You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
241 lines
6.1 KiB
241 lines
6.1 KiB
// rabin.cpp - originally written and placed in the public domain by Wei Dai |
|
|
|
#include "pch.h" |
|
#include "rabin.h" |
|
#include "integer.h" |
|
#include "nbtheory.h" |
|
#include "modarith.h" |
|
#include "asn.h" |
|
#include "sha.h" |
|
|
|
NAMESPACE_BEGIN(CryptoPP) |
|
|
|
void RabinFunction::BERDecode(BufferedTransformation &bt) |
|
{ |
|
BERSequenceDecoder seq(bt); |
|
m_n.BERDecode(seq); |
|
m_r.BERDecode(seq); |
|
m_s.BERDecode(seq); |
|
seq.MessageEnd(); |
|
} |
|
|
|
void RabinFunction::DEREncode(BufferedTransformation &bt) const |
|
{ |
|
DERSequenceEncoder seq(bt); |
|
m_n.DEREncode(seq); |
|
m_r.DEREncode(seq); |
|
m_s.DEREncode(seq); |
|
seq.MessageEnd(); |
|
} |
|
|
|
Integer RabinFunction::ApplyFunction(const Integer &in) const |
|
{ |
|
DoQuickSanityCheck(); |
|
|
|
Integer out = in.Squared()%m_n; |
|
if (in.IsOdd()) |
|
out = out*m_r%m_n; |
|
if (Jacobi(in, m_n)==-1) |
|
out = out*m_s%m_n; |
|
return out; |
|
} |
|
|
|
bool RabinFunction::Validate(RandomNumberGenerator& /*rng*/, unsigned int level) const |
|
{ |
|
bool pass = true; |
|
pass = pass && m_n > Integer::One() && m_n%4 == 1; |
|
CRYPTOPP_ASSERT(pass); |
|
pass = pass && m_r > Integer::One() && m_r < m_n; |
|
CRYPTOPP_ASSERT(pass); |
|
pass = pass && m_s > Integer::One() && m_s < m_n; |
|
CRYPTOPP_ASSERT(pass); |
|
if (level >= 1) |
|
{ |
|
pass = pass && Jacobi(m_r, m_n) == -1 && Jacobi(m_s, m_n) == -1; |
|
CRYPTOPP_ASSERT(pass); |
|
} |
|
return pass; |
|
} |
|
|
|
bool RabinFunction::GetVoidValue(const char *name, const std::type_info &valueType, void *pValue) const |
|
{ |
|
return GetValueHelper(this, name, valueType, pValue).Assignable() |
|
CRYPTOPP_GET_FUNCTION_ENTRY(Modulus) |
|
CRYPTOPP_GET_FUNCTION_ENTRY(QuadraticResidueModPrime1) |
|
CRYPTOPP_GET_FUNCTION_ENTRY(QuadraticResidueModPrime2) |
|
; |
|
} |
|
|
|
void RabinFunction::AssignFrom(const NameValuePairs &source) |
|
{ |
|
AssignFromHelper(this, source) |
|
CRYPTOPP_SET_FUNCTION_ENTRY(Modulus) |
|
CRYPTOPP_SET_FUNCTION_ENTRY(QuadraticResidueModPrime1) |
|
CRYPTOPP_SET_FUNCTION_ENTRY(QuadraticResidueModPrime2) |
|
; |
|
} |
|
|
|
// ***************************************************************************** |
|
// private key operations: |
|
|
|
// generate a random private key |
|
void InvertibleRabinFunction::GenerateRandom(RandomNumberGenerator &rng, const NameValuePairs &alg) |
|
{ |
|
int modulusSize = 2048; |
|
alg.GetIntValue("ModulusSize", modulusSize) || alg.GetIntValue("KeySize", modulusSize); |
|
|
|
if (modulusSize < 16) |
|
throw InvalidArgument("InvertibleRabinFunction: specified modulus size is too small"); |
|
|
|
// VC70 workaround: putting these after primeParam causes overlapped stack allocation |
|
bool rFound=false, sFound=false; |
|
Integer t=2; |
|
|
|
AlgorithmParameters primeParam = MakeParametersForTwoPrimesOfEqualSize(modulusSize) |
|
("EquivalentTo", 3)("Mod", 4); |
|
m_p.GenerateRandom(rng, primeParam); |
|
m_q.GenerateRandom(rng, primeParam); |
|
|
|
while (!(rFound && sFound)) |
|
{ |
|
int jp = Jacobi(t, m_p); |
|
int jq = Jacobi(t, m_q); |
|
|
|
if (!rFound && jp==1 && jq==-1) |
|
{ |
|
m_r = t; |
|
rFound = true; |
|
} |
|
|
|
if (!sFound && jp==-1 && jq==1) |
|
{ |
|
m_s = t; |
|
sFound = true; |
|
} |
|
|
|
++t; |
|
} |
|
|
|
m_n = m_p * m_q; |
|
m_u = m_q.InverseMod(m_p); |
|
} |
|
|
|
void InvertibleRabinFunction::BERDecode(BufferedTransformation &bt) |
|
{ |
|
BERSequenceDecoder seq(bt); |
|
m_n.BERDecode(seq); |
|
m_r.BERDecode(seq); |
|
m_s.BERDecode(seq); |
|
m_p.BERDecode(seq); |
|
m_q.BERDecode(seq); |
|
m_u.BERDecode(seq); |
|
seq.MessageEnd(); |
|
} |
|
|
|
void InvertibleRabinFunction::DEREncode(BufferedTransformation &bt) const |
|
{ |
|
DERSequenceEncoder seq(bt); |
|
m_n.DEREncode(seq); |
|
m_r.DEREncode(seq); |
|
m_s.DEREncode(seq); |
|
m_p.DEREncode(seq); |
|
m_q.DEREncode(seq); |
|
m_u.DEREncode(seq); |
|
seq.MessageEnd(); |
|
} |
|
|
|
Integer InvertibleRabinFunction::CalculateInverse(RandomNumberGenerator &rng, const Integer &in) const |
|
{ |
|
DoQuickSanityCheck(); |
|
|
|
ModularArithmetic modn(m_n); |
|
Integer r(rng, Integer::One(), m_n - Integer::One()); |
|
r = modn.Square(r); |
|
Integer r2 = modn.Square(r); |
|
Integer c = modn.Multiply(in, r2); // blind |
|
|
|
Integer cp=c%m_p, cq=c%m_q; |
|
|
|
int jp = Jacobi(cp, m_p); |
|
int jq = Jacobi(cq, m_q); |
|
|
|
if (jq==-1) |
|
{ |
|
cp = cp*EuclideanMultiplicativeInverse(m_r, m_p)%m_p; |
|
cq = cq*EuclideanMultiplicativeInverse(m_r, m_q)%m_q; |
|
} |
|
|
|
if (jp==-1) |
|
{ |
|
cp = cp*EuclideanMultiplicativeInverse(m_s, m_p)%m_p; |
|
cq = cq*EuclideanMultiplicativeInverse(m_s, m_q)%m_q; |
|
} |
|
|
|
cp = ModularSquareRoot(cp, m_p); |
|
cq = ModularSquareRoot(cq, m_q); |
|
|
|
if (jp==-1) |
|
cp = m_p-cp; |
|
|
|
Integer out = CRT(cq, m_q, cp, m_p, m_u); |
|
|
|
out = modn.Divide(out, r); // unblind |
|
|
|
if ((jq==-1 && out.IsEven()) || (jq==1 && out.IsOdd())) |
|
out = m_n-out; |
|
|
|
return out; |
|
} |
|
|
|
bool InvertibleRabinFunction::Validate(RandomNumberGenerator &rng, unsigned int level) const |
|
{ |
|
bool pass = RabinFunction::Validate(rng, level); |
|
CRYPTOPP_ASSERT(pass); |
|
pass = pass && m_p > Integer::One() && m_p%4 == 3 && m_p < m_n; |
|
CRYPTOPP_ASSERT(pass); |
|
pass = pass && m_q > Integer::One() && m_q%4 == 3 && m_q < m_n; |
|
CRYPTOPP_ASSERT(pass); |
|
pass = pass && m_u.IsPositive() && m_u < m_p; |
|
CRYPTOPP_ASSERT(pass); |
|
if (level >= 1) |
|
{ |
|
pass = pass && m_p * m_q == m_n; |
|
CRYPTOPP_ASSERT(pass); |
|
pass = pass && m_u * m_q % m_p == 1; |
|
CRYPTOPP_ASSERT(pass); |
|
pass = pass && Jacobi(m_r, m_p) == 1; |
|
CRYPTOPP_ASSERT(pass); |
|
pass = pass && Jacobi(m_r, m_q) == -1; |
|
CRYPTOPP_ASSERT(pass); |
|
pass = pass && Jacobi(m_s, m_p) == -1; |
|
CRYPTOPP_ASSERT(pass); |
|
pass = pass && Jacobi(m_s, m_q) == 1; |
|
CRYPTOPP_ASSERT(pass); |
|
} |
|
if (level >= 2) |
|
{ |
|
pass = pass && VerifyPrime(rng, m_p, level-2) && VerifyPrime(rng, m_q, level-2); |
|
CRYPTOPP_ASSERT(pass); |
|
} |
|
return pass; |
|
} |
|
|
|
bool InvertibleRabinFunction::GetVoidValue(const char *name, const std::type_info &valueType, void *pValue) const |
|
{ |
|
return GetValueHelper<RabinFunction>(this, name, valueType, pValue).Assignable() |
|
CRYPTOPP_GET_FUNCTION_ENTRY(Prime1) |
|
CRYPTOPP_GET_FUNCTION_ENTRY(Prime2) |
|
CRYPTOPP_GET_FUNCTION_ENTRY(MultiplicativeInverseOfPrime2ModPrime1) |
|
; |
|
} |
|
|
|
void InvertibleRabinFunction::AssignFrom(const NameValuePairs &source) |
|
{ |
|
AssignFromHelper<RabinFunction>(this, source) |
|
CRYPTOPP_SET_FUNCTION_ENTRY(Prime1) |
|
CRYPTOPP_SET_FUNCTION_ENTRY(Prime2) |
|
CRYPTOPP_SET_FUNCTION_ENTRY(MultiplicativeInverseOfPrime2ModPrime1) |
|
; |
|
} |
|
|
|
NAMESPACE_END
|
|
|