ANONYMOUS_NAMESPACE_BEGIN |
|
|
|
/* for 128-bit blocks, Rijndael never uses more than 10 rcon values */ |
|
CRYPTOPP_ALIGN_DATA(16) |
|
static const uint32_t s_rconBE[] = { |
|
0x01000000, 0x02000000, 0x04000000, 0x08000000, |
|
0x10000000, 0x20000000, 0x40000000, 0x80000000, |
|
0x1B000000, 0x36000000 |
|
}; |
|
|
|
inline void POWER8_Enc_Block(uint32x4_p &block, const word32 *subkeys, unsigned int rounds) |
|
{ |
|
CRYPTOPP_ASSERT(IsAlignedOn(subkeys, 16)); |
|
const byte *keys = reinterpret_cast<const byte*>(subkeys); |
|
|
|
uint32x4_p k = VecLoadAligned(keys); |
|
block = VecXor(block, k); |
|
|
|
for (size_t i=1; i<rounds-1; i+=2) |
|
{ |
|
block = VecEncrypt(block, VecLoadAligned( i*16, keys)); |
|
block = VecEncrypt(block, VecLoadAligned((i+1)*16, keys)); |
|
} |
|
|
|
block = VecEncrypt(block, VecLoadAligned((rounds-1)*16, keys)); |
|
block = VecEncryptLast(block, VecLoadAligned(rounds*16, keys)); |
|
} |
|
|
|
inline void POWER8_Enc_6_Blocks(uint32x4_p &block0, uint32x4_p &block1, |
|
uint32x4_p &block2, uint32x4_p &block3, uint32x4_p &block4, |
|
uint32x4_p &block5, const word32 *subkeys, unsigned int rounds) |
|
{ |
|
CRYPTOPP_ASSERT(IsAlignedOn(subkeys, 16)); |
|
const byte *keys = reinterpret_cast<const byte*>(subkeys); |
|
|
|
uint32x4_p k = VecLoadAligned(keys); |
|
block0 = VecXor(block0, k); |
|
block1 = VecXor(block1, k); |
|
block2 = VecXor(block2, k); |
|
block3 = VecXor(block3, k); |
|
block4 = VecXor(block4, k); |
|
block5 = VecXor(block5, k); |
|
|
|
for (size_t i=1; i<rounds; ++i) |
|
{ |
|
k = VecLoadAligned(i*16, keys); |
|
block0 = VecEncrypt(block0, k); |
|
block1 = VecEncrypt(block1, k); |
|
block2 = VecEncrypt(block2, k); |
|
block3 = VecEncrypt(block3, k); |
|
block4 = VecEncrypt(block4, k); |
|
block5 = VecEncrypt(block5, k); |
|
} |
|
|
|
k = VecLoadAligned(rounds*16, keys); |
|
block0 = VecEncryptLast(block0, k); |
|
block1 = VecEncryptLast(block1, k); |
|
block2 = VecEncryptLast(block2, k); |
|
block3 = VecEncryptLast(block3, k); |
|
block4 = VecEncryptLast(block4, k); |
|
block5 = VecEncryptLast(block5, k); |
|
} |
|
|
|
inline void POWER8_Dec_Block(uint32x4_p &block, const word32 *subkeys, unsigned int rounds) |
|
{ |
|
CRYPTOPP_ASSERT(IsAlignedOn(subkeys, 16)); |
|
const byte *keys = reinterpret_cast<const byte*>(subkeys); |
|
|
|
uint32x4_p k = VecLoadAligned(rounds*16, keys); |
|
block = VecXor(block, k); |
|
|
|
for (size_t i=rounds-1; i>1; i-=2) |
|
{ |
|
block = VecDecrypt(block, VecLoadAligned( i*16, keys)); |
|
block = VecDecrypt(block, VecLoadAligned((i-1)*16, keys)); |
|
} |
|
|
|
block = VecDecrypt(block, VecLoadAligned(16, keys)); |
|
block = VecDecryptLast(block, VecLoadAligned(0, keys)); |
|
} |
|
|
|
inline void POWER8_Dec_6_Blocks(uint32x4_p &block0, uint32x4_p &block1, |
|
uint32x4_p &block2, uint32x4_p &block3, uint32x4_p &block4, |
|
uint32x4_p &block5, const word32 *subkeys, unsigned int rounds) |
|
{ |
|
CRYPTOPP_ASSERT(IsAlignedOn(subkeys, 16)); |
|
const byte *keys = reinterpret_cast<const byte*>(subkeys); |
|
|
|
uint32x4_p k = VecLoadAligned(rounds*16, keys); |
|
block0 = VecXor(block0, k); |
|
block1 = VecXor(block1, k); |
|
block2 = VecXor(block2, k); |
|
block3 = VecXor(block3, k); |
|
block4 = VecXor(block4, k); |
|
block5 = VecXor(block5, k); |
|
|
|
for (size_t i=rounds-1; i>0; --i) |
|
{ |
|
k = VecLoadAligned(i*16, keys); |
|
block0 = VecDecrypt(block0, k); |
|
block1 = VecDecrypt(block1, k); |
|
block2 = VecDecrypt(block2, k); |
|
block3 = VecDecrypt(block3, k); |
|
block4 = VecDecrypt(block4, k); |
|
block5 = VecDecrypt(block5, k); |
|
} |
|
|
|
k = VecLoadAligned(0, keys); |
|
block0 = VecDecryptLast(block0, k); |
|
block1 = VecDecryptLast(block1, k); |
|
block2 = VecDecryptLast(block2, k); |
|
block3 = VecDecryptLast(block3, k); |
|
block4 = VecDecryptLast(block4, k); |
|
block5 = VecDecryptLast(block5, k); |
|
} |
|
|
|
ANONYMOUS_NAMESPACE_END |
|
|
|
void Rijndael_UncheckedSetKey_POWER8(const byte* userKey, size_t keyLen, word32* rk, const byte* Se) |
|
{ |
|
const size_t rounds = keyLen / 4 + 6; |
|
const word32 *rc = s_rconBE; |
|
word32 *rkey = rk, temp; |
|
|
|
GetUserKey(BIG_ENDIAN_ORDER, rkey, keyLen/4, userKey, keyLen); |
|
|
|
// keySize: m_key allocates 4*(rounds+1) word32's. |
|
const size_t keySize = 4*(rounds+1); |
|
const word32* end = rkey + keySize; |
|
|
|
while (true) |
|
{ |
|
temp = rkey[keyLen/4-1]; |
|
word32 x = (word32(Se[GETBYTE(temp, 2)]) << 24) ^ (word32(Se[GETBYTE(temp, 1)]) << 16) ^ |
|
(word32(Se[GETBYTE(temp, 0)]) << 8) ^ Se[GETBYTE(temp, 3)]; |
|
rkey[keyLen/4] = rkey[0] ^ x ^ *(rc++); |
|
rkey[keyLen/4+1] = rkey[1] ^ rkey[keyLen/4]; |
|
rkey[keyLen/4+2] = rkey[2] ^ rkey[keyLen/4+1]; |
|
rkey[keyLen/4+3] = rkey[3] ^ rkey[keyLen/4+2]; |
|
|
|
if (rkey + keyLen/4 + 4 == end) |
|
break; |
|
|
|
if (keyLen == 24) |
|
{ |
|
rkey[10] = rkey[ 4] ^ rkey[ 9]; |
|
rkey[11] = rkey[ 5] ^ rkey[10]; |
|
} |
|
else if (keyLen == 32) |
|
{ |
|
temp = rkey[11]; |
|
rkey[12] = rkey[ 4] ^ (word32(Se[GETBYTE(temp, 3)]) << 24) ^ (word32(Se[GETBYTE(temp, 2)]) << 16) ^ (word32(Se[GETBYTE(temp, 1)]) << 8) ^ Se[GETBYTE(temp, 0)]; |
|
rkey[13] = rkey[ 5] ^ rkey[12]; |
|
rkey[14] = rkey[ 6] ^ rkey[13]; |
|
rkey[15] = rkey[ 7] ^ rkey[14]; |
|
} |
|
rkey += keyLen/4; |
|
} |
|
|
|
#if (CRYPTOPP_LITTLE_ENDIAN) |
|
rkey = rk; |
|
const uint8x16_p mask = {12,13,14,15, 8,9,10,11, 4,5,6,7, 0,1,2,3}; |
|
|
|
unsigned int i=0; |
|
for (i=0; i<rounds; i+=2, rkey+=8) |
|
{ |
|
VecStore(VecPermute(VecLoad(rkey+0), mask), rkey+0); |
|
VecStore(VecPermute(VecLoad(rkey+4), mask), rkey+4); |
|
} |
|
|
|
for ( ; i<rounds+1; i++, rkey+=4) |
|
VecStore(VecPermute(VecLoad(rkey), mask), rkey); |
|
#endif |
|
} |
|
|
|
size_t Rijndael_Enc_AdvancedProcessBlocks128_6x1_ALTIVEC(const word32 *subKeys, size_t rounds, |
|
const byte *inBlocks, const byte *xorBlocks, byte *outBlocks, size_t length, word32 flags) |
|
{ |
|
return AdvancedProcessBlocks128_6x1_ALTIVEC(POWER8_Enc_Block, POWER8_Enc_6_Blocks, |
|
subKeys, rounds, inBlocks, xorBlocks, outBlocks, length, flags); |
|
} |
|
|
|
size_t Rijndael_Dec_AdvancedProcessBlocks128_6x1_ALTIVEC(const word32 *subKeys, size_t rounds, |
|
const byte *inBlocks, const byte *xorBlocks, byte *outBlocks, size_t length, word32 flags) |
|
{ |
|
return AdvancedProcessBlocks128_6x1_ALTIVEC(POWER8_Dec_Block, POWER8_Dec_6_Blocks, |
|
subKeys, rounds, inBlocks, xorBlocks, outBlocks, length, flags); |
|
} |
|
|
|
#endif // CRYPTOPP_POWER8_AES_AVAILABLE |
|
NAMESPACE_END
|
|
|