You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
570 lines
22 KiB
570 lines
22 KiB
#ifndef CRYPTOPP_INTEGER_H |
|
#define CRYPTOPP_INTEGER_H |
|
|
|
/** \file */ |
|
|
|
#include "cryptlib.h" |
|
#include "secblock.h" |
|
#include "stdcpp.h" |
|
|
|
#include <iosfwd> |
|
|
|
NAMESPACE_BEGIN(CryptoPP) |
|
|
|
//! \struct InitializeInteger |
|
//! Performs static intialization of the Integer class |
|
struct InitializeInteger |
|
{ |
|
InitializeInteger(); |
|
}; |
|
|
|
typedef SecBlock<word, AllocatorWithCleanup<word, CRYPTOPP_BOOL_X86> > IntegerSecBlock; |
|
|
|
//! \brief Multiple precision integer with arithmetic operations |
|
//! \details The Integer class can represent positive and negative integers |
|
//! with absolute value less than (256**sizeof(word))<sup>(256**sizeof(int))</sup>. |
|
//! \details Internally, the library uses a sign magnitude representation, and the class |
|
//! has two data members. The first is a IntegerSecBlock (a SecBlock<word>) and it i |
|
//! used to hold the representation. The second is a Sign, and its is used to track |
|
//! the sign of the Integer. |
|
//! \nosubgrouping |
|
class CRYPTOPP_DLL Integer : private InitializeInteger, public ASN1Object |
|
{ |
|
public: |
|
//! \name ENUMS, EXCEPTIONS, and TYPEDEFS |
|
//@{ |
|
//! \brief Exception thrown when division by 0 is encountered |
|
class DivideByZero : public Exception |
|
{ |
|
public: |
|
DivideByZero() : Exception(OTHER_ERROR, "Integer: division by zero") {} |
|
}; |
|
|
|
//! \brief Exception thrown when a random number cannot be found that |
|
//! satisfies the condition |
|
class RandomNumberNotFound : public Exception |
|
{ |
|
public: |
|
RandomNumberNotFound() : Exception(OTHER_ERROR, "Integer: no integer satisfies the given parameters") {} |
|
}; |
|
|
|
//! \enum Sign |
|
//! \brief Used internally to represent the integer |
|
//! \details Sign is used internally to represent the integer. It is also used in a few API functions. |
|
//! \sa Signedness |
|
enum Sign { |
|
//! \brief the value is positive or 0 |
|
POSITIVE=0, |
|
//! \brief the value is negative |
|
NEGATIVE=1}; |
|
|
|
//! \enum Signedness |
|
//! \brief Used when importing and exporting integers |
|
//! \details Signedness is usually used in API functions. |
|
//! \sa Sign |
|
enum Signedness { |
|
//! \brief an unsigned value |
|
UNSIGNED, |
|
//! \brief a signed value |
|
SIGNED}; |
|
|
|
//! \enum RandomNumberType |
|
//! \brief Properties of a random integer |
|
enum RandomNumberType { |
|
//! \brief a number with no special properties |
|
ANY, |
|
//! \brief a number which is probabilistically prime |
|
PRIME}; |
|
//@} |
|
|
|
//! \name CREATORS |
|
//@{ |
|
//! \brief Creates the zero integer |
|
Integer(); |
|
|
|
//! copy constructor |
|
Integer(const Integer& t); |
|
|
|
//! \brief Convert from signed long |
|
Integer(signed long value); |
|
|
|
//! \brief Convert from lword |
|
//! \param sign enumeration indicating Sign |
|
//! \param value the long word |
|
Integer(Sign sign, lword value); |
|
|
|
//! \brief Convert from two words |
|
//! \param sign enumeration indicating Sign |
|
//! \param highWord the high word |
|
//! \param lowWord the low word |
|
Integer(Sign sign, word highWord, word lowWord); |
|
|
|
//! \brief Convert from a C-string |
|
//! \param str C-string value |
|
//! \details \p str can be in base 2, 8, 10, or 16. Base is determined by a case |
|
//! insensitive suffix of 'h', 'o', or 'b'. No suffix means base 10. |
|
explicit Integer(const char *str); |
|
|
|
//! \brief Convert from a wide C-string |
|
//! \param str wide C-string value |
|
//! \details \p str can be in base 2, 8, 10, or 16. Base is determined by a case |
|
//! insensitive suffix of 'h', 'o', or 'b'. No suffix means base 10. |
|
explicit Integer(const wchar_t *str); |
|
|
|
//! \brief Convert from a big-endian byte array |
|
//! \param encodedInteger big-endian byte array |
|
//! \param byteCount length of the byte array |
|
//! \param sign enumeration indicating Signedness |
|
Integer(const byte *encodedInteger, size_t byteCount, Signedness sign=UNSIGNED); |
|
|
|
//! \brief Convert from a big-endian array |
|
//! \param bt BufferedTransformation object with big-endian byte array |
|
//! \param byteCount length of the byte array |
|
//! \param sign enumeration indicating Signedness |
|
Integer(BufferedTransformation &bt, size_t byteCount, Signedness sign=UNSIGNED); |
|
|
|
//! \brief Convert from a BER encoded byte array |
|
//! \param bt BufferedTransformation object with BER encoded byte array |
|
explicit Integer(BufferedTransformation &bt); |
|
|
|
//! \brief Create a random integer |
|
//! \param rng RandomNumberGenerator used to generate material |
|
//! \param bitCount the number of bits in the resulting integer |
|
//! \details The random integer created is uniformly distributed over <tt>[0, 2<sup>bitCount</sup>]</tt>. |
|
Integer(RandomNumberGenerator &rng, size_t bitCount); |
|
|
|
//! \brief Integer representing 0 |
|
//! \returns an Integer representing 0 |
|
//! \details Zero() avoids calling constructors for frequently used integers |
|
static const Integer & CRYPTOPP_API Zero(); |
|
//! \brief Integer representing 1 |
|
//! \returns an Integer representing 1 |
|
//! \details One() avoids calling constructors for frequently used integers |
|
static const Integer & CRYPTOPP_API One(); |
|
//! \brief Integer representing 2 |
|
//! \returns an Integer representing 2 |
|
//! \details Two() avoids calling constructors for frequently used integers |
|
static const Integer & CRYPTOPP_API Two(); |
|
|
|
//! \brief Create a random integer of special form |
|
//! \param rng RandomNumberGenerator used to generate material |
|
//! \param min the minimum value |
|
//! \param max the maximum value |
|
//! \param rnType RandomNumberType to specify the type |
|
//! \param equiv the equivalence class based on the parameter \p mod |
|
//! \param mod the modulus used to reduce the equivalence class |
|
//! \throw RandomNumberNotFound if the set is empty. |
|
//! \details Ideally, the random integer created should be uniformly distributed |
|
//! over <tt>{x | min \<= x \<= max</tt> and \p x is of rnType and <tt>x \% mod == equiv}</tt>. |
|
//! However the actual distribution may not be uniform because sequential |
|
//! search is used to find an appropriate number from a random starting |
|
//! point. |
|
//! \details May return (with very small probability) a pseudoprime when a prime |
|
//! is requested and <tt>max \> lastSmallPrime*lastSmallPrime</tt>. \p lastSmallPrime |
|
//! is declared in nbtheory.h. |
|
Integer(RandomNumberGenerator &rng, const Integer &min, const Integer &max, RandomNumberType rnType=ANY, const Integer &equiv=Zero(), const Integer &mod=One()); |
|
|
|
//! \brief Exponentiates to a power of 2 |
|
//! \returns the Integer 2<sup>e</sup> |
|
//! \sa a_times_b_mod_c() and a_exp_b_mod_c() |
|
static Integer CRYPTOPP_API Power2(size_t e); |
|
//@} |
|
|
|
//! \name ENCODE/DECODE |
|
//@{ |
|
//! \brief The minimum number of bytes to encode this integer |
|
//! \param sign enumeration indicating Signedness |
|
//! \note The MinEncodedSize() of 0 is 1. |
|
size_t MinEncodedSize(Signedness sign=UNSIGNED) const; |
|
|
|
//! \brief Encode in big-endian format |
|
//! \param output big-endian byte array |
|
//! \param outputLen length of the byte array |
|
//! \param sign enumeration indicating Signedness |
|
//! \details Unsigned means encode absolute value, signed means encode two's complement if negative. |
|
//! \details outputLen can be used to ensure an Integer is encoded to an exact size (rather than a |
|
//! minimum size). An exact size is useful, for example, when encoding to a field element size. |
|
void Encode(byte *output, size_t outputLen, Signedness sign=UNSIGNED) const; |
|
|
|
//! \brief Encode in big-endian format |
|
//! \param bt BufferedTransformation object |
|
//! \param outputLen length of the encoding |
|
//! \param sign enumeration indicating Signedness |
|
//! \details Unsigned means encode absolute value, signed means encode two's complement if negative. |
|
//! \details outputLen can be used to ensure an Integer is encoded to an exact size (rather than a |
|
//! minimum size). An exact size is useful, for example, when encoding to a field element size. |
|
void Encode(BufferedTransformation &bt, size_t outputLen, Signedness sign=UNSIGNED) const; |
|
|
|
//! \brief Encode in DER format |
|
//! \param bt BufferedTransformation object |
|
//! \details Encodes the Integer using Distinguished Encoding Rules |
|
//! The result is placed into a BufferedTransformation object |
|
void DEREncode(BufferedTransformation &bt) const; |
|
|
|
//! encode absolute value as big-endian octet string |
|
//! \param bt BufferedTransformation object |
|
//! \param length the number of mytes to decode |
|
void DEREncodeAsOctetString(BufferedTransformation &bt, size_t length) const; |
|
|
|
//! \brief Encode absolute value in OpenPGP format |
|
//! \param output big-endian byte array |
|
//! \param bufferSize length of the byte array |
|
//! \returns length of the output |
|
//! \details OpenPGPEncode places result into a BufferedTransformation object and returns the |
|
//! number of bytes used for the encoding |
|
size_t OpenPGPEncode(byte *output, size_t bufferSize) const; |
|
|
|
//! \brief Encode absolute value in OpenPGP format |
|
//! \param bt BufferedTransformation object |
|
//! \returns length of the output |
|
//! \details OpenPGPEncode places result into a BufferedTransformation object and returns the |
|
//! number of bytes used for the encoding |
|
size_t OpenPGPEncode(BufferedTransformation &bt) const; |
|
|
|
//! \brief Decode from big-endian byte array |
|
//! \param input big-endian byte array |
|
//! \param inputLen length of the byte array |
|
//! \param sign enumeration indicating Signedness |
|
void Decode(const byte *input, size_t inputLen, Signedness sign=UNSIGNED); |
|
|
|
//! \brief Decode nonnegative value from big-endian byte array |
|
//! \param bt BufferedTransformation object |
|
//! \param inputLen length of the byte array |
|
//! \param sign enumeration indicating Signedness |
|
//! \note <tt>bt.MaxRetrievable() \>= inputLen</tt>. |
|
void Decode(BufferedTransformation &bt, size_t inputLen, Signedness sign=UNSIGNED); |
|
|
|
//! \brief Decode from BER format |
|
//! \param input big-endian byte array |
|
//! \param inputLen length of the byte array |
|
void BERDecode(const byte *input, size_t inputLen); |
|
|
|
//! \brief Decode from BER format |
|
//! \param bt BufferedTransformation object |
|
void BERDecode(BufferedTransformation &bt); |
|
|
|
//! \brief Decode nonnegative value from big-endian octet string |
|
//! \param bt BufferedTransformation object |
|
//! \param length length of the byte array |
|
void BERDecodeAsOctetString(BufferedTransformation &bt, size_t length); |
|
|
|
//! \brief Exception thrown when an error is encountered decoding an OpenPGP integer |
|
class OpenPGPDecodeErr : public Exception |
|
{ |
|
public: |
|
OpenPGPDecodeErr() : Exception(INVALID_DATA_FORMAT, "OpenPGP decode error") {} |
|
}; |
|
|
|
//! \brief Decode from OpenPGP format |
|
//! \param input big-endian byte array |
|
//! \param inputLen length of the byte array |
|
void OpenPGPDecode(const byte *input, size_t inputLen); |
|
//! \brief Decode from OpenPGP format |
|
//! \param bt BufferedTransformation object |
|
void OpenPGPDecode(BufferedTransformation &bt); |
|
//@} |
|
|
|
//! \name ACCESSORS |
|
//@{ |
|
//! return true if *this can be represented as a signed long |
|
bool IsConvertableToLong() const; |
|
//! return equivalent signed long if possible, otherwise undefined |
|
signed long ConvertToLong() const; |
|
|
|
//! number of significant bits = floor(log2(abs(*this))) + 1 |
|
unsigned int BitCount() const; |
|
//! number of significant bytes = ceiling(BitCount()/8) |
|
unsigned int ByteCount() const; |
|
//! number of significant words = ceiling(ByteCount()/sizeof(word)) |
|
unsigned int WordCount() const; |
|
|
|
//! return the i-th bit, i=0 being the least significant bit |
|
bool GetBit(size_t i) const; |
|
//! return the i-th byte |
|
byte GetByte(size_t i) const; |
|
//! return n lowest bits of *this >> i |
|
lword GetBits(size_t i, size_t n) const; |
|
|
|
//! |
|
bool IsZero() const {return !*this;} |
|
//! |
|
bool NotZero() const {return !IsZero();} |
|
//! |
|
bool IsNegative() const {return sign == NEGATIVE;} |
|
//! |
|
bool NotNegative() const {return !IsNegative();} |
|
//! |
|
bool IsPositive() const {return NotNegative() && NotZero();} |
|
//! |
|
bool NotPositive() const {return !IsPositive();} |
|
//! |
|
bool IsEven() const {return GetBit(0) == 0;} |
|
//! |
|
bool IsOdd() const {return GetBit(0) == 1;} |
|
//@} |
|
|
|
//! \name MANIPULATORS |
|
//@{ |
|
//! |
|
Integer& operator=(const Integer& t); |
|
|
|
//! |
|
Integer& operator+=(const Integer& t); |
|
//! |
|
Integer& operator-=(const Integer& t); |
|
//! |
|
//! \sa a_times_b_mod_c() and a_exp_b_mod_c() |
|
Integer& operator*=(const Integer& t) {return *this = Times(t);} |
|
//! |
|
Integer& operator/=(const Integer& t) {return *this = DividedBy(t);} |
|
//! |
|
//! \sa a_times_b_mod_c() and a_exp_b_mod_c() |
|
Integer& operator%=(const Integer& t) {return *this = Modulo(t);} |
|
//! |
|
Integer& operator/=(word t) {return *this = DividedBy(t);} |
|
//! |
|
//! \sa a_times_b_mod_c() and a_exp_b_mod_c() |
|
Integer& operator%=(word t) {return *this = Integer(POSITIVE, 0, Modulo(t));} |
|
|
|
//! |
|
Integer& operator<<=(size_t); |
|
//! |
|
Integer& operator>>=(size_t); |
|
|
|
//! \brief Set this Integer to random integer |
|
//! \param rng RandomNumberGenerator used to generate material |
|
//! \param bitCount the number of bits in the resulting integer |
|
//! \details The random integer created is uniformly distributed over <tt>[0, 2<sup>bitCount</sup>]</tt>. |
|
void Randomize(RandomNumberGenerator &rng, size_t bitCount); |
|
|
|
//! \brief Set this Integer to random integer |
|
//! \param rng RandomNumberGenerator used to generate material |
|
//! \param min the minimum value |
|
//! \param max the maximum value |
|
//! \details The random integer created is uniformly distributed over <tt>[min, max]</tt>. |
|
void Randomize(RandomNumberGenerator &rng, const Integer &min, const Integer &max); |
|
|
|
//! \brief Set this Integer to random integer of special form |
|
//! \param rng RandomNumberGenerator used to generate material |
|
//! \param min the minimum value |
|
//! \param max the maximum value |
|
//! \param rnType RandomNumberType to specify the type |
|
//! \param equiv the equivalence class based on the parameter \p mod |
|
//! \param mod the modulus used to reduce the equivalence class |
|
//! \throw RandomNumberNotFound if the set is empty. |
|
//! \details Ideally, the random integer created should be uniformly distributed |
|
//! over <tt>{x | min \<= x \<= max</tt> and \p x is of rnType and <tt>x \% mod == equiv}</tt>. |
|
//! However the actual distribution may not be uniform because sequential |
|
//! search is used to find an appropriate number from a random starting |
|
//! point. |
|
//! \details May return (with very small probability) a pseudoprime when a prime |
|
//! is requested and <tt>max \> lastSmallPrime*lastSmallPrime</tt>. \p lastSmallPrime |
|
//! is declared in nbtheory.h. |
|
bool Randomize(RandomNumberGenerator &rng, const Integer &min, const Integer &max, RandomNumberType rnType, const Integer &equiv=Zero(), const Integer &mod=One()); |
|
|
|
bool GenerateRandomNoThrow(RandomNumberGenerator &rng, const NameValuePairs ¶ms = g_nullNameValuePairs); |
|
void GenerateRandom(RandomNumberGenerator &rng, const NameValuePairs ¶ms = g_nullNameValuePairs) |
|
{ |
|
if (!GenerateRandomNoThrow(rng, params)) |
|
throw RandomNumberNotFound(); |
|
} |
|
|
|
//! \brief Set the n-th bit to value |
|
//! \details 0-based numbering. |
|
void SetBit(size_t n, bool value=1); |
|
|
|
//! \brief Set the n-th byte to value |
|
//! \details 0-based numbering. |
|
void SetByte(size_t n, byte value); |
|
|
|
//! \brief Reverse the Sign of the Integer |
|
void Negate(); |
|
|
|
//! \brief Sets the Integer to positive |
|
void SetPositive() {sign = POSITIVE;} |
|
|
|
//! \brief Sets the Integer to negative |
|
void SetNegative() {if (!!(*this)) sign = NEGATIVE;} |
|
|
|
//! \brief Swaps this Integer with another Integer |
|
void swap(Integer &a); |
|
//@} |
|
|
|
//! \name UNARY OPERATORS |
|
//@{ |
|
//! |
|
bool operator!() const; |
|
//! |
|
Integer operator+() const {return *this;} |
|
//! |
|
Integer operator-() const; |
|
//! |
|
Integer& operator++(); |
|
//! |
|
Integer& operator--(); |
|
//! |
|
Integer operator++(int) {Integer temp = *this; ++*this; return temp;} |
|
//! |
|
Integer operator--(int) {Integer temp = *this; --*this; return temp;} |
|
//@} |
|
|
|
//! \name BINARY OPERATORS |
|
//@{ |
|
//! \brief Perform signed comparison |
|
//! \param a the Integer to comapre |
|
//! \retval -1 if <tt>*this < a</tt> |
|
//! \retval 0 if <tt>*this = a</tt> |
|
//! \retval 1 if <tt>*this > a</tt> |
|
int Compare(const Integer& a) const; |
|
|
|
//! |
|
Integer Plus(const Integer &b) const; |
|
//! |
|
Integer Minus(const Integer &b) const; |
|
//! |
|
//! \sa a_times_b_mod_c() and a_exp_b_mod_c() |
|
Integer Times(const Integer &b) const; |
|
//! |
|
Integer DividedBy(const Integer &b) const; |
|
//! |
|
//! \sa a_times_b_mod_c() and a_exp_b_mod_c() |
|
Integer Modulo(const Integer &b) const; |
|
//! |
|
Integer DividedBy(word b) const; |
|
//! |
|
//! \sa a_times_b_mod_c() and a_exp_b_mod_c() |
|
word Modulo(word b) const; |
|
|
|
//! |
|
Integer operator>>(size_t n) const {return Integer(*this)>>=n;} |
|
//! |
|
Integer operator<<(size_t n) const {return Integer(*this)<<=n;} |
|
//@} |
|
|
|
//! \name OTHER ARITHMETIC FUNCTIONS |
|
//@{ |
|
//! |
|
Integer AbsoluteValue() const; |
|
//! |
|
Integer Doubled() const {return Plus(*this);} |
|
//! |
|
//! \sa a_times_b_mod_c() and a_exp_b_mod_c() |
|
Integer Squared() const {return Times(*this);} |
|
//! extract square root, if negative return 0, else return floor of square root |
|
Integer SquareRoot() const; |
|
//! return whether this integer is a perfect square |
|
bool IsSquare() const; |
|
|
|
//! is 1 or -1 |
|
bool IsUnit() const; |
|
//! return inverse if 1 or -1, otherwise return 0 |
|
Integer MultiplicativeInverse() const; |
|
|
|
//! calculate r and q such that (a == d*q + r) && (0 <= r < abs(d)) |
|
static void CRYPTOPP_API Divide(Integer &r, Integer &q, const Integer &a, const Integer &d); |
|
//! use a faster division algorithm when divisor is short |
|
static void CRYPTOPP_API Divide(word &r, Integer &q, const Integer &a, word d); |
|
|
|
//! returns same result as Divide(r, q, a, Power2(n)), but faster |
|
static void CRYPTOPP_API DivideByPowerOf2(Integer &r, Integer &q, const Integer &a, unsigned int n); |
|
|
|
//! greatest common divisor |
|
static Integer CRYPTOPP_API Gcd(const Integer &a, const Integer &n); |
|
//! calculate multiplicative inverse of *this mod n |
|
//! \sa a_times_b_mod_c() and a_exp_b_mod_c() |
|
Integer InverseMod(const Integer &n) const; |
|
//! |
|
//! \sa a_times_b_mod_c() and a_exp_b_mod_c() |
|
word InverseMod(word n) const; |
|
//@} |
|
|
|
//! \name INPUT/OUTPUT |
|
//@{ |
|
//! \brief Extraction operator |
|
//! \param in a reference to a std::istream |
|
//! \param a a reference to an Integer |
|
//! \returns a reference to a std::istream reference |
|
friend CRYPTOPP_DLL std::istream& CRYPTOPP_API operator>>(std::istream& in, Integer &a); |
|
//! |
|
//! \brief Insertion operator |
|
//! \param out a reference to a std::ostream |
|
//! \param a a constant reference to an Integer |
|
//! \returns a reference to a std::ostream reference |
|
//! \details The output integer responds to std::hex, std::oct, std::hex, std::upper and |
|
//! std::lower. The output includes the suffix \a \b h (for hex), \a \b . (\a \b dot, for dec) |
|
//! and \a \b o (for octal). There is currently no way to supress the suffix. |
|
//! \details If you want to print an Integer without the suffix or using an arbitrary base, then |
|
//! use IntToString<Integer>(). |
|
//! \sa IntToString<Integer> |
|
friend CRYPTOPP_DLL std::ostream& CRYPTOPP_API operator<<(std::ostream& out, const Integer &a); |
|
//@} |
|
|
|
#ifndef CRYPTOPP_DOXYGEN_PROCESSING |
|
//! modular multiplication |
|
CRYPTOPP_DLL friend Integer CRYPTOPP_API a_times_b_mod_c(const Integer &x, const Integer& y, const Integer& m); |
|
//! modular exponentiation |
|
CRYPTOPP_DLL friend Integer CRYPTOPP_API a_exp_b_mod_c(const Integer &x, const Integer& e, const Integer& m); |
|
#endif |
|
|
|
private: |
|
|
|
Integer(word value, size_t length); |
|
int PositiveCompare(const Integer &t) const; |
|
|
|
IntegerSecBlock reg; |
|
Sign sign; |
|
|
|
#ifndef CRYPTOPP_DOXYGEN_PROCESSING |
|
friend class ModularArithmetic; |
|
friend class MontgomeryRepresentation; |
|
friend class HalfMontgomeryRepresentation; |
|
|
|
friend void PositiveAdd(Integer &sum, const Integer &a, const Integer &b); |
|
friend void PositiveSubtract(Integer &diff, const Integer &a, const Integer &b); |
|
friend void PositiveMultiply(Integer &product, const Integer &a, const Integer &b); |
|
friend void PositiveDivide(Integer &remainder, Integer "ient, const Integer ÷nd, const Integer &divisor); |
|
#endif |
|
}; |
|
|
|
//! |
|
inline bool operator==(const CryptoPP::Integer& a, const CryptoPP::Integer& b) {return a.Compare(b)==0;} |
|
//! |
|
inline bool operator!=(const CryptoPP::Integer& a, const CryptoPP::Integer& b) {return a.Compare(b)!=0;} |
|
//! |
|
inline bool operator> (const CryptoPP::Integer& a, const CryptoPP::Integer& b) {return a.Compare(b)> 0;} |
|
//! |
|
inline bool operator>=(const CryptoPP::Integer& a, const CryptoPP::Integer& b) {return a.Compare(b)>=0;} |
|
//! |
|
inline bool operator< (const CryptoPP::Integer& a, const CryptoPP::Integer& b) {return a.Compare(b)< 0;} |
|
//! |
|
inline bool operator<=(const CryptoPP::Integer& a, const CryptoPP::Integer& b) {return a.Compare(b)<=0;} |
|
//! |
|
inline CryptoPP::Integer operator+(const CryptoPP::Integer &a, const CryptoPP::Integer &b) {return a.Plus(b);} |
|
//! |
|
inline CryptoPP::Integer operator-(const CryptoPP::Integer &a, const CryptoPP::Integer &b) {return a.Minus(b);} |
|
//! |
|
//! \sa a_times_b_mod_c() and a_exp_b_mod_c() |
|
inline CryptoPP::Integer operator*(const CryptoPP::Integer &a, const CryptoPP::Integer &b) {return a.Times(b);} |
|
//! |
|
inline CryptoPP::Integer operator/(const CryptoPP::Integer &a, const CryptoPP::Integer &b) {return a.DividedBy(b);} |
|
//! |
|
//! \sa a_times_b_mod_c() and a_exp_b_mod_c() |
|
inline CryptoPP::Integer operator%(const CryptoPP::Integer &a, const CryptoPP::Integer &b) {return a.Modulo(b);} |
|
//! |
|
inline CryptoPP::Integer operator/(const CryptoPP::Integer &a, CryptoPP::word b) {return a.DividedBy(b);} |
|
//! |
|
//! \sa a_times_b_mod_c() and a_exp_b_mod_c() |
|
inline CryptoPP::word operator%(const CryptoPP::Integer &a, CryptoPP::word b) {return a.Modulo(b);} |
|
|
|
NAMESPACE_END |
|
|
|
#ifndef __BORLANDC__ |
|
NAMESPACE_BEGIN(std) |
|
inline void swap(CryptoPP::Integer &a, CryptoPP::Integer &b) |
|
{ |
|
a.swap(b); |
|
} |
|
NAMESPACE_END |
|
#endif |
|
|
|
#endif
|
|
|