You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
1055 lines
35 KiB
1055 lines
35 KiB
#ifndef RR_SPRINTF_H_INCLUDE |
|
#define RR_SPRINTF_H_INCLUDE |
|
|
|
/* |
|
Single file sprintf replacement. |
|
|
|
Originally written by Jeff Roberts at RAD Game Tools - 2015/10/20. |
|
Hereby placed in public domain. |
|
|
|
This is a full sprintf replacement that supports everything that |
|
the C runtime sprintfs support, including float/double, 64-bit integers, |
|
hex floats, field parameters (%*.*d stuff), length reads backs, etc. |
|
|
|
Why would you need this if sprintf already exists? Well, first off, |
|
it's *much* faster (see below). It's also much smaller than the CRT |
|
versions code-space-wise. We've also added some simple improvements |
|
that are super handy (commas in thousands, callbacks at buffer full, |
|
for example). Finally, the format strings for MSVC and GCC differ |
|
for 64-bit integers (among other small things), so this lets you use |
|
the same format strings in cross platform code. |
|
|
|
It uses the standard single file trick of being both the header file |
|
and the source itself. If you just include it normally, you just get |
|
the header file function definitions. To get the code, you include |
|
it from a C or C++ file and define RR_SPRINTF_IMPLEMENTATION first. |
|
|
|
It only uses va_args macros from the C runtime to do it's work. It |
|
does cast doubles to S64s and shifts and divides U64s, which does |
|
drag in CRT code on most platforms. |
|
|
|
It compiles to roughly 8K with float support, and 4K without. |
|
As a comparison, when using MSVC static libs, calling sprintf drags |
|
in 16K. |
|
|
|
API: |
|
==== |
|
int rrsprintf( char * buf, char const * fmt, ... ) |
|
int rrsnprintf( char * buf, int count, char const * fmt, ... ) |
|
Convert an arg list into a buffer. rrsnprintf always returns |
|
a zero-terminated string (unlike regular snprintf). |
|
|
|
int rrvsprintf( char * buf, char const * fmt, va_list va ) |
|
int rrvsnprintf( char * buf, int count, char const * fmt, va_list va ) |
|
Convert a va_list arg list into a buffer. rrvsnprintf always returns |
|
a zero-terminated string (unlike regular snprintf). |
|
|
|
int rrvsprintfcb( RRSPRINTFCB * callback, void * user, char * buf, char const * fmt, va_list va ) |
|
typedef char * RRSPRINTFCB( char const * buf, void * user, int len ); |
|
Convert into a buffer, calling back every RR_SPRINTF_MIN chars. |
|
Your callback can then copy the chars out, print them or whatever. |
|
This function is actually the workhorse for everything else. |
|
The buffer you pass in must hold at least RR_SPRINTF_MIN characters. |
|
// you return the next buffer to use or 0 to stop converting |
|
|
|
void rrsetseparators( char comma, char period ) |
|
Set the comma and period characters to use. |
|
|
|
FLOATS/DOUBLES: |
|
=============== |
|
This code uses a internal float->ascii conversion method that uses |
|
doubles with error correction (double-doubles, for ~105 bits of |
|
precision). This conversion is round-trip perfect - that is, an atof |
|
of the values output here will give you the bit-exact double back. |
|
|
|
One difference is that our insignificant digits will be different than |
|
with MSVC or GCC (but they don't match each other either). We also |
|
don't attempt to find the minimum length matching float (pre-MSVC15 |
|
doesn't either). |
|
|
|
If you don't need float or doubles at all, define RR_SPRINTF_NOFLOAT |
|
and you'll save 4K of code space. |
|
|
|
64-BIT INTS: |
|
============ |
|
This library also supports 64-bit integers and you can use MSVC style or |
|
GCC style indicators (%I64d or %lld). It supports the C99 specifiers |
|
for size_t and ptr_diff_t (%jd %zd) as well. |
|
|
|
EXTRAS: |
|
======= |
|
Like some GCCs, for integers and floats, you can use a ' (single quote) |
|
specifier and commas will be inserted on the thousands: "%'d" on 12345 |
|
would print 12,345. |
|
|
|
For integers and floats, you can use a "$" specifier and the number |
|
will be converted to float and then divided to get kilo, mega, giga or |
|
tera and then printed, so "%$d" 1024 is "1.0 k", "%$.2d" 2536000 is |
|
"2.42 m", etc. |
|
|
|
In addition to octal and hexadecimal conversions, you can print |
|
integers in binary: "%b" for 256 would print 100. |
|
|
|
PERFORMANCE vs MSVC 2008 32-/64-bit (GCC is even slower than MSVC): |
|
=================================================================== |
|
"%d" across all 32-bit ints (4.8x/4.0x faster than 32-/64-bit MSVC) |
|
"%24d" across all 32-bit ints (4.5x/4.2x faster) |
|
"%x" across all 32-bit ints (4.5x/3.8x faster) |
|
"%08x" across all 32-bit ints (4.3x/3.8x faster) |
|
"%f" across e-10 to e+10 floats (7.3x/6.0x faster) |
|
"%e" across e-10 to e+10 floats (8.1x/6.0x faster) |
|
"%g" across e-10 to e+10 floats (10.0x/7.1x faster) |
|
"%f" for values near e-300 (7.9x/6.5x faster) |
|
"%f" for values near e+300 (10.0x/9.1x faster) |
|
"%e" for values near e-300 (10.1x/7.0x faster) |
|
"%e" for values near e+300 (9.2x/6.0x faster) |
|
"%.320f" for values near e-300 (12.6x/11.2x faster) |
|
"%a" for random values (8.6x/4.3x faster) |
|
"%I64d" for 64-bits with 32-bit values (4.8x/3.4x faster) |
|
"%I64d" for 64-bits > 32-bit values (4.9x/5.5x faster) |
|
"%s%s%s" for 64 char strings (7.1x/7.3x faster) |
|
"...512 char string..." ( 35.0x/32.5x faster!) |
|
*/ |
|
|
|
#ifdef RR_SPRINTF_STATIC |
|
#define RRPUBLIC_DEC static |
|
#define RRPUBLIC_DEF static |
|
#else |
|
#ifdef __cplusplus |
|
#define RRPUBLIC_DEC extern "C" |
|
#define RRPUBLIC_DEF extern "C" |
|
#else |
|
#define RRPUBLIC_DEC extern |
|
#define RRPUBLIC_DEF |
|
#endif |
|
#endif |
|
|
|
#include <stdarg.h> // for va_list() |
|
|
|
#ifndef RR_SPRINTF_MIN |
|
#define RR_SPRINTF_MIN 512 // how many characters per callback |
|
#endif |
|
typedef char * RRSPRINTFCB( char * buf, void * user, int len ); |
|
|
|
#ifndef RR_SPRINTF_DECORATE |
|
#define RR_SPRINTF_DECORATE(name) rr##name // define this before including if you want to change the names |
|
#endif |
|
|
|
#ifndef RR_SPRINTF_IMPLEMENTATION |
|
|
|
RRPUBLIC_DEF int RR_SPRINTF_DECORATE( vsprintf )( char * buf, char const * fmt, va_list va ); |
|
RRPUBLIC_DEF int RR_SPRINTF_DECORATE( vsnprintf )( char * buf, int count, char const * fmt, va_list va ); |
|
RRPUBLIC_DEF int RR_SPRINTF_DECORATE( sprintf ) ( char * buf, char const * fmt, ... ); |
|
RRPUBLIC_DEF int RR_SPRINTF_DECORATE( snprintf )( char * buf, int count, char const * fmt, ... ); |
|
|
|
RRPUBLIC_DEF int RR_SPRINTF_DECORATE( vsprintfcb )( RRSPRINTFCB * callback, void * user, char * buf, char const * fmt, va_list va ); |
|
RRPUBLIC_DEF void RR_SPRINTF_DECORATE( setseparators )( char comma, char period ); |
|
|
|
#else |
|
|
|
#include <stdlib.h> // for va_arg() |
|
|
|
#define rU32 unsigned int |
|
#define rS32 signed int |
|
|
|
#ifdef _MSC_VER |
|
#define rU64 unsigned __int64 |
|
#define rS64 signed __int64 |
|
#else |
|
#define rU64 unsigned long long |
|
#define rS64 signed long long |
|
#endif |
|
#define rU16 unsigned short |
|
|
|
#ifndef rUINTa |
|
#if defined(__ppc64__) || defined(__aarch64__) || defined(_M_X64) || defined(__x86_64__) || defined(__x86_64) |
|
#define rUINTa rU64 |
|
#else |
|
#define rUINTa rU32 |
|
#endif |
|
#endif |
|
|
|
#ifndef RR_SPRINTF_MSVC_MODE // used for MSVC2013 and earlier (MSVC2015 matches GCC) |
|
#if defined(_MSC_VER) && (_MSC_VER<1900) |
|
#define RR_SPRINTF_MSVC_MODE |
|
#endif |
|
#endif |
|
|
|
#ifdef RR_SPRINTF_NOUNALIGNED // define this before inclusion to force rrsprint to always use aligned accesses |
|
#define RR_UNALIGNED(code) |
|
#else |
|
#define RR_UNALIGNED(code) code |
|
#endif |
|
|
|
#ifndef RR_SPRINTF_NOFLOAT |
|
// internal float utility functions |
|
static rS32 rrreal_to_str( char const * * start, rU32 * len, char *out, rS32 * decimal_pos, double value, rU32 frac_digits ); |
|
static rS32 rrreal_to_parts( rS64 * bits, rS32 * expo, double value ); |
|
#define RRSPECIAL 0x7000 |
|
#endif |
|
|
|
static char RRperiod='.'; |
|
static char RRcomma=','; |
|
static char rrdiglookup[201]="00010203040506070809101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899"; |
|
|
|
RRPUBLIC_DEF void RR_SPRINTF_DECORATE( setseparators )( char pcomma, char pperiod ) |
|
{ |
|
RRperiod=pperiod; |
|
RRcomma=pcomma; |
|
} |
|
|
|
RRPUBLIC_DEF int RR_SPRINTF_DECORATE( vsprintfcb )( RRSPRINTFCB * callback, void * user, char * buf, char const * fmt, va_list va ) |
|
{ |
|
static char hex[]="0123456789abcdefxp"; |
|
static char hexu[]="0123456789ABCDEFXP"; |
|
char * bf; |
|
char const * f; |
|
int tlen = 0; |
|
|
|
bf = buf; |
|
f = fmt; |
|
for(;;) |
|
{ |
|
rS32 fw,pr,tz; rU32 fl; |
|
|
|
#define LJ 1 |
|
#define LP 2 |
|
#define LS 4 |
|
#define LX 8 |
|
#define LZ 16 |
|
#define BI 32 |
|
#define CS 64 |
|
#define NG 128 |
|
#define KI 256 |
|
#define HW 512 |
|
|
|
// macros for the callback buffer stuff |
|
#define chk_cb_bufL(bytes) { int len = (int)(bf-buf); if ((len+(bytes))>=RR_SPRINTF_MIN) { tlen+=len; if (0==(bf=buf=callback(buf,user,len))) goto done; } } |
|
#define chk_cb_buf(bytes) { if ( callback ) { chk_cb_bufL(bytes); } } |
|
#define flush_cb() { chk_cb_bufL(RR_SPRINTF_MIN-1); } //flush if there is even one byte in the buffer |
|
#define cb_buf_clamp(cl,v) cl = v; if ( callback ) { int lg = RR_SPRINTF_MIN-(int)(bf-buf); if (cl>lg) cl=lg; } |
|
|
|
// fast copy everything up to the next % (or end of string) |
|
for(;;) |
|
{ |
|
while (((rUINTa)f)&3) |
|
{ |
|
schk1: if (f[0]=='%') goto scandd; |
|
schk2: if (f[0]==0) goto endfmt; |
|
chk_cb_buf(1); *bf++=f[0]; ++f; |
|
} |
|
for(;;) |
|
{ |
|
rU32 v,c; |
|
v=*(rU32*)f; c=(~v)&0x80808080; |
|
if ((v-0x26262626)&c) goto schk1; |
|
if ((v-0x01010101)&c) goto schk2; |
|
if (callback) if ((RR_SPRINTF_MIN-(int)(bf-buf))<4) goto schk1; |
|
*(rU32*)bf=v; bf+=4; f+=4; |
|
} |
|
} scandd: |
|
|
|
++f; |
|
|
|
// ok, we have a percent, read the modifiers first |
|
fw = 0; pr = -1; fl = 0; tz = 0; |
|
|
|
// flags |
|
for(;;) |
|
{ |
|
switch(f[0]) |
|
{ |
|
// if we have left just |
|
case '-': fl|=LJ; ++f; continue; |
|
// if we have leading plus |
|
case '+': fl|=LP; ++f; continue; |
|
// if we have leading space |
|
case ' ': fl|=LS; ++f; continue; |
|
// if we have leading 0x |
|
case '#': fl|=LX; ++f; continue; |
|
// if we have thousand commas |
|
case '\'': fl|=CS; ++f; continue; |
|
// if we have kilo marker |
|
case '$': fl|=KI; ++f; continue; |
|
// if we have leading zero |
|
case '0': fl|=LZ; ++f; goto flags_done; |
|
default: goto flags_done; |
|
} |
|
} |
|
flags_done: |
|
|
|
// get the field width |
|
if ( f[0] == '*' ) {fw = va_arg(va,rU32); ++f;} else { while (( f[0] >= '0' ) && ( f[0] <= '9' )) { fw = fw * 10 + f[0] - '0'; f++; } } |
|
// get the precision |
|
if ( f[0]=='.' ) { ++f; if ( f[0] == '*' ) {pr = va_arg(va,rU32); ++f;} else { pr = 0; while (( f[0] >= '0' ) && ( f[0] <= '9' )) { pr = pr * 10 + f[0] - '0'; f++; } } } |
|
|
|
// handle integer size overrides |
|
switch(f[0]) |
|
{ |
|
// are we halfwidth? |
|
case 'h': fl|=HW; ++f; break; |
|
// are we 64-bit (unix style) |
|
case 'l': ++f; if ( f[0]=='l') { fl|=BI; ++f; } break; |
|
// are we 64-bit on intmax? (c99) |
|
case 'j': fl|=BI; ++f; break; |
|
// are we 64-bit on size_t or ptrdiff_t? (c99) |
|
case 'z': case 't': fl|=((sizeof(char*)==8)?BI:0); ++f; break; |
|
// are we 64-bit (msft style) |
|
case 'I': if ( ( f[1]=='6') && ( f[2]=='4') ) { fl|=BI; f+=3; } else if ( ( f[1]=='3') && ( f[2]=='2') ) { f+=3; } else { fl|=((sizeof(void*)==8)?BI:0); ++f; } break; |
|
default: break; |
|
} |
|
|
|
// handle each replacement |
|
switch( f[0] ) |
|
{ |
|
#define NUMSZ 512 // big enough for e308 (with commas) or e-307 |
|
char num[NUMSZ]; |
|
char lead[8]; |
|
char tail[8]; |
|
char *s; |
|
char const *h; |
|
rU32 l,n,cs; |
|
rU64 n64; |
|
#ifndef RR_SPRINTF_NOFLOAT |
|
double fv; |
|
#endif |
|
rS32 dp; char const * sn; |
|
|
|
case 's': |
|
// get the string |
|
s = va_arg(va,char*); if (s==0) s = (char*)"null"; |
|
// get the length |
|
sn = s; |
|
for(;;) |
|
{ |
|
if ((((rUINTa)sn)&3)==0) break; |
|
lchk: |
|
if (sn[0]==0) goto ld; |
|
++sn; |
|
} |
|
n = 0xffffffff; |
|
if (pr>=0) { n=(rU32)(sn-s); if (n>=(rU32)pr) goto ld; n=((rU32)(pr-n))>>2; } |
|
while(n) |
|
{ |
|
rU32 v=*(rU32*)sn; |
|
if ((v-0x01010101)&(~v)&0x80808080UL) goto lchk; |
|
sn+=4; |
|
--n; |
|
} |
|
goto lchk; |
|
ld: |
|
|
|
l = (rU32) ( sn - s ); |
|
// clamp to precision |
|
if ( l > (rU32)pr ) l = pr; |
|
lead[0]=0; tail[0]=0; pr = 0; dp = 0; cs = 0; |
|
// copy the string in |
|
goto scopy; |
|
|
|
case 'c': // char |
|
// get the character |
|
s = num + NUMSZ -1; *s = (char)va_arg(va,int); |
|
l = 1; |
|
lead[0]=0; tail[0]=0; pr = 0; dp = 0; cs = 0; |
|
goto scopy; |
|
|
|
case 'n': // weird write-bytes specifier |
|
{ int * d = va_arg(va,int*); |
|
*d = tlen + (int)( bf - buf ); } |
|
break; |
|
|
|
#ifdef RR_SPRINTF_NOFLOAT |
|
case 'A': // float |
|
case 'a': // hex float |
|
case 'G': // float |
|
case 'g': // float |
|
case 'E': // float |
|
case 'e': // float |
|
case 'f': // float |
|
va_arg(va,double); // eat it |
|
s = (char*)"No float"; |
|
l = 8; |
|
lead[0]=0; tail[0]=0; pr = 0; dp = 0; cs = 0; |
|
goto scopy; |
|
#else |
|
case 'A': // float |
|
h=hexu; |
|
goto hexfloat; |
|
|
|
case 'a': // hex float |
|
h=hex; |
|
hexfloat: |
|
fv = va_arg(va,double); |
|
if (pr==-1) pr=6; // default is 6 |
|
// read the double into a string |
|
if ( rrreal_to_parts( (rS64*)&n64, &dp, fv ) ) |
|
fl |= NG; |
|
|
|
s = num+64; |
|
|
|
// sign |
|
lead[0]=0; if (fl&NG) { lead[0]=1; lead[1]='-'; } else if (fl&LS) { lead[0]=1; lead[1]=' '; } else if (fl&LP) { lead[0]=1; lead[1]='+'; }; |
|
|
|
if (dp==-1023) dp=(n64)?-1022:0; else n64|=(((rU64)1)<<52); |
|
n64<<=(64-56); |
|
if (pr<15) n64+=((((rU64)8)<<56)>>(pr*4)); |
|
// add leading chars |
|
|
|
#ifdef RR_SPRINTF_MSVC_MODE |
|
*s++='0';*s++='x'; |
|
#else |
|
lead[1+lead[0]]='0'; lead[2+lead[0]]='x'; lead[0]+=2; |
|
#endif |
|
*s++=h[(n64>>60)&15]; n64<<=4; |
|
if ( pr ) *s++=RRperiod; |
|
sn = s; |
|
|
|
// print the bits |
|
n = pr; if (n>13) n = 13; if (pr>(rS32)n) tz=pr-n; pr = 0; |
|
while(n--) { *s++=h[(n64>>60)&15]; n64<<=4; } |
|
|
|
// print the expo |
|
tail[1]=h[17]; |
|
if (dp<0) { tail[2]='-'; dp=-dp;} else tail[2]='+'; |
|
n = (dp>=1000)?6:((dp>=100)?5:((dp>=10)?4:3)); |
|
tail[0]=(char)n; |
|
for(;;) { tail[n]='0'+dp%10; if (n<=3) break; --n; dp/=10; } |
|
|
|
dp = (int)(s-sn); |
|
l = (int)(s-(num+64)); |
|
s = num+64; |
|
cs = 1 + (3<<24); |
|
goto scopy; |
|
|
|
case 'G': // float |
|
h=hexu; |
|
goto dosmallfloat; |
|
|
|
case 'g': // float |
|
h=hex; |
|
dosmallfloat: |
|
fv = va_arg(va,double); |
|
if (pr==-1) pr=6; else if (pr==0) pr = 1; // default is 6 |
|
// read the double into a string |
|
if ( rrreal_to_str( &sn, &l, num, &dp, fv, (pr-1)|0x80000000 ) ) |
|
fl |= NG; |
|
|
|
// clamp the precision and delete extra zeros after clamp |
|
n = pr; |
|
if ( l > (rU32)pr ) l = pr; while ((l>1)&&(pr)&&(sn[l-1]=='0')) { --pr; --l; } |
|
|
|
// should we use %e |
|
if ((dp<=-4)||(dp>(rS32)n)) |
|
{ |
|
if ( pr > (rS32)l ) pr = l-1; else if ( pr ) --pr; // when using %e, there is one digit before the decimal |
|
goto doexpfromg; |
|
} |
|
// this is the insane action to get the pr to match %g sematics for %f |
|
if(dp>0) { pr=(dp<(rS32)l)?l-dp:0; } else { pr = -dp+((pr>(rS32)l)?l:pr); } |
|
goto dofloatfromg; |
|
|
|
case 'E': // float |
|
h=hexu; |
|
goto doexp; |
|
|
|
case 'e': // float |
|
h=hex; |
|
doexp: |
|
fv = va_arg(va,double); |
|
if (pr==-1) pr=6; // default is 6 |
|
// read the double into a string |
|
if ( rrreal_to_str( &sn, &l, num, &dp, fv, pr|0x80000000 ) ) |
|
fl |= NG; |
|
doexpfromg: |
|
tail[0]=0; |
|
lead[0]=0; if (fl&NG) { lead[0]=1; lead[1]='-'; } else if (fl&LS) { lead[0]=1; lead[1]=' '; } else if (fl&LP) { lead[0]=1; lead[1]='+'; }; |
|
if ( dp == RRSPECIAL ) { s=(char*)sn; cs=0; pr=0; goto scopy; } |
|
s=num+64; |
|
// handle leading chars |
|
*s++=sn[0]; |
|
|
|
if (pr) *s++=RRperiod; |
|
|
|
// handle after decimal |
|
if ((l-1)>(rU32)pr) l=pr+1; |
|
for(n=1;n<l;n++) *s++=sn[n]; |
|
// trailing zeros |
|
tz = pr-(l-1); pr=0; |
|
// dump expo |
|
tail[1]=h[0xe]; |
|
dp -= 1; |
|
if (dp<0) { tail[2]='-'; dp=-dp;} else tail[2]='+'; |
|
#ifdef RR_SPRINTF_MSVC_MODE |
|
n = 5; |
|
#else |
|
n = (dp>=100)?5:4; |
|
#endif |
|
tail[0]=(char)n; |
|
for(;;) { tail[n]='0'+dp%10; if (n<=3) break; --n; dp/=10; } |
|
cs = 1 + (3<<24); // how many tens |
|
goto flt_lead; |
|
|
|
case 'f': // float |
|
fv = va_arg(va,double); |
|
doafloat: |
|
// do kilos |
|
if (fl&KI) {while(fl<0x4000000) { if ((fv<1024.0) && (fv>-1024.0)) break; fv/=1024.0; fl+=0x1000000; }} |
|
if (pr==-1) pr=6; // default is 6 |
|
// read the double into a string |
|
if ( rrreal_to_str( &sn, &l, num, &dp, fv, pr ) ) |
|
fl |= NG; |
|
dofloatfromg: |
|
tail[0]=0; |
|
// sign |
|
lead[0]=0; if (fl&NG) { lead[0]=1; lead[1]='-'; } else if (fl&LS) { lead[0]=1; lead[1]=' '; } else if (fl&LP) { lead[0]=1; lead[1]='+'; }; |
|
if ( dp == RRSPECIAL ) { s=(char*)sn; cs=0; pr=0; goto scopy; } |
|
s=num+64; |
|
|
|
// handle the three decimal varieties |
|
if (dp<=0) |
|
{ |
|
rS32 i; |
|
// handle 0.000*000xxxx |
|
*s++='0'; if (pr) *s++=RRperiod; |
|
n=-dp; if((rS32)n>pr) n=pr; i=n; while(i) { if ((((rUINTa)s)&3)==0) break; *s++='0'; --i; } while(i>=4) { *(rU32*)s=0x30303030; s+=4; i-=4; } while(i) { *s++='0'; --i; } |
|
if ((rS32)(l+n)>pr) l=pr-n; i=l; while(i) { *s++=*sn++; --i; } |
|
tz = pr-(n+l); |
|
cs = 1 + (3<<24); // how many tens did we write (for commas below) |
|
} |
|
else |
|
{ |
|
cs = (fl&CS)?((600-(rU32)dp)%3):0; |
|
if ((rU32)dp>=l) |
|
{ |
|
// handle xxxx000*000.0 |
|
n=0; for(;;) { if ((fl&CS) && (++cs==4)) { cs = 0; *s++=RRcomma; } else { *s++=sn[n]; ++n; if (n>=l) break; } } |
|
if (n<(rU32)dp) |
|
{ |
|
n = dp - n; |
|
if ((fl&CS)==0) { while(n) { if ((((rUINTa)s)&3)==0) break; *s++='0'; --n; } while(n>=4) { *(rU32*)s=0x30303030; s+=4; n-=4; } } |
|
while(n) { if ((fl&CS) && (++cs==4)) { cs = 0; *s++=RRcomma; } else { *s++='0'; --n; } } |
|
} |
|
cs = (int)(s-(num+64)) + (3<<24); // cs is how many tens |
|
if (pr) { *s++=RRperiod; tz=pr;} |
|
} |
|
else |
|
{ |
|
// handle xxxxx.xxxx000*000 |
|
n=0; for(;;) { if ((fl&CS) && (++cs==4)) { cs = 0; *s++=RRcomma; } else { *s++=sn[n]; ++n; if (n>=(rU32)dp) break; } } |
|
cs = (int)(s-(num+64)) + (3<<24); // cs is how many tens |
|
if (pr) *s++=RRperiod; |
|
if ((l-dp)>(rU32)pr) l=pr+dp; |
|
while(n<l) { *s++=sn[n]; ++n; } |
|
tz = pr-(l-dp); |
|
} |
|
} |
|
pr = 0; |
|
|
|
// handle k,m,g,t |
|
if (fl&KI) { tail[0]=1; tail[1]=' '; { if (fl>>24) { tail[2]="_kmgt"[fl>>24]; tail[0]=2; } } }; |
|
|
|
flt_lead: |
|
// get the length that we copied |
|
l = (rU32) ( s-(num+64) ); |
|
s=num+64; |
|
goto scopy; |
|
#endif |
|
|
|
case 'B': // upper binary |
|
h = hexu; |
|
goto binary; |
|
|
|
case 'b': // lower binary |
|
h = hex; |
|
binary: |
|
lead[0]=0; |
|
if (fl&LX) { lead[0]=2;lead[1]='0';lead[2]=h[0xb]; } |
|
l=(8<<4)|(1<<8); |
|
goto radixnum; |
|
|
|
case 'o': // octal |
|
h = hexu; |
|
lead[0]=0; |
|
if (fl&LX) { lead[0]=1;lead[1]='0'; } |
|
l=(3<<4)|(3<<8); |
|
goto radixnum; |
|
|
|
case 'p': // pointer |
|
fl |= (sizeof(void*)==8)?BI:0; |
|
pr = sizeof(void*)*2; |
|
fl &= ~LZ; // 'p' only prints the pointer with zeros |
|
// drop through to X |
|
|
|
case 'X': // upper binary |
|
h = hexu; |
|
goto dohexb; |
|
|
|
case 'x': // lower binary |
|
h = hex; dohexb: |
|
l=(4<<4)|(4<<8); |
|
lead[0]=0; |
|
if (fl&LX) { lead[0]=2;lead[1]='0';lead[2]=h[16]; } |
|
radixnum: |
|
// get the number |
|
if ( fl&BI ) |
|
n64 = va_arg(va,rU64); |
|
else |
|
n64 = va_arg(va,rU32); |
|
|
|
s = num + NUMSZ; dp = 0; |
|
// clear tail, and clear leading if value is zero |
|
tail[0]=0; if (n64==0) { lead[0]=0; if (pr==0) { l=0; cs = ( ((l>>4)&15)) << 24; goto scopy; } } |
|
// convert to string |
|
for(;;) { *--s = h[n64&((1<<(l>>8))-1)]; n64>>=(l>>8); if ( ! ( (n64) || ((rS32) ( (num+NUMSZ) - s ) < pr ) ) ) break; if ( fl&CS) { ++l; if ((l&15)==((l>>4)&15)) { l&=~15; *--s=RRcomma; } } }; |
|
// get the tens and the comma pos |
|
cs = (rU32) ( (num+NUMSZ) - s ) + ( ( ((l>>4)&15)) << 24 ); |
|
// get the length that we copied |
|
l = (rU32) ( (num+NUMSZ) - s ); |
|
// copy it |
|
goto scopy; |
|
|
|
case 'u': // unsigned |
|
case 'i': |
|
case 'd': // integer |
|
// get the integer and abs it |
|
if ( fl&BI ) |
|
{ |
|
rS64 i64 = va_arg(va,rS64); n64 = (rU64)i64; if ((f[0]!='u') && (i64<0)) { n64=(rU64)-i64; fl|=NG; } |
|
} |
|
else |
|
{ |
|
rS32 i = va_arg(va,rS32); n64 = (rU32)i; if ((f[0]!='u') && (i<0)) { n64=(rU32)-i; fl|=NG; } |
|
} |
|
|
|
#ifndef RR_SPRINTF_NOFLOAT |
|
if (fl&KI) { if (n64<1024) pr=0; else if (pr==-1) pr=1; fv=(double)(rS64)n64; goto doafloat; } |
|
#endif |
|
|
|
// convert to string |
|
s = num+NUMSZ; l=0; |
|
|
|
for(;;) |
|
{ |
|
// do in 32-bit chunks (avoid lots of 64-bit divides even with constant denominators) |
|
char * o=s-8; |
|
if (n64>=100000000) { n = (rU32)( n64 % 100000000); n64 /= 100000000; } else {n = (rU32)n64; n64 = 0; } |
|
if((fl&CS)==0) { while(n) { s-=2; *(rU16*)s=*(rU16*)&rrdiglookup[(n%100)*2]; n/=100; } } |
|
while (n) { if ( ( fl&CS) && (l++==3) ) { l=0; *--s=RRcomma; --o; } else { *--s=(char)(n%10)+'0'; n/=10; } } |
|
if (n64==0) { if ((s[0]=='0') && (s!=(num+NUMSZ))) ++s; break; } |
|
while (s!=o) if ( ( fl&CS) && (l++==3) ) { l=0; *--s=RRcomma; --o; } else { *--s='0'; } |
|
} |
|
|
|
tail[0]=0; |
|
// sign |
|
lead[0]=0; if (fl&NG) { lead[0]=1; lead[1]='-'; } else if (fl&LS) { lead[0]=1; lead[1]=' '; } else if (fl&LP) { lead[0]=1; lead[1]='+'; }; |
|
|
|
// get the length that we copied |
|
l = (rU32) ( (num+NUMSZ) - s ); if ( l == 0 ) { *--s='0'; l = 1; } |
|
cs = l + (3<<24); |
|
if (pr<0) pr = 0; |
|
|
|
scopy: |
|
// get fw=leading/trailing space, pr=leading zeros |
|
if (pr<(rS32)l) pr = l; |
|
n = pr + lead[0] + tail[0] + tz; |
|
if (fw<(rS32)n) fw = n; |
|
fw -= n; |
|
pr -= l; |
|
|
|
// handle right justify and leading zeros |
|
if ( (fl&LJ)==0 ) |
|
{ |
|
if (fl&LZ) // if leading zeros, everything is in pr |
|
{ |
|
pr = (fw>pr)?fw:pr; |
|
fw = 0; |
|
} |
|
else |
|
{ |
|
fl &= ~CS; // if no leading zeros, then no commas |
|
} |
|
} |
|
|
|
// copy the spaces and/or zeros |
|
if (fw+pr) |
|
{ |
|
rS32 i; rU32 c; |
|
|
|
// copy leading spaces (or when doing %8.4d stuff) |
|
if ( (fl&LJ)==0 ) while(fw>0) { cb_buf_clamp(i,fw); fw -= i; while(i) { if ((((rUINTa)bf)&3)==0) break; *bf++=' '; --i; } while(i>=4) { *(rU32*)bf=0x20202020; bf+=4; i-=4; } while (i) {*bf++=' '; --i;} chk_cb_buf(1); } |
|
|
|
// copy leader |
|
sn=lead+1; while(lead[0]) { cb_buf_clamp(i,lead[0]); lead[0] -= (char)i; while (i) {*bf++=*sn++; --i;} chk_cb_buf(1); } |
|
|
|
// copy leading zeros |
|
c = cs >> 24; cs &= 0xffffff; |
|
cs = (fl&CS)?((rU32)(c-((pr+cs)%(c+1)))):0; |
|
while(pr>0) { cb_buf_clamp(i,pr); pr -= i; if((fl&CS)==0) { while(i) { if ((((rUINTa)bf)&3)==0) break; *bf++='0'; --i; } while(i>=4) { *(rU32*)bf=0x30303030; bf+=4; i-=4; } } while (i) { if((fl&CS) && (cs++==c)) { cs = 0; *bf++=RRcomma; } else *bf++='0'; --i; } chk_cb_buf(1); } |
|
} |
|
|
|
// copy leader if there is still one |
|
sn=lead+1; while(lead[0]) { rS32 i; cb_buf_clamp(i,lead[0]); lead[0] -= (char)i; while (i) {*bf++=*sn++; --i;} chk_cb_buf(1); } |
|
|
|
// copy the string |
|
n = l; while (n) { rS32 i; cb_buf_clamp(i,n); n-=i; RR_UNALIGNED( while(i>=4) { *(rU32*)bf=*(rU32*)s; bf+=4; s+=4; i-=4; } ) while (i) {*bf++=*s++; --i;} chk_cb_buf(1); } |
|
|
|
// copy trailing zeros |
|
while(tz) { rS32 i; cb_buf_clamp(i,tz); tz -= i; while(i) { if ((((rUINTa)bf)&3)==0) break; *bf++='0'; --i; } while(i>=4) { *(rU32*)bf=0x30303030; bf+=4; i-=4; } while (i) {*bf++='0'; --i;} chk_cb_buf(1); } |
|
|
|
// copy tail if there is one |
|
sn=tail+1; while(tail[0]) { rS32 i; cb_buf_clamp(i,tail[0]); tail[0] -= (char)i; while (i) {*bf++=*sn++; --i;} chk_cb_buf(1); } |
|
|
|
// handle the left justify |
|
if (fl&LJ) if (fw>0) { while (fw) { rS32 i; cb_buf_clamp(i,fw); fw-=i; while(i) { if ((((rUINTa)bf)&3)==0) break; *bf++=' '; --i; } while(i>=4) { *(rU32*)bf=0x20202020; bf+=4; i-=4; } while (i--) *bf++=' '; chk_cb_buf(1); } } |
|
break; |
|
|
|
default: // unknown, just copy code |
|
s = num + NUMSZ -1; *s = f[0]; |
|
l = 1; |
|
fw=pr=fl=0; |
|
lead[0]=0; tail[0]=0; pr = 0; dp = 0; cs = 0; |
|
goto scopy; |
|
} |
|
++f; |
|
} |
|
endfmt: |
|
|
|
if (!callback) |
|
*bf = 0; |
|
else |
|
flush_cb(); |
|
|
|
done: |
|
return tlen + (int)(bf-buf); |
|
} |
|
|
|
// cleanup |
|
#undef LJ |
|
#undef LP |
|
#undef LS |
|
#undef LX |
|
#undef LZ |
|
#undef BI |
|
#undef CS |
|
#undef NG |
|
#undef KI |
|
#undef NUMSZ |
|
#undef chk_cb_bufL |
|
#undef chk_cb_buf |
|
#undef flush_cb |
|
#undef cb_buf_clamp |
|
|
|
// ============================================================================ |
|
// wrapper functions |
|
|
|
RRPUBLIC_DEF int RR_SPRINTF_DECORATE( sprintf )( char * buf, char const * fmt, ... ) |
|
{ |
|
va_list va; |
|
va_start( va, fmt ); |
|
return RR_SPRINTF_DECORATE( vsprintfcb )( 0, 0, buf, fmt, va ); |
|
} |
|
|
|
typedef struct RRCCS |
|
{ |
|
char * buf; |
|
int count; |
|
char tmp[ RR_SPRINTF_MIN ]; |
|
} RRCCS; |
|
|
|
static char * rrclampcallback( char * buf, void * user, int len ) |
|
{ |
|
RRCCS * c = (RRCCS*)user; |
|
|
|
if ( len > c->count ) len = c->count; |
|
|
|
if (len) |
|
{ |
|
if ( buf != c->buf ) |
|
{ |
|
char * s, * d, * se; |
|
d = c->buf; s = buf; se = buf+len; |
|
do{ *d++ = *s++; } while (s<se); |
|
} |
|
c->buf += len; |
|
c->count -= len; |
|
} |
|
|
|
if ( c->count <= 0 ) return 0; |
|
return ( c->count >= RR_SPRINTF_MIN ) ? c->buf : c->tmp; // go direct into buffer if you can |
|
} |
|
|
|
RRPUBLIC_DEF int RR_SPRINTF_DECORATE( vsnprintf )( char * buf, int count, char const * fmt, va_list va ) |
|
{ |
|
RRCCS c; |
|
int l; |
|
|
|
if ( count == 0 ) |
|
return 0; |
|
|
|
c.buf = buf; |
|
c.count = count; |
|
|
|
RR_SPRINTF_DECORATE( vsprintfcb )( rrclampcallback, &c, rrclampcallback(0,&c,0), fmt, va ); |
|
|
|
// zero-terminate |
|
l = (int)( c.buf - buf ); |
|
if ( l >= count ) // should never be greater, only equal (or less) than count |
|
l = count - 1; |
|
buf[l] = 0; |
|
|
|
return l; |
|
} |
|
|
|
RRPUBLIC_DEF int RR_SPRINTF_DECORATE( snprintf )( char * buf, int count, char const * fmt, ... ) |
|
{ |
|
va_list va; |
|
va_start( va, fmt ); |
|
|
|
return RR_SPRINTF_DECORATE( vsnprintf )( buf, count, fmt, va ); |
|
} |
|
|
|
RRPUBLIC_DEF int RR_SPRINTF_DECORATE( vsprintf )( char * buf, char const * fmt, va_list va ) |
|
{ |
|
return RR_SPRINTF_DECORATE( vsprintfcb )( 0, 0, buf, fmt, va ); |
|
} |
|
|
|
// ======================================================================= |
|
// low level float utility functions |
|
|
|
#ifndef RR_SPRINTF_NOFLOAT |
|
|
|
// copies d to bits w/ strict aliasing (this compiles to nothing on /Ox) |
|
#define RRCOPYFP(dest,src) { int cn; for(cn=0;cn<8;cn++) ((char*)&dest)[cn]=((char*)&src)[cn]; } |
|
|
|
// get float info |
|
static rS32 rrreal_to_parts( rS64 * bits, rS32 * expo, double value ) |
|
{ |
|
double d; |
|
rS64 b = 0; |
|
|
|
// load value and round at the frac_digits |
|
d = value; |
|
|
|
RRCOPYFP( b, d ); |
|
|
|
*bits = b & ((((rU64)1)<<52)-1); |
|
*expo = ((b >> 52) & 2047)-1023; |
|
|
|
return (rS32)(b >> 63); |
|
} |
|
|
|
static double const rrbot[23]={1e+000,1e+001,1e+002,1e+003,1e+004,1e+005,1e+006,1e+007,1e+008,1e+009,1e+010,1e+011,1e+012,1e+013,1e+014,1e+015,1e+016,1e+017,1e+018,1e+019,1e+020,1e+021,1e+022}; |
|
static double const rrnegbot[22]={1e-001,1e-002,1e-003,1e-004,1e-005,1e-006,1e-007,1e-008,1e-009,1e-010,1e-011,1e-012,1e-013,1e-014,1e-015,1e-016,1e-017,1e-018,1e-019,1e-020,1e-021,1e-022}; |
|
static double const rrnegboterr[22]={-5.551115123125783e-018,-2.0816681711721684e-019,-2.0816681711721686e-020,-4.7921736023859299e-021,-8.1803053914031305e-022,4.5251888174113741e-023,4.5251888174113739e-024,-2.0922560830128471e-025,-6.2281591457779853e-026,-3.6432197315497743e-027,6.0503030718060191e-028,2.0113352370744385e-029,-3.0373745563400371e-030,1.1806906454401013e-032,-7.7705399876661076e-032,2.0902213275965398e-033,-7.1542424054621921e-034,-7.1542424054621926e-035,2.4754073164739869e-036,5.4846728545790429e-037,9.2462547772103625e-038,-4.8596774326570872e-039}; |
|
static double const rrtop[13]={1e+023,1e+046,1e+069,1e+092,1e+115,1e+138,1e+161,1e+184,1e+207,1e+230,1e+253,1e+276,1e+299}; |
|
static double const rrnegtop[13]={1e-023,1e-046,1e-069,1e-092,1e-115,1e-138,1e-161,1e-184,1e-207,1e-230,1e-253,1e-276,1e-299}; |
|
static double const rrtoperr[13]={8388608,6.8601809640529717e+028,-7.253143638152921e+052,-4.3377296974619174e+075,-1.5559416129466825e+098,-3.2841562489204913e+121,-3.7745893248228135e+144,-1.7356668416969134e+167,-3.8893577551088374e+190,-9.9566444326005119e+213,6.3641293062232429e+236,-5.2069140800249813e+259,-5.2504760255204387e+282}; |
|
static double const rrnegtoperr[13]={3.9565301985100693e-040,-2.299904345391321e-063,3.6506201437945798e-086,1.1875228833981544e-109,-5.0644902316928607e-132,-6.7156837247865426e-155,-2.812077463003139e-178,-5.7778912386589953e-201,7.4997100559334532e-224,-4.6439668915134491e-247,-6.3691100762962136e-270,-9.436808465446358e-293,8.0970921678014997e-317}; |
|
|
|
#if defined(_MSC_VER) && (_MSC_VER<=1200) |
|
static rU64 const rrpot[20]={1,10,100,1000, 10000,100000,1000000,10000000, 100000000,1000000000,10000000000,100000000000, 1000000000000,10000000000000,100000000000000,1000000000000000, 10000000000000000,100000000000000000,1000000000000000000,10000000000000000000U }; |
|
#define rrtento19th ((rU64)1000000000000000000) |
|
#else |
|
static rU64 const rrpot[20]={1,10,100,1000, 10000,100000,1000000,10000000, 100000000,1000000000,10000000000ULL,100000000000ULL, 1000000000000ULL,10000000000000ULL,100000000000000ULL,1000000000000000ULL, 10000000000000000ULL,100000000000000000ULL,1000000000000000000ULL,10000000000000000000ULL }; |
|
#define rrtento19th (1000000000000000000ULL) |
|
#endif |
|
|
|
#define rrddmulthi(oh,ol,xh,yh) \ |
|
{ \ |
|
double ahi=0,alo,bhi=0,blo; \ |
|
rS64 bt; \ |
|
oh = xh * yh; \ |
|
RRCOPYFP(bt,xh); bt&=((~(rU64)0)<<27); RRCOPYFP(ahi,bt); alo = xh-ahi; \ |
|
RRCOPYFP(bt,yh); bt&=((~(rU64)0)<<27); RRCOPYFP(bhi,bt); blo = yh-bhi; \ |
|
ol = ((ahi*bhi-oh)+ahi*blo+alo*bhi)+alo*blo; \ |
|
} |
|
|
|
#define rrddtoS64(ob,xh,xl) \ |
|
{ \ |
|
double ahi=0,alo,vh,t;\ |
|
ob = (rS64)ph;\ |
|
vh=(double)ob;\ |
|
ahi = ( xh - vh );\ |
|
t = ( ahi - xh );\ |
|
alo = (xh-(ahi-t))-(vh+t);\ |
|
ob += (rS64)(ahi+alo+xl);\ |
|
} |
|
|
|
|
|
#define rrddrenorm(oh,ol) { double s; s=oh+ol; ol=ol-(s-oh); oh=s; } |
|
|
|
#define rrddmultlo(oh,ol,xh,xl,yh,yl) \ |
|
ol = ol + ( xh*yl + xl*yh ); \ |
|
|
|
#define rrddmultlos(oh,ol,xh,yl) \ |
|
ol = ol + ( xh*yl ); \ |
|
|
|
static void rrraise_to_power10( double *ohi, double *olo, double d, rS32 power ) // power can be -323 to +350 |
|
{ |
|
double ph, pl; |
|
if ((power>=0) && (power<=22)) |
|
{ |
|
rrddmulthi(ph,pl,d,rrbot[power]); |
|
} |
|
else |
|
{ |
|
rS32 e,et,eb; |
|
double p2h,p2l; |
|
|
|
e=power; if (power<0) e=-e; |
|
et = (e*0x2c9)>>14;/* %23 */ if (et>13) et=13; eb = e-(et*23); |
|
|
|
ph = d; pl = 0.0; |
|
if (power<0) |
|
{ |
|
if (eb) { --eb; rrddmulthi(ph,pl,d,rrnegbot[eb]); rrddmultlos(ph,pl,d,rrnegboterr[eb]); } |
|
if (et) |
|
{ |
|
rrddrenorm(ph,pl); |
|
--et; rrddmulthi(p2h,p2l,ph,rrnegtop[et]); rrddmultlo(p2h,p2l,ph,pl,rrnegtop[et],rrnegtoperr[et]); ph=p2h;pl=p2l; |
|
} |
|
} |
|
else |
|
{ |
|
if (eb) |
|
{ |
|
e = eb; if (eb>22) eb=22; e -= eb; |
|
rrddmulthi(ph,pl,d,rrbot[eb]); |
|
if ( e ) { rrddrenorm(ph,pl); rrddmulthi(p2h,p2l,ph,rrbot[e]); rrddmultlos(p2h,p2l,rrbot[e],pl); ph=p2h;pl=p2l; } |
|
} |
|
if (et) |
|
{ |
|
rrddrenorm(ph,pl); |
|
--et; rrddmulthi(p2h,p2l,ph,rrtop[et]); rrddmultlo(p2h,p2l,ph,pl,rrtop[et],rrtoperr[et]); ph=p2h;pl=p2l; |
|
} |
|
} |
|
} |
|
rrddrenorm(ph,pl); |
|
*ohi = ph; *olo = pl; |
|
} |
|
|
|
// given a float value, returns the significant bits in bits, and the position of the |
|
// decimal point in decimal_pos. +/-INF and NAN are specified by special values |
|
// returned in the decimal_pos parameter. |
|
// frac_digits is absolute normally, but if you want from first significant digits (got %g and %e), or in 0x80000000 |
|
static rS32 rrreal_to_str( char const * * start, rU32 * len, char *out, rS32 * decimal_pos, double value, rU32 frac_digits ) |
|
{ |
|
double d; |
|
rS64 bits = 0; |
|
rS32 expo, e, ng, tens; |
|
|
|
d = value; |
|
RRCOPYFP(bits,d); |
|
expo = (bits >> 52) & 2047; |
|
ng = (rS32)(bits >> 63); |
|
if (ng) d=-d; |
|
|
|
if ( expo == 2047 ) // is nan or inf? |
|
{ |
|
*start = (bits&((((rU64)1)<<52)-1)) ? "NaN" : "Inf"; |
|
*decimal_pos = RRSPECIAL; |
|
*len = 3; |
|
return ng; |
|
} |
|
|
|
if ( expo == 0 ) // is zero or denormal |
|
{ |
|
if ((bits<<1)==0) // do zero |
|
{ |
|
*decimal_pos = 1; |
|
*start = out; |
|
out[0] = '0'; *len = 1; |
|
return ng; |
|
} |
|
// find the right expo for denormals |
|
{ |
|
rS64 v = ((rU64)1)<<51; |
|
while ((bits&v)==0) { --expo; v >>= 1; } |
|
} |
|
} |
|
|
|
// find the decimal exponent as well as the decimal bits of the value |
|
{ |
|
double ph,pl; |
|
|
|
// log10 estimate - very specifically tweaked to hit or undershoot by no more than 1 of log10 of all expos 1..2046 |
|
tens=expo-1023; tens = (tens<0)?((tens*617)/2048):(((tens*1233)/4096)+1); |
|
|
|
// move the significant bits into position and stick them into an int |
|
rrraise_to_power10( &ph, &pl, d, 18-tens ); |
|
|
|
// get full as much precision from double-double as possible |
|
rrddtoS64( bits, ph,pl ); |
|
|
|
// check if we undershot |
|
if ( ((rU64)bits) >= rrtento19th ) ++tens; |
|
} |
|
|
|
// now do the rounding in integer land |
|
frac_digits = ( frac_digits & 0x80000000 ) ? ( (frac_digits&0x7ffffff) + 1 ) : ( tens + frac_digits ); |
|
if ( ( frac_digits < 24 ) ) |
|
{ |
|
rU32 dg = 1; if ((rU64)bits >= rrpot[9] ) dg=10; while( (rU64)bits >= rrpot[dg] ) { ++dg; if (dg==20) goto noround; } |
|
if ( frac_digits < dg ) |
|
{ |
|
rU64 r; |
|
// add 0.5 at the right position and round |
|
e = dg - frac_digits; |
|
if ( (rU32)e >= 24 ) goto noround; |
|
r = rrpot[e]; |
|
bits = bits + (r/2); |
|
if ( (rU64)bits >= rrpot[dg] ) ++tens; |
|
bits /= r; |
|
} |
|
noround:; |
|
} |
|
|
|
// kill long trailing runs of zeros |
|
if ( bits ) |
|
{ |
|
rU32 n; for(;;) { if ( bits<=0xffffffff ) break; if (bits%1000) goto donez; bits/=1000; } n = (rU32)bits; while ((n%1000)==0) n/=1000; bits=n; donez:; |
|
} |
|
|
|
// convert to string |
|
out += 64; |
|
e = 0; |
|
for(;;) |
|
{ |
|
rU32 n; |
|
char * o = out-8; |
|
// do the conversion in chunks of U32s (avoid most 64-bit divides, worth it, constant denomiators be damned) |
|
if (bits>=100000000) { n = (rU32)( bits % 100000000); bits /= 100000000; } else {n = (rU32)bits; bits = 0; } |
|
while(n) { out-=2; *(rU16*)out=*(rU16*)&rrdiglookup[(n%100)*2]; n/=100; e+=2; } |
|
if (bits==0) { if ((e) && (out[0]=='0')) { ++out; --e; } break; } |
|
while( out!=o ) { *--out ='0'; ++e; } |
|
} |
|
|
|
*decimal_pos = tens; |
|
*start = out; |
|
*len = e; |
|
return ng; |
|
} |
|
|
|
#undef rrddmulthi |
|
#undef rrddrenorm |
|
#undef rrddmultlo |
|
#undef rrddmultlos |
|
#undef RRSPECIAL |
|
#undef RRCOPYFP |
|
|
|
#endif |
|
|
|
// clean up |
|
#undef rU16 |
|
#undef rU32 |
|
#undef rS32 |
|
#undef rU64 |
|
#undef rS64 |
|
#undef RRPUBLIC_DEC |
|
#undef RRPUBLIC_DEF |
|
#undef RR_SPRINTF_DECORATE |
|
#undef RR_UNALIGNED |
|
|
|
#endif |
|
|
|
#endif
|
|
|