You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
612 lines
15 KiB
612 lines
15 KiB
//========= Copyright Valve Corporation, All rights reserved. ============// |
|
// |
|
// Purpose: |
|
// |
|
// $NoKeywords: $ |
|
//=============================================================================// |
|
#include "pch_tier0.h" |
|
|
|
#if defined(_WIN32) && !defined(_X360) |
|
#define WINDOWS_LEAN_AND_MEAN |
|
#include <windows.h> |
|
#elif defined(_LINUX) |
|
#include <stdlib.h> |
|
#elif defined(OSX) |
|
#include <sys/sysctl.h> |
|
#endif |
|
|
|
// NOTE: This has to be the last file included! |
|
#include "tier0/memdbgon.h" |
|
|
|
const tchar* GetProcessorVendorId(); |
|
|
|
static bool cpuid(uint32 function, uint32& out_eax, uint32& out_ebx, uint32& out_ecx, uint32& out_edx) |
|
{ |
|
#if defined (__arm__) || defined (__arm64__) || defined( _X360 ) |
|
return false; |
|
#elif defined(GNUC) |
|
|
|
#if defined(PLATFORM_64BITS) |
|
asm("mov %%rbx, %%rsi\n\t" |
|
"cpuid\n\t" |
|
"xchg %%rsi, %%rbx" |
|
: "=a" (out_eax), |
|
"=S" (out_ebx), |
|
"=c" (out_ecx), |
|
"=d" (out_edx) |
|
: "a" (function) |
|
); |
|
#else |
|
asm("mov %%ebx, %%esi\n\t" |
|
"cpuid\n\t" |
|
"xchg %%esi, %%ebx" |
|
: "=a" (out_eax), |
|
"=S" (out_ebx), |
|
"=c" (out_ecx), |
|
"=d" (out_edx) |
|
: "a" (function) |
|
); |
|
#endif |
|
return true; |
|
|
|
#elif defined(_WIN64) |
|
int pCPUInfo[4]; |
|
__cpuid( pCPUInfo, (int)function ); |
|
out_eax = pCPUInfo[0]; |
|
out_ebx = pCPUInfo[1]; |
|
out_ecx = pCPUInfo[2]; |
|
out_edx = pCPUInfo[3]; |
|
return true; |
|
#else |
|
bool retval = true; |
|
uint32 local_eax, local_ebx, local_ecx, local_edx; |
|
_asm pushad; |
|
|
|
__try |
|
{ |
|
_asm |
|
{ |
|
xor edx, edx // Clue the compiler that EDX is about to be used. |
|
mov eax, function // set up CPUID to return processor version and features |
|
// 0 = vendor string, 1 = version info, 2 = cache info |
|
cpuid // code bytes = 0fh, 0a2h |
|
mov local_eax, eax // features returned in eax |
|
mov local_ebx, ebx // features returned in ebx |
|
mov local_ecx, ecx // features returned in ecx |
|
mov local_edx, edx // features returned in edx |
|
} |
|
} |
|
__except(EXCEPTION_EXECUTE_HANDLER) |
|
{ |
|
retval = false; |
|
} |
|
|
|
out_eax = local_eax; |
|
out_ebx = local_ebx; |
|
out_ecx = local_ecx; |
|
out_edx = local_edx; |
|
|
|
_asm popad |
|
|
|
return retval; |
|
#endif |
|
} |
|
|
|
static bool CheckMMXTechnology(void) |
|
{ |
|
#if defined( _X360 ) || defined( _PS3 ) |
|
return true; |
|
#else |
|
uint32 eax,ebx,edx,unused; |
|
if ( !cpuid(1,eax,ebx,unused,edx) ) |
|
return false; |
|
|
|
return ( edx & 0x800000 ) != 0; |
|
#endif |
|
} |
|
|
|
//----------------------------------------------------------------------------- |
|
// Purpose: This is a bit of a hack because it appears |
|
// Output : Returns true on success, false on failure. |
|
//----------------------------------------------------------------------------- |
|
static bool IsWin98OrOlder() |
|
{ |
|
#if defined( _X360 ) || defined( _PS3 ) || defined( POSIX ) |
|
return false; |
|
#else |
|
bool retval = false; |
|
|
|
OSVERSIONINFOEX osvi; |
|
ZeroMemory(&osvi, sizeof(OSVERSIONINFOEX)); |
|
osvi.dwOSVersionInfoSize = sizeof(OSVERSIONINFOEX); |
|
|
|
BOOL bOsVersionInfoEx = GetVersionEx ((OSVERSIONINFO *) &osvi); |
|
if( !bOsVersionInfoEx ) |
|
{ |
|
// If OSVERSIONINFOEX doesn't work, try OSVERSIONINFO. |
|
|
|
osvi.dwOSVersionInfoSize = sizeof (OSVERSIONINFO); |
|
if ( !GetVersionEx ( (OSVERSIONINFO *) &osvi) ) |
|
{ |
|
Error( _T("IsWin98OrOlder: Unable to get OS version information") ); |
|
} |
|
} |
|
|
|
switch (osvi.dwPlatformId) |
|
{ |
|
case VER_PLATFORM_WIN32_NT: |
|
// NT, XP, Win2K, etc. all OK for SSE |
|
break; |
|
case VER_PLATFORM_WIN32_WINDOWS: |
|
// Win95, 98, Me can't do SSE |
|
retval = true; |
|
break; |
|
case VER_PLATFORM_WIN32s: |
|
// Can't really run this way I don't think... |
|
retval = true; |
|
break; |
|
default: |
|
break; |
|
} |
|
|
|
return retval; |
|
#endif |
|
} |
|
|
|
|
|
static bool CheckSSETechnology(void) |
|
{ |
|
#if defined(__SANITIZE_ADDRESS__) || defined (__arm__) |
|
return false; |
|
#elif defined( _X360 ) || defined( _PS3 ) |
|
return true; |
|
#else |
|
if ( IsWin98OrOlder() ) { |
|
return false; |
|
} |
|
|
|
uint32 eax,ebx,edx,unused; |
|
if ( !cpuid(1,eax,ebx,unused,edx) ) { |
|
return false; |
|
} |
|
|
|
return ( edx & 0x2000000L ) != 0; |
|
#endif |
|
} |
|
|
|
static bool CheckSSE2Technology(void) |
|
{ |
|
#if defined( _X360 ) || defined( _PS3 ) || defined(__SANITIZE_ADDRESS__) || defined (__arm__) |
|
return false; |
|
#else |
|
uint32 eax,ebx,edx,unused; |
|
if ( !cpuid(1,eax,ebx,unused,edx) ) |
|
return false; |
|
|
|
return ( edx & 0x04000000 ) != 0; |
|
#endif |
|
} |
|
|
|
bool CheckSSE3Technology(void) |
|
{ |
|
#if defined( _X360 ) || defined( _PS3 ) || defined(__SANITIZE_ADDRESS__) || defined (__arm__) |
|
return false; |
|
#else |
|
uint32 eax,ebx,edx,ecx; |
|
if( !cpuid(1,eax,ebx,ecx,edx) ) |
|
return false; |
|
|
|
return ( ecx & 0x00000001 ) != 0; // bit 1 of ECX |
|
#endif |
|
} |
|
|
|
bool CheckSSSE3Technology(void) |
|
{ |
|
#if defined( _X360 ) || defined( _PS3 ) || defined(__SANITIZE_ADDRESS__) || defined (__arm__) |
|
return false; |
|
#else |
|
// SSSE 3 is implemented by both Intel and AMD |
|
// detection is done the same way for both vendors |
|
uint32 eax,ebx,edx,ecx; |
|
if( !cpuid(1,eax,ebx,ecx,edx) ) |
|
return false; |
|
|
|
return ( ecx & ( 1 << 9 ) ) != 0; // bit 9 of ECX |
|
#endif |
|
} |
|
|
|
bool CheckSSE41Technology(void) |
|
{ |
|
#if defined( _X360 ) || defined( _PS3 ) || defined(__SANITIZE_ADDRESS__) || defined (__arm__) |
|
return false; |
|
#else |
|
// SSE 4.1 is implemented by both Intel and AMD |
|
// detection is done the same way for both vendors |
|
|
|
uint32 eax,ebx,edx,ecx; |
|
if( !cpuid(1,eax,ebx,ecx,edx) ) |
|
return false; |
|
|
|
return ( ecx & ( 1 << 19 ) ) != 0; // bit 19 of ECX |
|
#endif |
|
} |
|
|
|
bool CheckSSE42Technology(void) |
|
{ |
|
#if defined( _X360 ) || defined( _PS3 ) || defined(__SANITIZE_ADDRESS__) || defined (__arm__) |
|
return false; |
|
#else |
|
// SSE4.2 is an Intel-only feature |
|
|
|
const char *pchVendor = GetProcessorVendorId(); |
|
if ( 0 != V_tier0_stricmp( pchVendor, "GenuineIntel" ) ) |
|
return false; |
|
|
|
uint32 eax,ebx,edx,ecx; |
|
if( !cpuid(1,eax,ebx,ecx,edx) ) |
|
return false; |
|
|
|
return ( ecx & ( 1 << 20 ) ) != 0; // bit 20 of ECX |
|
#endif |
|
} |
|
|
|
|
|
bool CheckSSE4aTechnology( void ) |
|
{ |
|
#if defined( _X360 ) || defined( _PS3 ) || defined(__SANITIZE_ADDRESS__) || defined (__arm__) |
|
return false; |
|
#else |
|
// SSE 4a is an AMD-only feature |
|
|
|
const char *pchVendor = GetProcessorVendorId(); |
|
if ( 0 != V_tier0_stricmp( pchVendor, "AuthenticAMD" ) ) |
|
return false; |
|
|
|
uint32 eax,ebx,edx,ecx; |
|
if( !cpuid( 0x80000001,eax,ebx,ecx,edx) ) |
|
return false; |
|
|
|
return ( ecx & ( 1 << 6 ) ) != 0; // bit 6 of ECX |
|
#endif |
|
} |
|
|
|
|
|
static bool Check3DNowTechnology(void) |
|
{ |
|
#if defined( _X360 ) || defined( _PS3 ) || defined (__arm__) || defined(__SANITIZE_ADDRESS__) |
|
return false; |
|
#else |
|
uint32 eax, unused; |
|
if ( !cpuid(0x80000000,eax,unused,unused,unused) ) |
|
return false; |
|
|
|
if ( eax > 0x80000000L ) |
|
{ |
|
if ( !cpuid(0x80000001,unused,unused,unused,eax) ) |
|
return false; |
|
|
|
return ( eax & 1<<31 ) != 0; |
|
} |
|
return false; |
|
#endif |
|
} |
|
|
|
static bool CheckCMOVTechnology() |
|
{ |
|
#if defined( _X360 ) || defined( _PS3 ) || defined (__arm__) || defined(__SANITIZE_ADDRESS__) |
|
return false; |
|
#else |
|
uint32 eax,ebx,edx,unused; |
|
if ( !cpuid(1,eax,ebx,unused,edx) ) |
|
return false; |
|
|
|
return ( edx & (1<<15) ) != 0; |
|
#endif |
|
} |
|
|
|
static bool CheckFCMOVTechnology(void) |
|
{ |
|
#if defined( _X360 ) || defined( _PS3 ) || defined (__arm__) || defined(__SANITIZE_ADDRESS__) |
|
return false; |
|
#else |
|
uint32 eax,ebx,edx,unused; |
|
if ( !cpuid(1,eax,ebx,unused,edx) ) |
|
return false; |
|
|
|
return ( edx & (1<<16) ) != 0; |
|
#endif |
|
} |
|
|
|
static bool CheckRDTSCTechnology(void) |
|
{ |
|
#if defined( _X360 ) || defined( _PS3 ) || defined (__arm__) || defined(__SANITIZE_ADDRESS__) |
|
return false; |
|
#else |
|
uint32 eax,ebx,edx,unused; |
|
if ( !cpuid(1,eax,ebx,unused,edx) ) |
|
return false; |
|
|
|
return ( edx & 0x10 ) != 0; |
|
#endif |
|
} |
|
|
|
// Return the Processor's vendor identification string, or "Generic_x86" if it doesn't exist on this CPU |
|
const tchar* GetProcessorVendorId() |
|
{ |
|
#if defined( _X360 ) || defined( _PS3 ) |
|
return "PPC"; |
|
#elif defined ( __arm__ ) |
|
return "ARM"; |
|
#else |
|
uint32 unused, VendorIDRegisters[3]; |
|
|
|
static tchar VendorID[13]; |
|
|
|
memset( VendorID, 0, sizeof(VendorID) ); |
|
if ( !cpuid(0,unused, VendorIDRegisters[0], VendorIDRegisters[2], VendorIDRegisters[1] ) ) |
|
{ |
|
if ( IsPC() ) |
|
{ |
|
_tcscpy( VendorID, _T( "Generic_x86" ) ); |
|
} |
|
else if ( IsX360() ) |
|
{ |
|
_tcscpy( VendorID, _T( "PowerPC" ) ); |
|
} |
|
} |
|
else |
|
{ |
|
memcpy( VendorID+0, &(VendorIDRegisters[0]), sizeof( VendorIDRegisters[0] ) ); |
|
memcpy( VendorID+4, &(VendorIDRegisters[1]), sizeof( VendorIDRegisters[1] ) ); |
|
memcpy( VendorID+8, &(VendorIDRegisters[2]), sizeof( VendorIDRegisters[2] ) ); |
|
} |
|
|
|
return VendorID; |
|
#endif |
|
} |
|
|
|
// Returns non-zero if Hyper-Threading Technology is supported on the processors and zero if not. This does not mean that |
|
// Hyper-Threading Technology is necessarily enabled. |
|
static bool HTSupported(void) |
|
{ |
|
#if defined( _X360 ) |
|
// not entirtely sure about the semantic of HT support, it being an intel name |
|
// are we asking about HW threads or HT? |
|
return true; |
|
#else |
|
const unsigned int HT_BIT = 0x10000000; // EDX[28] - Bit 28 set indicates Hyper-Threading Technology is supported in hardware. |
|
const unsigned int FAMILY_ID = 0x0f00; // EAX[11:8] - Bit 11 thru 8 contains family processor id |
|
const unsigned int EXT_FAMILY_ID = 0x0f00000; // EAX[23:20] - Bit 23 thru 20 contains extended family processor id |
|
const unsigned int PENTIUM4_ID = 0x0f00; // Pentium 4 family processor id |
|
|
|
uint32 unused, |
|
reg_eax = 0, |
|
reg_edx = 0, |
|
vendor_id[3] = {0, 0, 0}; |
|
|
|
// verify cpuid instruction is supported |
|
if( !cpuid(0,unused, vendor_id[0],vendor_id[2],vendor_id[1]) |
|
|| !cpuid(1,reg_eax,unused,unused,reg_edx) ) |
|
return false; |
|
|
|
// Check to see if this is a Pentium 4 or later processor |
|
if (((reg_eax & FAMILY_ID) == PENTIUM4_ID) || (reg_eax & EXT_FAMILY_ID)) |
|
if (vendor_id[0] == 0x756E6547 && vendor_id[1] == 0x49656E69 && vendor_id[2] == 0x6C65746E) |
|
return (reg_edx & HT_BIT) != 0; // Genuine Intel Processor with Hyper-Threading Technology |
|
|
|
return false; // This is not a genuine Intel processor. |
|
#endif |
|
} |
|
|
|
// Returns the number of logical processors per physical processors. |
|
static uint8 LogicalProcessorsPerPackage(void) |
|
{ |
|
#if defined( _X360 ) |
|
return 2; |
|
#else |
|
// EBX[23:16] indicate number of logical processors per package |
|
const unsigned NUM_LOGICAL_BITS = 0x00FF0000; |
|
|
|
uint32 unused, reg_ebx = 0; |
|
|
|
if ( !HTSupported() ) |
|
return 1; |
|
|
|
if ( !cpuid(1,unused,reg_ebx,unused,unused) ) |
|
return 1; |
|
|
|
return (uint8) ((reg_ebx & NUM_LOGICAL_BITS) >> 16); |
|
#endif |
|
} |
|
|
|
#if defined(POSIX) |
|
// Move this declaration out of the CalculateClockSpeed() function because |
|
// otherwise clang warns that it is non-obvious whether it is a variable |
|
// or a function declaration: [-Wvexing-parse] |
|
uint64 CalculateCPUFreq(); // from cpu_linux.cpp |
|
#endif |
|
|
|
// Measure the processor clock speed by sampling the cycle count, waiting |
|
// for some fraction of a second, then measuring the elapsed number of cycles. |
|
static int64 CalculateClockSpeed() |
|
{ |
|
#if defined( _WIN32 ) |
|
#if !defined( _X360 ) |
|
LARGE_INTEGER waitTime, startCount, curCount; |
|
CCycleCount start, end; |
|
|
|
// Take 1/32 of a second for the measurement. |
|
QueryPerformanceFrequency( &waitTime ); |
|
int scale = 5; |
|
waitTime.QuadPart >>= scale; |
|
|
|
QueryPerformanceCounter( &startCount ); |
|
start.Sample(); |
|
do |
|
{ |
|
QueryPerformanceCounter( &curCount ); |
|
} |
|
while ( curCount.QuadPart - startCount.QuadPart < waitTime.QuadPart ); |
|
end.Sample(); |
|
|
|
int64 freq = (end.m_Int64 - start.m_Int64) << scale; |
|
if ( freq == 0 ) |
|
{ |
|
// Steam was seeing Divide-by-zero crashes on some Windows machines due to |
|
// WIN64_AMD_DUALCORE_TIMER_WORKAROUND that can cause rdtsc to effectively |
|
// stop. Staging doesn't have the workaround but I'm checking in the fix |
|
// anyway. Return a plausible speed and get on with our day. |
|
freq = 2000000000; |
|
} |
|
return freq; |
|
|
|
#else |
|
return 3200000000LL; |
|
#endif |
|
#elif defined(POSIX) |
|
int64 freq =(int64)CalculateCPUFreq(); |
|
if ( freq == 0 ) // couldn't calculate clock speed |
|
{ |
|
Error( "Unable to determine CPU Frequency\n" ); |
|
} |
|
return freq; |
|
#endif |
|
} |
|
|
|
const CPUInformation* GetCPUInformation() |
|
{ |
|
static CPUInformation pi; |
|
|
|
// Has the structure already been initialized and filled out? |
|
if ( pi.m_Size == sizeof(pi) ) |
|
return π |
|
|
|
// Redundant, but just in case the user somehow messes with the size. |
|
memset(&pi, 0x0, sizeof(pi)); |
|
|
|
// Fill out the structure, and return it: |
|
pi.m_Size = sizeof(pi); |
|
|
|
// Grab the processor frequency: |
|
pi.m_Speed = CalculateClockSpeed(); |
|
|
|
// Get the logical and physical processor counts: |
|
pi.m_nLogicalProcessors = LogicalProcessorsPerPackage(); |
|
|
|
#if defined(_WIN32) && !defined( _X360 ) |
|
SYSTEM_INFO si; |
|
ZeroMemory( &si, sizeof(si) ); |
|
|
|
GetSystemInfo( &si ); |
|
|
|
pi.m_nPhysicalProcessors = (unsigned char)(si.dwNumberOfProcessors / pi.m_nLogicalProcessors); |
|
pi.m_nLogicalProcessors = (unsigned char)(pi.m_nLogicalProcessors * pi.m_nPhysicalProcessors); |
|
|
|
// Make sure I always report at least one, when running WinXP with the /ONECPU switch, |
|
// it likes to report 0 processors for some reason. |
|
if ( pi.m_nPhysicalProcessors == 0 && pi.m_nLogicalProcessors == 0 ) |
|
{ |
|
pi.m_nPhysicalProcessors = 1; |
|
pi.m_nLogicalProcessors = 1; |
|
} |
|
#elif defined( _X360 ) |
|
pi.m_nPhysicalProcessors = 3; |
|
pi.m_nLogicalProcessors = 6; |
|
#elif defined(_LINUX) |
|
// TODO: poll /dev/cpuinfo when we have some benefits from multithreading |
|
FILE *fpCpuInfo = fopen( "/proc/cpuinfo", "r" ); |
|
if ( fpCpuInfo ) |
|
{ |
|
int nLogicalProcs = 0; |
|
int nProcId = -1, nCoreId = -1; |
|
const int kMaxPhysicalCores = 128; |
|
int anKnownIds[kMaxPhysicalCores]; |
|
int nKnownIdCount = 0; |
|
char buf[255]; |
|
while ( fgets( buf, ARRAYSIZE(buf), fpCpuInfo ) ) |
|
{ |
|
if ( char *value = strchr( buf, ':' ) ) |
|
{ |
|
for ( char *p = value - 1; p > buf && isspace((unsigned char)*p); --p ) |
|
{ |
|
*p = 0; |
|
} |
|
for ( char *p = buf; p < value && *p; ++p ) |
|
{ |
|
*p = tolower((unsigned char)*p); |
|
} |
|
if ( !strcmp( buf, "processor" ) ) |
|
{ |
|
++nLogicalProcs; |
|
nProcId = nCoreId = -1; |
|
} |
|
else if ( !strcmp( buf, "physical id" ) ) |
|
{ |
|
nProcId = atoi( value+1 ); |
|
} |
|
else if ( !strcmp( buf, "core id" ) ) |
|
{ |
|
nCoreId = atoi( value+1 ); |
|
} |
|
|
|
if (nProcId != -1 && nCoreId != -1) // as soon as we have a complete id, process it |
|
{ |
|
int i = 0, nId = (nProcId << 16) + nCoreId; |
|
while ( i < nKnownIdCount && anKnownIds[i] != nId ) { ++i; } |
|
if ( i == nKnownIdCount && nKnownIdCount < kMaxPhysicalCores ) |
|
anKnownIds[nKnownIdCount++] = nId; |
|
nProcId = nCoreId = -1; |
|
} |
|
} |
|
} |
|
fclose( fpCpuInfo ); |
|
pi.m_nLogicalProcessors = MAX( 1, nLogicalProcs ); |
|
pi.m_nPhysicalProcessors = MAX( 1, nKnownIdCount ); |
|
} |
|
else |
|
{ |
|
pi.m_nPhysicalProcessors = 1; |
|
pi.m_nLogicalProcessors = 1; |
|
Assert( !"couldn't read cpu information from /proc/cpuinfo" ); |
|
} |
|
#elif defined(OSX) |
|
int mib[2], num_cpu = 1; |
|
size_t len; |
|
mib[0] = CTL_HW; |
|
mib[1] = HW_NCPU; |
|
len = sizeof(num_cpu); |
|
sysctl(mib, 2, &num_cpu, &len, NULL, 0); |
|
pi.m_nPhysicalProcessors = num_cpu; |
|
pi.m_nLogicalProcessors = num_cpu; |
|
#endif |
|
|
|
// Determine Processor Features: |
|
pi.m_bRDTSC = CheckRDTSCTechnology(); |
|
pi.m_bCMOV = CheckCMOVTechnology(); |
|
pi.m_bFCMOV = CheckFCMOVTechnology(); |
|
pi.m_bMMX = CheckMMXTechnology(); |
|
pi.m_bSSE = CheckSSETechnology(); |
|
pi.m_bSSE2 = CheckSSE2Technology(); |
|
pi.m_bSSE3 = CheckSSE3Technology(); |
|
pi.m_bSSSE3 = CheckSSSE3Technology(); |
|
pi.m_bSSE4a = CheckSSE4aTechnology(); |
|
pi.m_bSSE41 = CheckSSE41Technology(); |
|
pi.m_bSSE42 = CheckSSE42Technology(); |
|
pi.m_b3DNow = Check3DNowTechnology(); |
|
pi.m_szProcessorID = (tchar*)GetProcessorVendorId(); |
|
pi.m_bHT = HTSupported(); |
|
|
|
uint32 eax, ebx, edx, ecx; |
|
if (cpuid(1, eax, ebx, ecx, edx)) |
|
{ |
|
pi.m_nModel = eax; // full CPU model info |
|
pi.m_nFeatures[0] = edx; // x87+ features |
|
pi.m_nFeatures[1] = ecx; // sse3+ features |
|
pi.m_nFeatures[2] = ebx; // some additional features |
|
} |
|
|
|
|
|
|
|
return π |
|
} |
|
|
|
|