You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
344 lines
14 KiB
344 lines
14 KiB
// modarith.h - originally written and placed in the public domain by Wei Dai |
|
|
|
/// \file modarith.h |
|
/// \brief Class file for performing modular arithmetic. |
|
|
|
#ifndef CRYPTOPP_MODARITH_H |
|
#define CRYPTOPP_MODARITH_H |
|
|
|
// implementations are in integer.cpp |
|
|
|
#include "cryptlib.h" |
|
#include "integer.h" |
|
#include "algebra.h" |
|
#include "secblock.h" |
|
#include "misc.h" |
|
|
|
#if CRYPTOPP_MSC_VERSION |
|
# pragma warning(push) |
|
# pragma warning(disable: 4231 4275) |
|
#endif |
|
|
|
NAMESPACE_BEGIN(CryptoPP) |
|
|
|
CRYPTOPP_DLL_TEMPLATE_CLASS AbstractGroup<Integer>; |
|
CRYPTOPP_DLL_TEMPLATE_CLASS AbstractRing<Integer>; |
|
CRYPTOPP_DLL_TEMPLATE_CLASS AbstractEuclideanDomain<Integer>; |
|
|
|
/// \brief Ring of congruence classes modulo n |
|
/// \details This implementation represents each congruence class as |
|
/// the smallest non-negative integer in that class. |
|
/// \details <tt>const Element&</tt> returned by member functions are |
|
/// references to internal data members. Since each object may have |
|
/// only one such data member for holding results, you should use the |
|
/// class like this: |
|
/// <pre> abcd = group.Add(a, group.Add(b, group.Add(c,d));</pre> |
|
/// The following code will produce <i>incorrect</i> results: |
|
/// <pre> abcd = group.Add(group.Add(a,b), group.Add(c,d));</pre> |
|
/// \details If a ModularArithmetic() is copied or assigned the modulus |
|
/// is copied, but not the internal data members. The internal data |
|
/// members are undefined after copy or assignment. |
|
/// \sa <A HREF="https://cryptopp.com/wiki/Integer">Integer</A> on the |
|
/// Crypto++ wiki. |
|
class CRYPTOPP_DLL ModularArithmetic : public AbstractRing<Integer> |
|
{ |
|
public: |
|
|
|
typedef int RandomizationParameter; |
|
typedef Integer Element; |
|
|
|
virtual ~ModularArithmetic() {} |
|
|
|
/// \brief Construct a ModularArithmetic |
|
/// \param modulus congruence class modulus |
|
ModularArithmetic(const Integer &modulus = Integer::One()) |
|
: m_modulus(modulus), m_result(static_cast<word>(0), modulus.reg.size()) {} |
|
|
|
/// \brief Copy construct a ModularArithmetic |
|
/// \param ma other ModularArithmetic |
|
ModularArithmetic(const ModularArithmetic &ma) |
|
: AbstractRing<Integer>(ma), m_modulus(ma.m_modulus), m_result(static_cast<word>(0), m_modulus.reg.size()) {} |
|
|
|
/// \brief Assign a ModularArithmetic |
|
/// \param ma other ModularArithmetic |
|
ModularArithmetic& operator=(const ModularArithmetic &ma) { |
|
if (this != &ma) |
|
{ |
|
m_modulus = ma.m_modulus; |
|
m_result = Integer(static_cast<word>(0), m_modulus.reg.size()); |
|
} |
|
return *this; |
|
} |
|
|
|
/// \brief Construct a ModularArithmetic |
|
/// \param bt BER encoded ModularArithmetic |
|
ModularArithmetic(BufferedTransformation &bt); // construct from BER encoded parameters |
|
|
|
/// \brief Clone a ModularArithmetic |
|
/// \returns pointer to a new ModularArithmetic |
|
/// \details Clone effectively copy constructs a new ModularArithmetic. The caller is |
|
/// responsible for deleting the pointer returned from this method. |
|
virtual ModularArithmetic * Clone() const {return new ModularArithmetic(*this);} |
|
|
|
/// \brief Encodes in DER format |
|
/// \param bt BufferedTransformation object |
|
void DEREncode(BufferedTransformation &bt) const; |
|
|
|
/// \brief Encodes element in DER format |
|
/// \param out BufferedTransformation object |
|
/// \param a Element to encode |
|
void DEREncodeElement(BufferedTransformation &out, const Element &a) const; |
|
|
|
/// \brief Decodes element in DER format |
|
/// \param in BufferedTransformation object |
|
/// \param a Element to decode |
|
void BERDecodeElement(BufferedTransformation &in, Element &a) const; |
|
|
|
/// \brief Retrieves the modulus |
|
/// \returns the modulus |
|
const Integer& GetModulus() const {return m_modulus;} |
|
|
|
/// \brief Sets the modulus |
|
/// \param newModulus the new modulus |
|
void SetModulus(const Integer &newModulus) |
|
{m_modulus = newModulus; m_result.reg.resize(m_modulus.reg.size());} |
|
|
|
/// \brief Retrieves the representation |
|
/// \returns true if the if the modulus is in Montgomery form for multiplication, false otherwise |
|
virtual bool IsMontgomeryRepresentation() const {return false;} |
|
|
|
/// \brief Reduces an element in the congruence class |
|
/// \param a element to convert |
|
/// \returns the reduced element |
|
/// \details ConvertIn is useful for derived classes, like MontgomeryRepresentation, which |
|
/// must convert between representations. |
|
virtual Integer ConvertIn(const Integer &a) const |
|
{return a%m_modulus;} |
|
|
|
/// \brief Reduces an element in the congruence class |
|
/// \param a element to convert |
|
/// \returns the reduced element |
|
/// \details ConvertOut is useful for derived classes, like MontgomeryRepresentation, which |
|
/// must convert between representations. |
|
virtual Integer ConvertOut(const Integer &a) const |
|
{return a;} |
|
|
|
/// \brief Divides an element by 2 |
|
/// \param a element to convert |
|
const Integer& Half(const Integer &a) const; |
|
|
|
/// \brief Compare two elements for equality |
|
/// \param a first element |
|
/// \param b second element |
|
/// \returns true if the elements are equal, false otherwise |
|
/// \details Equal() tests the elements for equality using <tt>a==b</tt> |
|
bool Equal(const Integer &a, const Integer &b) const |
|
{return a==b;} |
|
|
|
/// \brief Provides the Identity element |
|
/// \returns the Identity element |
|
const Integer& Identity() const |
|
{return Integer::Zero();} |
|
|
|
/// \brief Adds elements in the ring |
|
/// \param a first element |
|
/// \param b second element |
|
/// \returns the sum of <tt>a</tt> and <tt>b</tt> |
|
const Integer& Add(const Integer &a, const Integer &b) const; |
|
|
|
/// \brief TODO |
|
/// \param a first element |
|
/// \param b second element |
|
/// \returns TODO |
|
Integer& Accumulate(Integer &a, const Integer &b) const; |
|
|
|
/// \brief Inverts the element in the ring |
|
/// \param a first element |
|
/// \returns the inverse of the element |
|
const Integer& Inverse(const Integer &a) const; |
|
|
|
/// \brief Subtracts elements in the ring |
|
/// \param a first element |
|
/// \param b second element |
|
/// \returns the difference of <tt>a</tt> and <tt>b</tt>. The element <tt>a</tt> must provide a Subtract member function. |
|
const Integer& Subtract(const Integer &a, const Integer &b) const; |
|
|
|
/// \brief TODO |
|
/// \param a first element |
|
/// \param b second element |
|
/// \returns TODO |
|
Integer& Reduce(Integer &a, const Integer &b) const; |
|
|
|
/// \brief Doubles an element in the ring |
|
/// \param a the element |
|
/// \returns the element doubled |
|
/// \details Double returns <tt>Add(a, a)</tt>. The element <tt>a</tt> must provide an Add member function. |
|
const Integer& Double(const Integer &a) const |
|
{return Add(a, a);} |
|
|
|
/// \brief Retrieves the multiplicative identity |
|
/// \returns the multiplicative identity |
|
/// \details the base class implementations returns 1. |
|
const Integer& MultiplicativeIdentity() const |
|
{return Integer::One();} |
|
|
|
/// \brief Multiplies elements in the ring |
|
/// \param a the multiplicand |
|
/// \param b the multiplier |
|
/// \returns the product of a and b |
|
/// \details Multiply returns <tt>a*b\%n</tt>. |
|
const Integer& Multiply(const Integer &a, const Integer &b) const |
|
{return m_result1 = a*b%m_modulus;} |
|
|
|
/// \brief Square an element in the ring |
|
/// \param a the element |
|
/// \returns the element squared |
|
/// \details Square returns <tt>a*a\%n</tt>. The element <tt>a</tt> must provide a Square member function. |
|
const Integer& Square(const Integer &a) const |
|
{return m_result1 = a.Squared()%m_modulus;} |
|
|
|
/// \brief Determines whether an element is a unit in the ring |
|
/// \param a the element |
|
/// \returns true if the element is a unit after reduction, false otherwise. |
|
bool IsUnit(const Integer &a) const |
|
{return Integer::Gcd(a, m_modulus).IsUnit();} |
|
|
|
/// \brief Calculate the multiplicative inverse of an element in the ring |
|
/// \param a the element |
|
/// \details MultiplicativeInverse returns <tt>a<sup>-1</sup>\%n</tt>. The element <tt>a</tt> must |
|
/// provide a InverseMod member function. |
|
const Integer& MultiplicativeInverse(const Integer &a) const |
|
{return m_result1 = a.InverseMod(m_modulus);} |
|
|
|
/// \brief Divides elements in the ring |
|
/// \param a the dividend |
|
/// \param b the divisor |
|
/// \returns the quotient |
|
/// \details Divide returns <tt>a*b<sup>-1</sup>\%n</tt>. |
|
const Integer& Divide(const Integer &a, const Integer &b) const |
|
{return Multiply(a, MultiplicativeInverse(b));} |
|
|
|
/// \brief TODO |
|
/// \param x first element |
|
/// \param e1 first exponent |
|
/// \param y second element |
|
/// \param e2 second exponent |
|
/// \returns TODO |
|
Integer CascadeExponentiate(const Integer &x, const Integer &e1, const Integer &y, const Integer &e2) const; |
|
|
|
/// \brief Exponentiates a base to multiple exponents in the ring |
|
/// \param results an array of Elements |
|
/// \param base the base to raise to the exponents |
|
/// \param exponents an array of exponents |
|
/// \param exponentsCount the number of exponents in the array |
|
/// \details SimultaneousExponentiate() raises the base to each exponent in the exponents array and stores the |
|
/// result at the respective position in the results array. |
|
/// \details SimultaneousExponentiate() must be implemented in a derived class. |
|
/// \pre <tt>COUNTOF(results) == exponentsCount</tt> |
|
/// \pre <tt>COUNTOF(exponents) == exponentsCount</tt> |
|
void SimultaneousExponentiate(Element *results, const Element &base, const Integer *exponents, unsigned int exponentsCount) const; |
|
|
|
/// \brief Provides the maximum bit size of an element in the ring |
|
/// \returns maximum bit size of an element |
|
unsigned int MaxElementBitLength() const |
|
{return (m_modulus-1).BitCount();} |
|
|
|
/// \brief Provides the maximum byte size of an element in the ring |
|
/// \returns maximum byte size of an element |
|
unsigned int MaxElementByteLength() const |
|
{return (m_modulus-1).ByteCount();} |
|
|
|
/// \brief Provides a random element in the ring |
|
/// \param rng RandomNumberGenerator used to generate material |
|
/// \param ignore_for_now unused |
|
/// \returns a random element that is uniformly distributed |
|
/// \details RandomElement constructs a new element in the range <tt>[0,n-1]</tt>, inclusive. |
|
/// The element's class must provide a constructor with the signature <tt>Element(RandomNumberGenerator rng, |
|
/// Element min, Element max)</tt>. |
|
Element RandomElement(RandomNumberGenerator &rng, const RandomizationParameter &ignore_for_now = 0) const |
|
// left RandomizationParameter arg as ref in case RandomizationParameter becomes a more complicated struct |
|
{ |
|
CRYPTOPP_UNUSED(ignore_for_now); |
|
return Element(rng, Integer::Zero(), m_modulus - Integer::One()) ; |
|
} |
|
|
|
/// \brief Compares two ModularArithmetic for equality |
|
/// \param rhs other ModularArithmetic |
|
/// \returns true if this is equal to the other, false otherwise |
|
/// \details The operator tests for equality using <tt>this.m_modulus == rhs.m_modulus</tt>. |
|
bool operator==(const ModularArithmetic &rhs) const |
|
{return m_modulus == rhs.m_modulus;} |
|
|
|
static const RandomizationParameter DefaultRandomizationParameter; |
|
|
|
private: |
|
// TODO: Clang on OS X needs a real operator=. |
|
// Squash warning on missing assignment operator. |
|
// ModularArithmetic& operator=(const ModularArithmetic &ma); |
|
|
|
protected: |
|
Integer m_modulus; |
|
mutable Integer m_result, m_result1; |
|
}; |
|
|
|
// const ModularArithmetic::RandomizationParameter ModularArithmetic::DefaultRandomizationParameter = 0 ; |
|
|
|
/// \brief Performs modular arithmetic in Montgomery representation for increased speed |
|
/// \details The Montgomery representation represents each congruence class <tt>[a]</tt> as |
|
/// <tt>a*r\%n</tt>, where <tt>r</tt> is a convenient power of 2. |
|
/// \details <tt>const Element&</tt> returned by member functions are references to |
|
/// internal data members. Since each object may have only one such data member for holding |
|
/// results, the following code will produce incorrect results: |
|
/// <pre> abcd = group.Add(group.Add(a,b), group.Add(c,d));</pre> |
|
/// But this should be fine: |
|
/// <pre> abcd = group.Add(a, group.Add(b, group.Add(c,d));</pre> |
|
class CRYPTOPP_DLL MontgomeryRepresentation : public ModularArithmetic |
|
{ |
|
public: |
|
virtual ~MontgomeryRepresentation() {} |
|
|
|
/// \brief Construct a MontgomeryRepresentation |
|
/// \param modulus congruence class modulus |
|
/// \note The modulus must be odd. |
|
MontgomeryRepresentation(const Integer &modulus); |
|
|
|
/// \brief Clone a MontgomeryRepresentation |
|
/// \returns pointer to a new MontgomeryRepresentation |
|
/// \details Clone effectively copy constructs a new MontgomeryRepresentation. The caller is |
|
/// responsible for deleting the pointer returned from this method. |
|
virtual ModularArithmetic * Clone() const {return new MontgomeryRepresentation(*this);} |
|
|
|
bool IsMontgomeryRepresentation() const {return true;} |
|
|
|
Integer ConvertIn(const Integer &a) const |
|
{return (a<<(WORD_BITS*m_modulus.reg.size()))%m_modulus;} |
|
|
|
Integer ConvertOut(const Integer &a) const; |
|
|
|
const Integer& MultiplicativeIdentity() const |
|
{return m_result1 = Integer::Power2(WORD_BITS*m_modulus.reg.size())%m_modulus;} |
|
|
|
const Integer& Multiply(const Integer &a, const Integer &b) const; |
|
|
|
const Integer& Square(const Integer &a) const; |
|
|
|
const Integer& MultiplicativeInverse(const Integer &a) const; |
|
|
|
Integer CascadeExponentiate(const Integer &x, const Integer &e1, const Integer &y, const Integer &e2) const |
|
{return AbstractRing<Integer>::CascadeExponentiate(x, e1, y, e2);} |
|
|
|
void SimultaneousExponentiate(Element *results, const Element &base, const Integer *exponents, unsigned int exponentsCount) const |
|
{AbstractRing<Integer>::SimultaneousExponentiate(results, base, exponents, exponentsCount);} |
|
|
|
private: |
|
Integer m_u; |
|
mutable IntegerSecBlock m_workspace; |
|
}; |
|
|
|
NAMESPACE_END |
|
|
|
#if CRYPTOPP_MSC_VERSION |
|
# pragma warning(pop) |
|
#endif |
|
|
|
#endif
|
|
|