Modified source engine (2017) developed by valve and leaked in 2020. Not for commercial purporses
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

2618 lines
82 KiB

//========== Copyright 2005, Valve Corporation, All rights reserved. ========
//
// Purpose: A collection of utility classes to simplify thread handling, and
// as much as possible contain portability problems. Here avoiding
// including windows.h.
//
//=============================================================================
#ifndef THREADTOOLS_H
#define THREADTOOLS_H
#include <limits.h>
#include "tier0/platform.h"
#include "tier0/dbg.h"
#if defined( POSIX ) && !defined( _PS3 ) && !defined( _X360 )
#include <pthread.h>
#include <errno.h>
#define WAIT_OBJECT_0 0
#define WAIT_TIMEOUT 0x00000102
#define WAIT_FAILED -1
#define THREAD_PRIORITY_HIGHEST 2
#endif
#if !defined( _X360 ) && !defined( _PS3 ) && defined(COMPILER_MSVC)
// For _ReadWriteBarrier()
#include <intrin.h>
#endif
#if defined( _PS3 )
#include <sys/ppu_thread.h>
#include <sys/synchronization.h>
#include <cell/atomic.h>
#include <sys/timer.h>
#endif
#ifdef OSX
// Add some missing defines
#define PTHREAD_MUTEX_TIMED_NP PTHREAD_MUTEX_NORMAL
#define PTHREAD_MUTEX_RECURSIVE_NP PTHREAD_MUTEX_RECURSIVE
#define PTHREAD_MUTEX_ERRORCHECK_NP PTHREAD_MUTEX_ERRORCHECK
#define PTHREAD_MUTEX_ADAPTIVE_NP 3
#endif
#ifdef _PS3
#define PS3_SYS_PPU_THREAD_COMMON_STACK_SIZE ( 256 * 1024 )
#endif
#if defined( _WIN32 )
#pragma once
#pragma warning(push)
#pragma warning(disable:4251)
#endif
#ifdef COMPILER_MSVC64
#include <intrin.h>
#endif
// #define THREAD_PROFILER 1
#define THREAD_MUTEX_TRACING_SUPPORTED
#if defined(_WIN32) && defined(_DEBUG) && !defined(THREAD_MUTEX_TRACING_ENABLED)
#define THREAD_MUTEX_TRACING_ENABLED
#endif
#ifdef _WIN32
typedef void *HANDLE;
#endif
// maximum number of threads that can wait on one object
#define CTHREADEVENT_MAX_WAITING_THREADS 4
// Start thread running - error if already running
enum ThreadPriorityEnum_t
{
#if defined( PLATFORM_PS3 )
TP_PRIORITY_NORMAL = 1001,
TP_PRIORITY_HIGH = 100,
TP_PRIORITY_LOW = 2001,
TP_PRIORITY_DEFAULT = 1001
#error "Need PRIORITY_LOWEST/HIGHEST"
#elif defined( LINUX )
// We can use nice on Linux threads to change scheduling.
// pthreads on Linux only allows priority setting on
// real-time threads.
// NOTE: Lower numbers are higher priority, thus the need
// for TP_IS_PRIORITY_HIGHER.
TP_PRIORITY_DEFAULT = 0,
TP_PRIORITY_NORMAL = 0,
TP_PRIORITY_HIGH = -10,
TP_PRIORITY_LOW = 10,
TP_PRIORITY_HIGHEST = -20,
TP_PRIORITY_LOWEST = 19,
#else // PLATFORM_PS3
TP_PRIORITY_DEFAULT = 0, // THREAD_PRIORITY_NORMAL
TP_PRIORITY_NORMAL = 0, // THREAD_PRIORITY_NORMAL
TP_PRIORITY_HIGH = 1, // THREAD_PRIORITY_ABOVE_NORMAL
TP_PRIORITY_LOW = -1, // THREAD_PRIORITY_BELOW_NORMAL
TP_PRIORITY_HIGHEST = 2, // THREAD_PRIORITY_HIGHEST
TP_PRIORITY_LOWEST = -2, // THREAD_PRIORITY_LOWEST
#endif // PLATFORM_PS3
};
#if defined( LINUX )
#define TP_IS_PRIORITY_HIGHER( a, b ) ( ( a ) < ( b ) )
#else
#define TP_IS_PRIORITY_HIGHER( a, b ) ( ( a ) > ( b ) )
#endif
#if (defined( PLATFORM_WINDOWS_PC ) || defined( PLATFORM_X360 )) && !defined( STEAM ) && !defined( _CERT )
//Thread parent stack trace linkage requires ALL executing binaries to disable frame pointer omission to operate speedily/successfully. (/Oy-) "vpc /nofpo"
#define THREAD_PARENT_STACK_TRACE_SUPPORTED 1 //uncomment to support joining the root of a thread's stack trace to its parent's at time of invocation. Must also set ENABLE_THREAD_PARENT_STACK_TRACING in stacktools.h
#endif
#if defined( THREAD_PARENT_STACK_TRACE_SUPPORTED )
#include "tier0/stacktools.h"
# if defined( ENABLE_THREAD_PARENT_STACK_TRACING ) //stacktools.h opted in
# define THREAD_PARENT_STACK_TRACE_ENABLED 1 //both threadtools.h and stacktools.h have opted into the feature, enable it
# endif
#endif
extern bool gbCheckNotMultithreaded;
#ifdef _PS3
#define USE_INTRINSIC_INTERLOCKED
#define CHECK_NOT_MULTITHREADED() \
{ \
static int init = 0; \
static sys_ppu_thread_t threadIDPrev; \
\
if (!init) \
{ \
sys_ppu_thread_get_id(&threadIDPrev); \
init = 1; \
} \
else if (gbCheckNotMultithreaded) \
{ \
sys_ppu_thread_t threadID; \
sys_ppu_thread_get_id(&threadID); \
if (threadID != threadIDPrev) \
{ \
printf("CHECK_NOT_MULTITHREADED: prev thread = %x, cur thread = %x\n", \
(uint)threadIDPrev, (uint)threadID); \
*(int*)0 = 0; \
} \
} \
}
#else // _PS3
#define CHECK_NOT_MULTITHREADED()
#endif // _PS3
#if defined( _X360 ) || defined( _PS3 )
#define MAX_THREADS_SUPPORTED 16
#else
#define MAX_THREADS_SUPPORTED 32
#endif
//-----------------------------------------------------------------------------
//
//-----------------------------------------------------------------------------
const unsigned TT_INFINITE = 0xffffffff;
typedef uintp ThreadId_t;
//-----------------------------------------------------------------------------
//
// Simple thread creation. Differs from VCR mode/CreateThread/_beginthreadex
// in that it accepts a standard C function rather than compiler specific one.
//
//-----------------------------------------------------------------------------
#ifdef COMPILER_SNC
typedef uint64 ThreadHandle_t;
#else // COMPILER_SNC
FORWARD_DECLARE_HANDLE( ThreadHandle_t );
#endif // !COMPILER_SNC
typedef uintp (*ThreadFunc_t)( void *pParam );
#if defined( _PS3 )
PLATFORM_OVERLOAD ThreadHandle_t CreateSimpleThread( ThreadFunc_t, void *pParam, ThreadId_t *pID, unsigned stackSize = 0x10000 /*64*/ );
PLATFORM_INTERFACE ThreadHandle_t CreateSimpleThread( ThreadFunc_t, void *pParam, unsigned stackSize = 0x10000 /*64*/ );
#else //_PS3
PLATFORM_OVERLOAD ThreadHandle_t CreateSimpleThread( ThreadFunc_t, void *pParam, ThreadId_t *pID, unsigned stackSize = 0 );
PLATFORM_INTERFACE ThreadHandle_t CreateSimpleThread( ThreadFunc_t, void *pParam, unsigned stackSize = 0 );
#endif //_PS3
PLATFORM_INTERFACE bool ReleaseThreadHandle( ThreadHandle_t );
//-----------------------------------------------------------------------------
PLATFORM_INTERFACE void ThreadSleep(unsigned duration = 0);
PLATFORM_INTERFACE void ThreadNanoSleep(unsigned ns);
PLATFORM_INTERFACE ThreadId_t ThreadGetCurrentId();
PLATFORM_INTERFACE ThreadHandle_t ThreadGetCurrentHandle();
PLATFORM_INTERFACE int ThreadGetPriority( ThreadHandle_t hThread = NULL );
PLATFORM_INTERFACE bool ThreadSetPriority( ThreadHandle_t hThread, int priority );
inline bool ThreadSetPriority( int priority ) { return ThreadSetPriority( NULL, priority ); }
#ifndef _X360
PLATFORM_INTERFACE bool ThreadInMainThread();
PLATFORM_INTERFACE void DeclareCurrentThreadIsMainThread();
#else
PLATFORM_INTERFACE byte *g_pBaseMainStack;
PLATFORM_INTERFACE byte *g_pLimitMainStack;
inline bool ThreadInMainThread()
{
byte b;
byte *p = &b;
return ( p < g_pBaseMainStack && p >= g_pLimitMainStack );
}
#endif
// NOTE: ThreadedLoadLibraryFunc_t needs to return the sleep time in milliseconds or TT_INFINITE
typedef uintp (*ThreadedLoadLibraryFunc_t)(void *pParam);
PLATFORM_INTERFACE void SetThreadedLoadLibraryFunc( ThreadedLoadLibraryFunc_t func );
PLATFORM_INTERFACE ThreadedLoadLibraryFunc_t GetThreadedLoadLibraryFunc();
#if defined( PLATFORM_WINDOWS_PC32 )
DLL_IMPORT unsigned long STDCALL GetCurrentThreadId();
#define ThreadGetCurrentId GetCurrentThreadId
#endif
inline void ThreadPause()
{
#if defined( COMPILER_PS3 )
__db16cyc();
#elif defined(__arm__) || defined(__aarch64__)
sched_yield();
#elif defined( COMPILER_GCC )
__asm __volatile( "pause" );
#elif defined ( COMPILER_MSVC64 )
_mm_pause();
#elif defined( COMPILER_MSVC32 )
__asm pause;
#elif defined( COMPILER_MSVCX360 )
YieldProcessor();
__asm { or r0,r0,r0 }
YieldProcessor();
__asm { or r1,r1,r1 }
#else
#error "implement me"
#endif
}
PLATFORM_INTERFACE bool ThreadJoin( ThreadHandle_t, unsigned timeout = TT_INFINITE );
PLATFORM_INTERFACE void ThreadSetDebugName( ThreadHandle_t hThread, const char *pszName );
inline void ThreadSetDebugName( const char *pszName ) { ThreadSetDebugName( NULL, pszName ); }
PLATFORM_INTERFACE void ThreadSetAffinity( ThreadHandle_t hThread, int nAffinityMask );
//-----------------------------------------------------------------------------
//
// Interlock methods. These perform very fast atomic thread
// safe operations. These are especially relevant in a multi-core setting.
//
//-----------------------------------------------------------------------------
#ifdef _WIN32
#define NOINLINE
#elif defined( _PS3 )
#define NOINLINE __attribute__ ((noinline))
#elif defined(POSIX)
#define NOINLINE __attribute__ ((noinline))
#endif
#if defined( _X360 ) || defined( _PS3 )
#define ThreadMemoryBarrier() __lwsync()
#elif defined(COMPILER_MSVC)
// Prevent compiler reordering across this barrier. This is
// sufficient for most purposes on x86/x64.
#define ThreadMemoryBarrier() _ReadWriteBarrier()
#elif defined(COMPILER_GCC)
// Prevent compiler reordering across this barrier. This is
// sufficient for most purposes on x86/x64.
// http://preshing.com/20120625/memory-ordering-at-compile-time
#define ThreadMemoryBarrier() asm volatile("" ::: "memory")
#else
#error Every platform needs to define ThreadMemoryBarrier to at least prevent compiler reordering
#endif
#if defined( _LINUX ) || defined( _OSX )
#define USE_INTRINSIC_INTERLOCKED
// linux implementation
inline int32 ThreadInterlockedIncrement( int32 volatile *p )
{
Assert( (size_t)p % 4 == 0 );
return __sync_fetch_and_add( p, 1 ) + 1;
}
inline int32 ThreadInterlockedDecrement( int32 volatile *p )
{
Assert( (size_t)p % 4 == 0 );
return __sync_fetch_and_add( p, -1 ) - 1;
}
inline int32 ThreadInterlockedExchange( int32 volatile *p, int32 value )
{
Assert( (size_t)p % 4 == 0 );
return __sync_lock_test_and_set( p, value );
}
inline int32 ThreadInterlockedExchangeAdd( int32 volatile *p, int32 value )
{
Assert( (size_t)p % 4 == 0 );
return __sync_fetch_and_add( p, value );
}
inline int64 ThreadInterlockedExchangeAdd64( int64 volatile *p, int64 value )
{
Assert( ( (size_t)p ) % 8 == 0 );
return __sync_fetch_and_add( p, value );
}
inline int32 ThreadInterlockedCompareExchange( int32 volatile *p, int32 value, int32 comperand )
{
Assert( (size_t)p % 4 == 0 );
return __sync_val_compare_and_swap( p, comperand, value );
}
inline bool ThreadInterlockedAssignIf( int32 volatile *p, int32 value, int32 comperand )
{
Assert( (size_t)p % 4 == 0 );
return __sync_bool_compare_and_swap( p, comperand, value );
}
#elif ( defined( COMPILER_MSVC32 ) && ( _MSC_VER >= 1310 ) )
// windows 32 implemnetation using compiler intrinsics
#define USE_INTRINSIC_INTERLOCKED
extern "C"
{
long __cdecl _InterlockedIncrement(volatile long*);
long __cdecl _InterlockedDecrement(volatile long*);
long __cdecl _InterlockedExchange(volatile long*, long);
long __cdecl _InterlockedExchangeAdd(volatile long*, long);
long __cdecl _InterlockedCompareExchange(volatile long*, long, long);
}
#pragma intrinsic( _InterlockedCompareExchange )
#pragma intrinsic( _InterlockedDecrement )
#pragma intrinsic( _InterlockedExchange )
#pragma intrinsic( _InterlockedExchangeAdd )
#pragma intrinsic( _InterlockedIncrement )
inline int32 ThreadInterlockedIncrement( int32 volatile *p ) { Assert( (size_t)p % 4 == 0 ); return _InterlockedIncrement( (volatile long*)p ); }
inline int32 ThreadInterlockedDecrement( int32 volatile *p ) { Assert( (size_t)p % 4 == 0 ); return _InterlockedDecrement( (volatile long*)p ); }
inline int32 ThreadInterlockedExchange( int32 volatile *p, int32 value ) { Assert( (size_t)p % 4 == 0 ); return _InterlockedExchange( (volatile long*)p, value ); }
inline int32 ThreadInterlockedExchangeAdd( int32 volatile *p, int32 value ) { Assert( (size_t)p % 4 == 0 ); return _InterlockedExchangeAdd( (volatile long*)p, value ); }
inline int32 ThreadInterlockedCompareExchange( int32 volatile *p, int32 value, int32 comperand ) { Assert( (size_t)p % 4 == 0 ); return _InterlockedCompareExchange( (volatile long*)p, value, comperand ); }
inline bool ThreadInterlockedAssignIf( int32 volatile *p, int32 value, int32 comperand ) { Assert( (size_t)p % 4 == 0 ); return ( _InterlockedCompareExchange( (volatile long*)p, value, comperand ) == comperand ); }
#elif defined( _PS3 )
PLATFORM_INTERFACE inline int32 ThreadInterlockedIncrement( int32 volatile * ea ) { return cellAtomicIncr32( (uint32_t*)ea ) + 1; }
PLATFORM_INTERFACE inline int32 ThreadInterlockedDecrement( int32 volatile * ea ) { return cellAtomicDecr32( (uint32_t*)ea ) - 1; }
PLATFORM_INTERFACE inline int32 ThreadInterlockedExchange( int32 volatile * ea, int32 value ) { return cellAtomicStore32( ( uint32_t* )ea, value); }
PLATFORM_INTERFACE inline int32 ThreadInterlockedExchangeAdd( int32 volatile * ea, int32 value ) { return cellAtomicAdd32( ( uint32_t* )ea, value ); }
PLATFORM_INTERFACE inline int32 ThreadInterlockedCompareExchange( int32 volatile * ea, int32 value, int32 comperand ) { return cellAtomicCompareAndSwap32( (uint32_t*)ea, comperand, value ) ; }
PLATFORM_INTERFACE inline bool ThreadInterlockedAssignIf( int32 volatile * ea, int32 value, int32 comperand ) { return ( cellAtomicCompareAndSwap32( (uint32_t*)ea, comperand, value ) == ( uint32_t ) comperand ); }
PLATFORM_INTERFACE inline int64 ThreadInterlockedCompareExchange64( int64 volatile *pDest, int64 value, int64 comperand ) { return cellAtomicCompareAndSwap64( ( uint64_t* ) pDest, comperand, value ); }
PLATFORM_INTERFACE inline bool ThreadInterlockedAssignIf64( volatile int64 *pDest, int64 value, int64 comperand ) { return ( cellAtomicCompareAndSwap64( ( uint64_t* ) pDest, comperand, value ) == ( uint64_t ) comperand ); }
#elif defined( _X360 )
#define TO_INTERLOCK_PARAM(p) ((volatile long *)p)
#define TO_INTERLOCK_PTR_PARAM(p) ((void **)p)
FORCEINLINE int32 ThreadInterlockedIncrement( int32 volatile *pDest ) { Assert( (size_t)pDest % 4 == 0 ); return InterlockedIncrement( TO_INTERLOCK_PARAM(pDest) ); }
FORCEINLINE int32 ThreadInterlockedDecrement( int32 volatile *pDest ) { Assert( (size_t)pDest % 4 == 0 ); return InterlockedDecrement( TO_INTERLOCK_PARAM(pDest) ); }
FORCEINLINE int32 ThreadInterlockedExchange( int32 volatile *pDest, int32 value ) { Assert( (size_t)pDest % 4 == 0 ); return InterlockedExchange( TO_INTERLOCK_PARAM(pDest), value ); }
FORCEINLINE int32 ThreadInterlockedExchangeAdd( int32 volatile *pDest, int32 value ) { Assert( (size_t)pDest % 4 == 0 ); return InterlockedExchangeAdd( TO_INTERLOCK_PARAM(pDest), value ); }
FORCEINLINE int32 ThreadInterlockedCompareExchange( int32 volatile *pDest, int32 value, int32 comperand ) { Assert( (size_t)pDest % 4 == 0 ); return InterlockedCompareExchange( TO_INTERLOCK_PARAM(pDest), value, comperand ); }
FORCEINLINE bool ThreadInterlockedAssignIf( int32 volatile *pDest, int32 value, int32 comperand ) { Assert( (size_t)pDest % 4 == 0 ); return ( InterlockedCompareExchange( TO_INTERLOCK_PARAM(pDest), value, comperand ) == comperand ); }
#else
// non 32-bit windows and 360 implementation
PLATFORM_INTERFACE int32 ThreadInterlockedIncrement( int32 volatile * ) NOINLINE;
PLATFORM_INTERFACE int32 ThreadInterlockedDecrement( int32 volatile * ) NOINLINE;
PLATFORM_INTERFACE int32 ThreadInterlockedExchange( int32 volatile *, int32 value ) NOINLINE;
PLATFORM_INTERFACE int32 ThreadInterlockedExchangeAdd( int32 volatile *, int32 value ) NOINLINE;
PLATFORM_INTERFACE int32 ThreadInterlockedCompareExchange( int32 volatile *, int32 value, int32 comperand ) NOINLINE;
PLATFORM_INTERFACE bool ThreadInterlockedAssignIf( int32 volatile *, int32 value, int32 comperand ) NOINLINE;
#endif
#if defined( USE_INTRINSIC_INTERLOCKED ) && !defined( PLATFORM_64BITS )
#define TIPTR()
inline void *ThreadInterlockedExchangePointer( void * volatile *p, void *value ) { return (void *)( ( intp )ThreadInterlockedExchange( reinterpret_cast<intp volatile *>(p), reinterpret_cast<intp>(value) ) ); }
inline void *ThreadInterlockedCompareExchangePointer( void * volatile *p, void *value, void *comperand ) { return (void *)( ( intp )ThreadInterlockedCompareExchange( reinterpret_cast<intp volatile *>(p), reinterpret_cast<intp>(value), reinterpret_cast<intp>(comperand) ) ); }
inline bool ThreadInterlockedAssignPointerIf( void * volatile *p, void *value, void *comperand ) { return ( ThreadInterlockedCompareExchange( reinterpret_cast<intp volatile *>(p), reinterpret_cast<intp>(value), reinterpret_cast<intp>(comperand) ) == reinterpret_cast<intp>(comperand) ); }
#else
PLATFORM_INTERFACE void *ThreadInterlockedExchangePointer( void * volatile *, void *value ) NOINLINE;
PLATFORM_INTERFACE void *ThreadInterlockedCompareExchangePointer( void * volatile *, void *value, void *comperand ) NOINLINE;
PLATFORM_INTERFACE bool ThreadInterlockedAssignPointerIf( void * volatile *, void *value, void *comperand ) NOINLINE;
#endif
inline unsigned ThreadInterlockedExchangeSubtract( int32 volatile *p, int32 value ) { return ThreadInterlockedExchangeAdd( (int32 volatile *)p, -value ); }
inline void const *ThreadInterlockedExchangePointerToConst( void const * volatile *p, void const *value ) { return ThreadInterlockedExchangePointer( const_cast < void * volatile * > ( p ), const_cast < void * > ( value ) ); }
inline void const *ThreadInterlockedCompareExchangePointerToConst( void const * volatile *p, void const *value, void const *comperand ) { return ThreadInterlockedCompareExchangePointer( const_cast < void * volatile * > ( p ), const_cast < void * > ( value ), const_cast < void * > ( comperand ) ); }
inline bool ThreadInterlockedAssignPointerToConstIf( void const * volatile *p, void const *value, void const *comperand ) { return ThreadInterlockedAssignPointerIf( const_cast < void * volatile * > ( p ), const_cast < void * > ( value ), const_cast < void * > ( comperand ) ); }
#ifndef _PS3
PLATFORM_INTERFACE int64 ThreadInterlockedCompareExchange64( int64 volatile *, int64 value, int64 comperand ) NOINLINE;
PLATFORM_INTERFACE bool ThreadInterlockedAssignIf64( volatile int64 *pDest, int64 value, int64 comperand ) NOINLINE;
#endif
PLATFORM_INTERFACE int64 ThreadInterlockedExchange64( int64 volatile *, int64 value ) NOINLINE;
#ifdef COMPILER_MSVC32
PLATFORM_INTERFACE int64 ThreadInterlockedIncrement64( int64 volatile * ) NOINLINE;
PLATFORM_INTERFACE int64 ThreadInterlockedDecrement64( int64 volatile * ) NOINLINE;
PLATFORM_INTERFACE int64 ThreadInterlockedExchangeAdd64( int64 volatile *, int64 value ) NOINLINE;
#elif defined(POSIX)
inline int64 ThreadInterlockedIncrement64( int64 volatile *p )
{
Assert( (size_t)p % 8 == 0 );
return __sync_fetch_and_add( p, 1 ) + 1;
}
inline int64 ThreadInterlockedDecrement64( int64 volatile *p )
{
Assert( (size_t)p % 8 == 0 );
return __sync_fetch_and_add( p, -1 ) - 1;
}
#endif
#ifdef COMPILER_MSVC64
// 64 bit windows can use intrinsics for these, 32-bit can't
#pragma intrinsic( _InterlockedCompareExchange64 )
#pragma intrinsic( _InterlockedExchange64 )
#pragma intrinsic( _InterlockedExchangeAdd64 )
inline int64 ThreadInterlockedCompareExchange64( int64 volatile *p, int64 value, int64 comparand ) { AssertDbg( (size_t)p % 8 == 0 ); return _InterlockedCompareExchange64( (volatile int64*)p, value, comparand ); }
inline int64 ThreadInterlockedExchangeAdd64( int64 volatile *p, int64 value ) { AssertDbg( (size_t)p % 8 == 0 ); return _InterlockedExchangeAdd64( (volatile int64*)p, value ); }
#endif
inline unsigned ThreadInterlockedExchangeSubtract( uint32 volatile *p, uint32 value ) { return ThreadInterlockedExchangeAdd( (int32 volatile *)p, value ); }
inline unsigned ThreadInterlockedIncrement( uint32 volatile *p ) { return ThreadInterlockedIncrement( (int32 volatile *)p ); }
inline unsigned ThreadInterlockedDecrement( uint32 volatile *p ) { return ThreadInterlockedDecrement( (int32 volatile *)p ); }
inline unsigned ThreadInterlockedExchange( uint32 volatile *p, uint32 value ) { return ThreadInterlockedExchange( (int32 volatile *)p, value ); }
inline unsigned ThreadInterlockedExchangeAdd( uint32 volatile *p, uint32 value ) { return ThreadInterlockedExchangeAdd( (int32 volatile *)p, value ); }
inline unsigned ThreadInterlockedCompareExchange( uint32 volatile *p, uint32 value, uint32 comperand ) { return ThreadInterlockedCompareExchange( (int32 volatile *)p, value, comperand ); }
inline bool ThreadInterlockedAssignIf( uint32 volatile *p, uint32 value, uint32 comperand ) { return ThreadInterlockedAssignIf( (int32 volatile *)p, value, comperand ); }
//inline int ThreadInterlockedExchangeSubtract( int volatile *p, int value ) { return ThreadInterlockedExchangeAdd( (int32 volatile *)p, value ); }
//inline int ThreadInterlockedIncrement( int volatile *p ) { return ThreadInterlockedIncrement( (int32 volatile *)p ); }
//inline int ThreadInterlockedDecrement( int volatile *p ) { return ThreadInterlockedDecrement( (int32 volatile *)p ); }
//inline int ThreadInterlockedExchange( int volatile *p, int value ) { return ThreadInterlockedExchange( (int32 volatile *)p, value ); }
//inline int ThreadInterlockedExchangeAdd( int volatile *p, int value ) { return ThreadInterlockedExchangeAdd( (int32 volatile *)p, value ); }
//inline int ThreadInterlockedCompareExchange( int volatile *p, int value, int comperand ) { return ThreadInterlockedCompareExchange( (int32 volatile *)p, value, comperand ); }
//inline bool ThreadInterlockedAssignIf( int volatile *p, int value, int comperand ) { return ThreadInterlockedAssignIf( (int32 volatile *)p, value, comperand ); }
#if defined( _WIN64 )
typedef __m128i int128;
inline int128 int128_zero() { return _mm_setzero_si128(); }
PLATFORM_INTERFACE bool ThreadInterlockedAssignIf128( volatile int128 *pDest, const int128 &value, const int128 &comperand ) NOINLINE;
#endif
//-----------------------------------------------------------------------------
// Access to VTune thread profiling
//-----------------------------------------------------------------------------
#if defined(_WIN32) && defined(THREAD_PROFILER)
PLATFORM_INTERFACE void ThreadNotifySyncPrepare(void *p);
PLATFORM_INTERFACE void ThreadNotifySyncCancel(void *p);
PLATFORM_INTERFACE void ThreadNotifySyncAcquired(void *p);
PLATFORM_INTERFACE void ThreadNotifySyncReleasing(void *p);
#else
#define ThreadNotifySyncPrepare(p) ((void)0)
#define ThreadNotifySyncCancel(p) ((void)0)
#define ThreadNotifySyncAcquired(p) ((void)0)
#define ThreadNotifySyncReleasing(p) ((void)0)
#endif
//-----------------------------------------------------------------------------
// Encapsulation of a thread local datum (needed because THREAD_LOCAL doesn't
// work in a DLL loaded with LoadLibrary()
//-----------------------------------------------------------------------------
#ifndef NO_THREAD_LOCAL
#if defined(WIN32) || defined(OSX) || defined( _PS3 ) || ( defined (_LINUX) )
#ifndef __AFXTLS_H__ // not compatible with some Windows headers
#if defined(_PS3)
#define CTHREADLOCALINT CThreadLocalInt<int>
#define CTHREADLOCALINTEGER( typ ) CThreadLocalInt<typ>
#define CTHREADLOCALPTR( typ ) CThreadLocalPtr<typ>
#define CTHREADLOCAL( typ ) CThreadLocal<typ>
#define GETLOCAL( x ) ( x.Get() )
#else
#define CTHREADLOCALINT GenericThreadLocals::CThreadLocalInt<int>
#define CTHREADLOCALINTEGER( typ ) GenericThreadLocals::CThreadLocalInt<typ>
#define CTHREADLOCALPTR( typ ) GenericThreadLocals::CThreadLocalPtr<typ>
#define CTHREADLOCAL( typ ) GenericThreadLocals::CThreadLocal<typ>
#define GETLOCAL( x ) ( x.Get() )
#endif
#if !defined(_PS3)
namespace GenericThreadLocals
{
#endif
// a (not so efficient) implementation of thread locals for compilers without full support (i.e. visual c).
// don't use this explicity - instead, use the CTHREADxxx macros above.
class PLATFORM_CLASS CThreadLocalBase
{
public:
CThreadLocalBase();
~CThreadLocalBase();
void * Get() const;
void Set(void *);
private:
#if defined(POSIX) && !defined( _GAMECONSOLE )
pthread_key_t m_index;
#else
uint32 m_index;
#endif
};
//---------------------------------------------------------
template <class T>
class CThreadLocal : public CThreadLocalBase
{
public:
CThreadLocal()
{
#ifdef PLATFORM_64BITS
COMPILE_TIME_ASSERT( sizeof(T) <= sizeof(void *) );
#else
COMPILE_TIME_ASSERT( sizeof(T) == sizeof(void *) );
#endif
}
void operator=( T i ) { Set( i ); }
T Get() const
{
#ifdef PLATFORM_64BITS
void *pData = CThreadLocalBase::Get();
return *reinterpret_cast<T*>( &pData );
#else
#ifdef COMPILER_MSVC
#pragma warning ( disable : 4311 )
#endif
return reinterpret_cast<T>( CThreadLocalBase::Get() );
#ifdef COMPILER_MSVC
#pragma warning ( default : 4311 )
#endif
#endif
}
void Set(T val)
{
#ifdef PLATFORM_64BITS
void* pData = 0;
*reinterpret_cast<T*>( &pData ) = val;
CThreadLocalBase::Set( pData );
#else
#ifdef COMPILER_MSVC
#pragma warning ( disable : 4312 )
#endif
CThreadLocalBase::Set( reinterpret_cast<void *>(val) );
#ifdef COMPILER_MSVC
#pragma warning ( default : 4312 )
#endif
#endif
}
};
//---------------------------------------------------------
template <class T = int32>
class CThreadLocalInt : public CThreadLocal<T>
{
public:
operator const T() const { return this->Get(); }
int operator=( T i ) { this->Set( i ); return i; }
T operator++() { T i = this->Get(); this->Set( ++i ); return i; }
T operator++(int) { T i = this->Get(); this->Set( i + 1 ); return i; }
T operator--() { T i = this->Get(); this->Set( --i ); return i; }
T operator--(int) { T i = this->Get(); this->Set( i - 1 ); return i; }
inline CThreadLocalInt( ) { }
inline CThreadLocalInt( const T &initialvalue )
{
this->Set( initialvalue );
}
};
//---------------------------------------------------------
template <class T>
class CThreadLocalPtr : private CThreadLocalBase
{
public:
CThreadLocalPtr() = default;
operator const void *() const { return (const T *)Get(); }
operator void *() { return (T *)Get(); }
operator const T *() const { return (const T *)Get(); }
operator const T *() { return (const T *)Get(); }
operator T *() { return (T *)Get(); }
T * operator=( T *p ) { Set( p ); return p; }
bool operator !() const { return (!Get()); }
bool operator!=( int i ) const { AssertMsg( i == 0, "Only NULL allowed on integer compare" ); return (Get() != NULL); }
bool operator==( int i ) const { AssertMsg( i == 0, "Only NULL allowed on integer compare" ); return (Get() == NULL); }
bool operator==( const void *p ) const { return (Get() == p); }
bool operator!=( const void *p ) const { return (Get() != p); }
bool operator==( const T *p ) const { return operator==((const void*)p); }
bool operator!=( const T *p ) const { return operator!=((const void*)p); }
T * operator->() { return (T *)Get(); }
T & operator *() { return *((T *)Get()); }
const T * operator->() const { return (const T *)Get(); }
const T & operator *() const { return *((const T *)Get()); }
const T & operator[]( int i ) const { return *((const T *)Get() + i); }
T & operator[]( int i ) { return *((T *)Get() + i); }
private:
// Disallowed operations
CThreadLocalPtr( T *pFrom );
CThreadLocalPtr( const CThreadLocalPtr<T> &from );
T **operator &();
T * const *operator &() const;
void operator=( const CThreadLocalPtr<T> &from );
bool operator==( const CThreadLocalPtr<T> &p ) const;
bool operator!=( const CThreadLocalPtr<T> &p ) const;
};
#if !defined(_PS3)
}
using namespace GenericThreadLocals;
#endif
#ifdef _OSX
PLATFORM_INTERFACE GenericThreadLocals::CThreadLocalInt<int> g_nThreadID;
#else // _OSX
#ifndef TIER0_DLL_EXPORT
#ifndef _PS3
DLL_GLOBAL_IMPORT CTHREADLOCALINT g_nThreadID;
#endif // !_PS3
#endif // TIER0_DLL_EXPORT
#endif // _OSX
#endif /// afx32
#endif //__win32
#endif // NO_THREAD_LOCAL
#ifdef _WIN64
// 64 bit windows can use intrinsics for these, 32-bit can't
#pragma intrinsic( _InterlockedCompareExchange64 )
#pragma intrinsic( _InterlockedExchange64 )
#pragma intrinsic( _InterlockedExchangeAdd64 )
inline int64 ThreadInterlockedIncrement64(int64 volatile *p) { AssertDbg((size_t)p % 8 == 0); return _InterlockedIncrement64((volatile int64*)p); }
inline int64 ThreadInterlockedDecrement64(int64 volatile *p) { AssertDbg((size_t)p % 8 == 0); return _InterlockedDecrement64((volatile int64*)p); }
#endif
//-----------------------------------------------------------------------------
//
// A super-fast thread-safe integer A simple class encapsulating the notion of an
// atomic integer used across threads that uses the built in and faster
// "interlocked" functionality rather than a full-blown mutex. Useful for simple
// things like reference counts, etc.
//
//-----------------------------------------------------------------------------
template <typename T>
class CInterlockedIntT
{
public:
CInterlockedIntT() : m_value( 0 ) { COMPILE_TIME_ASSERT( ( sizeof(T) == sizeof(int32) ) || ( sizeof(T) == sizeof(int64) ) ); }
CInterlockedIntT( T value ) : m_value( value ) {}
T operator()( void ) const { return m_value; }
operator T() const { return m_value; }
bool operator!() const { return ( m_value == 0 ); }
bool operator==( T rhs ) const { return ( m_value == rhs ); }
bool operator!=( T rhs ) const { return ( m_value != rhs ); }
T operator++() {
if ( sizeof(T) == sizeof(int32) )
return (T)ThreadInterlockedIncrement( (int32 *)&m_value );
else
return (T)ThreadInterlockedIncrement64( (int64 *)&m_value );
}
T operator++(int) { return operator++() - 1; }
T operator--() {
if ( sizeof(T) == sizeof(int32) )
return (T)ThreadInterlockedDecrement( (int32 *)&m_value );
else
return (T)ThreadInterlockedDecrement64( (int64 *)&m_value );
}
T operator--(int) { return operator--() + 1; }
bool AssignIf( T conditionValue, T newValue )
{
if ( sizeof(T) == sizeof(int32) )
return ThreadInterlockedAssignIf( (int32 *)&m_value, (int32)newValue, (int32)conditionValue );
else
return ThreadInterlockedAssignIf64( (int64 *)&m_value, (int64)newValue, (int64)conditionValue );
}
T operator=( T newValue ) {
if ( sizeof(T) == sizeof(int32) )
ThreadInterlockedExchange((int32 *)&m_value, newValue);
else
ThreadInterlockedExchange64((int64 *)&m_value, newValue);
return m_value;
}
// Atomic add is like += except it returns the previous value as its return value
T AtomicAdd( T add ) {
if ( sizeof(T) == sizeof(int32) )
return (T)ThreadInterlockedExchangeAdd( (int32 *)&m_value, (int32)add );
else
return (T)ThreadInterlockedExchangeAdd64( (int64 *)&m_value, (int64)add );
}
void operator+=( T add ) {
if ( sizeof(T) == sizeof(int32) )
ThreadInterlockedExchangeAdd( (int32 *)&m_value, (int32)add );
else
ThreadInterlockedExchangeAdd64( (int64 *)&m_value, (int64)add );
}
void operator-=( T subtract ) { operator+=( -subtract ); }
void operator*=( T multiplier ) {
T original, result;
do
{
original = m_value;
result = original * multiplier;
} while ( !AssignIf( original, result ) );
}
void operator/=( T divisor ) {
T original, result;
do
{
original = m_value;
result = original / divisor;
} while ( !AssignIf( original, result ) );
}
T operator+( T rhs ) const { return m_value + rhs; }
T operator-( T rhs ) const { return m_value - rhs; }
T InterlockedExchange(T newValue) {
if (sizeof(T) == sizeof(int32))
return (T)ThreadInterlockedExchange((int32*)&m_value, newValue);
else
return (T)ThreadInterlockedExchange64((int64*)&m_value, newValue);
}
private:
volatile T m_value;
};
typedef CInterlockedIntT<int> CInterlockedInt;
typedef CInterlockedIntT<unsigned> CInterlockedUInt;
//-----------------------------------------------------------------------------
#ifdef _M_X64
template <typename T>
class CInterlockedPtr
{
public:
CInterlockedPtr() : m_value( 0 ) {}
CInterlockedPtr( T *value ) : m_value( value ) {}
operator T *() const { return m_value; }
bool operator!() const { return ( m_value == 0 ); }
bool operator==( T *rhs ) const { return ( m_value == rhs ); }
bool operator!=( T *rhs ) const { return ( m_value != rhs ); }
T *operator++() { return ((T *)_InterlockedExchangeAdd64( (volatile __int64 *)&m_value, sizeof(T) )) + 1; }
T *operator++(int) { return (T *)_InterlockedExchangeAdd64( (volatile __int64 *)&m_value, sizeof(T) ); }
T *operator--() { return ((T *)_InterlockedExchangeAdd64( (volatile __int64 *)&m_value, -sizeof(T) )) - 1; }
T *operator--(int) { return (T *)_InterlockedExchangeAdd64( (volatile __int64 *)&m_value, -sizeof(T) ); }
bool AssignIf( T *conditionValue, T *newValue ) { return _InterlockedCompareExchangePointer( (void * volatile *)&m_value, newValue, conditionValue ) == conditionValue; }
T *operator=( T *newValue ) { _InterlockedExchangePointer( (void * volatile *) &m_value, newValue ); return newValue; }
void operator+=( int add ) { _InterlockedExchangeAdd64( (volatile __int64 *)&m_value, add * sizeof(T) ); }
void operator-=( int subtract ) { operator+=( -subtract ); }
// Atomic add is like += except it returns the previous value as its return value
T *AtomicAdd( int add ) { return ( T * )_InterlockedExchangeAdd64( (volatile __int64 *)&m_value, add * sizeof(T) ); }
T *operator+( int rhs ) const { return m_value + rhs; }
T *operator-( int rhs ) const { return m_value - rhs; }
T *operator+( unsigned rhs ) const { return m_value + rhs; }
T *operator-( unsigned rhs ) const { return m_value - rhs; }
size_t operator-( T *p ) const { return m_value - p; }
size_t operator-( const CInterlockedPtr<T> &p ) const { return m_value - p.m_value; }
private:
T * volatile m_value;
};
#else
template <typename T>
class CInterlockedPtr
{
public:
CInterlockedPtr() : m_value( 0 )
{
#ifdef PLATFORM_64BITS
COMPILE_TIME_ASSERT( sizeof(T *) == sizeof(int64) );
#define THREADINTERLOCKEDEXCHANGEADD( _dest, _value ) ThreadInterlockedExchangeAdd64( (int64 *)(_dest), _value )
#else // PLATFORM_64BITS
COMPILE_TIME_ASSERT( sizeof(T *) == sizeof(int32) );
#define THREADINTERLOCKEDEXCHANGEADD( _dest, _value ) ThreadInterlockedExchangeAdd( (int32 *)_dest, _value )
#endif // PLATFORM_64BITS
}
CInterlockedPtr( T *value ) : m_value( value ) {}
operator T *() const { return m_value; }
bool operator!() const { return ( m_value == 0 ); }
bool operator==( T *rhs ) const { return ( m_value == rhs ); }
bool operator!=( T *rhs ) const { return ( m_value != rhs ); }
T *operator++() { return ((T *)THREADINTERLOCKEDEXCHANGEADD( (int32 *)&m_value, sizeof(T) )) + 1; }
T *operator++(int) { return (T *)THREADINTERLOCKEDEXCHANGEADD( (int32 *)&m_value, sizeof(T) ); }
T *operator--() { return ((T *)THREADINTERLOCKEDEXCHANGEADD( (int32 *)&m_value, -sizeof(T) )) - 1; }
T *operator--(int) { return (T *)THREADINTERLOCKEDEXCHANGEADD( (int32 *)&m_value, -sizeof(T) ); }
bool AssignIf( T *conditionValue, T *newValue ) { return ThreadInterlockedAssignPointerToConstIf( (void const **) &m_value, (void const *) newValue, (void const *) conditionValue ); }
T *operator=( T *newValue ) { ThreadInterlockedExchangePointerToConst( (void const **) &m_value, (void const *) newValue ); return newValue; }
void operator+=( int add ) { THREADINTERLOCKEDEXCHANGEADD( (int32 *)&m_value, add * sizeof(T) ); }
void operator-=( int subtract ) { operator+=( -subtract ); }
// Atomic add is like += except it returns the previous value as its return value
T *AtomicAdd( int add ) { return ( T * ) THREADINTERLOCKEDEXCHANGEADD( (int32 *)&m_value, add * sizeof(T) ); }
T *operator+( int rhs ) const { return m_value + rhs; }
T *operator-( int rhs ) const { return m_value - rhs; }
T *operator+( unsigned rhs ) const { return m_value + rhs; }
T *operator-( unsigned rhs ) const { return m_value - rhs; }
size_t operator-( T *p ) const { return m_value - p; }
size_t operator-( const CInterlockedPtr<T> &p ) const { return m_value - p.m_value; }
private:
T * volatile m_value;
#undef THREADINTERLOCKEDEXCHANGEADD
};
#endif
//-----------------------------------------------------------------------------
//
// Platform independent for critical sections management
//
//-----------------------------------------------------------------------------
class PLATFORM_CLASS CThreadMutex
{
public:
CThreadMutex();
~CThreadMutex();
//------------------------------------------------------
// Mutex acquisition/release. Const intentionally defeated.
//------------------------------------------------------
void Lock();
void Lock() const { (const_cast<CThreadMutex *>(this))->Lock(); }
void Unlock();
void Unlock() const { (const_cast<CThreadMutex *>(this))->Unlock(); }
bool TryLock();
bool TryLock() const { return (const_cast<CThreadMutex *>(this))->TryLock(); }
void LockSilent(); // A Lock() operation which never spews. Required by the logging system to prevent badness.
void UnlockSilent(); // An Unlock() operation which never spews. Required by the logging system to prevent badness.
//------------------------------------------------------
// Use this to make deadlocks easier to track by asserting
// when it is expected that the current thread owns the mutex
//------------------------------------------------------
bool AssertOwnedByCurrentThread();
//------------------------------------------------------
// On windows with THREAD_MUTEX_TRACING_ENABLED defined, this returns
// true if the mutex is owned by the current thread.
//------------------------------------------------------
bool IsOwnedByCurrentThread_DebugOnly();
//------------------------------------------------------
// Enable tracing to track deadlock problems
//------------------------------------------------------
void SetTrace( bool );
private:
// Disallow copying
CThreadMutex( const CThreadMutex & );
CThreadMutex &operator=( const CThreadMutex & );
#if defined( _WIN32 )
// Efficient solution to breaking the windows.h dependency, invariant is tested.
#ifdef _WIN64
#define TT_SIZEOF_CRITICALSECTION 40
#else
#ifndef _X360
#define TT_SIZEOF_CRITICALSECTION 24
#else
#define TT_SIZEOF_CRITICALSECTION 28
#endif // !_X360
#endif // _WIN64
byte m_CriticalSection[TT_SIZEOF_CRITICALSECTION];
#elif defined( _PS3 )
sys_mutex_t m_Mutex;
#elif defined(POSIX)
pthread_mutex_t m_Mutex;
pthread_mutexattr_t m_Attr;
#else
#error
#endif
#ifdef THREAD_MUTEX_TRACING_SUPPORTED
// Debugging (always herge to allow mixed debug/release builds w/o changing size)
uint m_currentOwnerID;
uint16 m_lockCount;
bool m_bTrace;
#endif
};
//-----------------------------------------------------------------------------
//
// An alternative mutex that is useful for cases when thread contention is
// rare, but a mutex is required. Instances should be declared volatile.
// Sleep of 0 may not be sufficient to keep high priority threads from starving
// lesser threads. This class is not a suitable replacement for a critical
// section if the resource contention is high.
//
//-----------------------------------------------------------------------------
#if !defined(THREAD_PROFILER)
class CThreadFastMutex
{
public:
CThreadFastMutex()
: m_ownerID( 0 ),
m_depth( 0 )
{
}
private:
FORCEINLINE bool TryLockInline( const uint32 threadId ) volatile
{
if ( threadId != m_ownerID && !ThreadInterlockedAssignIf( (volatile int32 *)&m_ownerID, (int32)threadId, 0 ) )
return false;
ThreadMemoryBarrier();
++m_depth;
return true;
}
bool TryLock( const uint32 threadId ) volatile
{
return TryLockInline( threadId );
}
PLATFORM_CLASS void Lock( const uint32 threadId, unsigned nSpinSleepTime ) volatile;
public:
bool TryLock() volatile
{
#ifdef _DEBUG
if ( m_depth == INT_MAX )
DebuggerBreak();
if ( m_depth < 0 )
DebuggerBreak();
#endif
return TryLockInline( ThreadGetCurrentId() );
}
#ifndef _DEBUG
FORCEINLINE
#endif
void Lock( unsigned int nSpinSleepTime = 0 ) volatile
{
const uint32 threadId = ThreadGetCurrentId();
if ( !TryLockInline( threadId ) )
{
ThreadPause();
Lock( threadId, nSpinSleepTime );
}
#ifdef _DEBUG
if ( m_ownerID != (int32)ThreadGetCurrentId() )
DebuggerBreak();
if ( m_depth == INT_MAX )
DebuggerBreak();
if ( m_depth < 0 )
DebuggerBreak();
#endif
}
#ifndef _DEBUG
FORCEINLINE
#endif
void Unlock() volatile
{
#ifdef _DEBUG
if ( m_ownerID != (int32)ThreadGetCurrentId() )
DebuggerBreak();
if ( m_depth <= 0 )
DebuggerBreak();
#endif
--m_depth;
if ( !m_depth )
{
ThreadMemoryBarrier();
ThreadInterlockedExchange( &m_ownerID, 0 );
}
}
bool TryLock() const volatile { return (const_cast<CThreadFastMutex *>(this))->TryLock(); }
void Lock(unsigned nSpinSleepTime = 0 ) const volatile { (const_cast<CThreadFastMutex *>(this))->Lock( nSpinSleepTime ); }
void Unlock() const volatile { (const_cast<CThreadFastMutex *>(this))->Unlock(); }
// To match regular CThreadMutex:
bool AssertOwnedByCurrentThread() { return true; }
void SetTrace( bool ) {}
uint32 GetOwnerId() const { return m_ownerID; }
int GetDepth() const { return m_depth; }
private:
volatile uint32 m_ownerID;
int m_depth;
};
class ALIGN128 CAlignedThreadFastMutex : public CThreadFastMutex
{
public:
CAlignedThreadFastMutex()
{
Assert( (size_t)this % 128 == 0 && sizeof(*this) == 128 );
}
private:
uint8 pad[128-sizeof(CThreadFastMutex)];
};
#else
#ifdef _PS3
class CThreadFastMutex
{
public:
CThreadFastMutex();
~CThreadFastMutex();
//------------------------------------------------------
// Mutex acquisition/release. Const intentionally defeated.
//------------------------------------------------------
void Lock();
void Lock() const { (const_cast<CThreadFastMutex *>(this))->Lock(); }
void Unlock();
void Unlock() const { (const_cast<CThreadFastMutex *>(this))->Unlock(); }
bool TryLock();
bool TryLock() const { return (const_cast<CThreadFastMutex *>(this))->TryLock(); }
//------------------------------------------------------
// Use this to make deadlocks easier to track by asserting
// when it is expected that the current thread owns the mutex
//------------------------------------------------------
bool AssertOwnedByCurrentThread();
//------------------------------------------------------
// Enable tracing to track deadlock problems
//------------------------------------------------------
void SetTrace( bool );
private:
// Disallow copying
CThreadFastMutex( const CThreadFastMutex & );
//CThreadFastMutex &operator=( const CThreadFastMutex & );
sys_lwmutex_t m_Mutex;
sys_mutex_t m_SlowMutex;
};
#else
typedef CThreadMutex CThreadFastMutex;
#endif
class ALIGN128 CAlignedThreadFastMutex : public CThreadFastMutex
{
public:
CAlignedThreadFastMutex()
{
Assert( (size_t)this % 128 == 0 && sizeof(*this) == 128 );
}
private:
uint8 pad[128-sizeof(CThreadFastMutex)];
};
#endif
//-----------------------------------------------------------------------------
//
//-----------------------------------------------------------------------------
class CThreadNullMutex
{
public:
static void Lock() {}
static void Unlock() {}
static bool TryLock() { return true; }
static bool AssertOwnedByCurrentThread() { return true; }
static void SetTrace( bool b ) {}
static uint32 GetOwnerId() { return 0; }
static int GetDepth() { return 0; }
};
//-----------------------------------------------------------------------------
//
// A mutex decorator class used to control the use of a mutex, to make it
// less expensive when not multithreading
//
//-----------------------------------------------------------------------------
template <class BaseClass, bool *pCondition>
class CThreadConditionalMutex : public BaseClass
{
public:
void Lock() { if ( *pCondition ) BaseClass::Lock(); }
void Lock() const { if ( *pCondition ) BaseClass::Lock(); }
void Unlock() { if ( *pCondition ) BaseClass::Unlock(); }
void Unlock() const { if ( *pCondition ) BaseClass::Unlock(); }
bool TryLock() { if ( *pCondition ) return BaseClass::TryLock(); else return true; }
bool TryLock() const { if ( *pCondition ) return BaseClass::TryLock(); else return true; }
bool AssertOwnedByCurrentThread() { if ( *pCondition ) return BaseClass::AssertOwnedByCurrentThread(); else return true; }
void SetTrace( bool b ) { if ( *pCondition ) BaseClass::SetTrace( b ); }
};
//-----------------------------------------------------------------------------
// Mutex decorator that blows up if another thread enters
//-----------------------------------------------------------------------------
template <class BaseClass>
class CThreadTerminalMutex : public BaseClass
{
public:
bool TryLock() { if ( !BaseClass::TryLock() ) { DebuggerBreak(); return false; } return true; }
bool TryLock() const { if ( !BaseClass::TryLock() ) { DebuggerBreak(); return false; } return true; }
void Lock() { if ( !TryLock() ) BaseClass::Lock(); }
void Lock() const { if ( !TryLock() ) BaseClass::Lock(); }
};
//-----------------------------------------------------------------------------
//
// Class to Lock a critical section, and unlock it automatically
// when the lock goes out of scope
//
//-----------------------------------------------------------------------------
template <class MUTEX_TYPE = CThreadMutex>
class CAutoLockT
{
public:
FORCEINLINE CAutoLockT( MUTEX_TYPE &lock)
: m_lock(lock)
{
m_lock.Lock();
}
FORCEINLINE CAutoLockT(const MUTEX_TYPE &lock)
: m_lock(const_cast<MUTEX_TYPE &>(lock))
{
m_lock.Lock();
}
FORCEINLINE ~CAutoLockT()
{
m_lock.Unlock();
}
private:
MUTEX_TYPE &m_lock;
// Disallow copying
CAutoLockT<MUTEX_TYPE>( const CAutoLockT<MUTEX_TYPE> & );
CAutoLockT<MUTEX_TYPE> &operator=( const CAutoLockT<MUTEX_TYPE> & );
};
typedef CAutoLockT<CThreadMutex> CAutoLock;
//---------------------------------------------------------
template <int size> struct CAutoLockTypeDeducer {};
template <> struct CAutoLockTypeDeducer<sizeof(CThreadMutex)> { typedef CThreadMutex Type_t; };
template <> struct CAutoLockTypeDeducer<sizeof(CThreadNullMutex)> { typedef CThreadNullMutex Type_t; };
#if !defined(THREAD_PROFILER)
template <> struct CAutoLockTypeDeducer<sizeof(CThreadFastMutex)> { typedef CThreadFastMutex Type_t; };
template <> struct CAutoLockTypeDeducer<sizeof(CAlignedThreadFastMutex)> { typedef CAlignedThreadFastMutex Type_t; };
#else
template <> struct CAutoLockTypeDeducer<sizeof(CAlignedThreadFastMutex)> { typedef CAlignedThreadFastMutex Type_t; };
#endif
#define AUTO_LOCK_( type, mutex ) \
CAutoLockT< type > UNIQUE_ID( static_cast<const type &>( mutex ) )
#if defined(GNUC)
template<typename T> T strip_cv_quals_for_mutex(T&);
template<typename T> T strip_cv_quals_for_mutex(const T&);
template<typename T> T strip_cv_quals_for_mutex(volatile T&);
template<typename T> T strip_cv_quals_for_mutex(const volatile T&);
#define AUTO_LOCK( mutex ) \
AUTO_LOCK_( decltype(::strip_cv_quals_for_mutex(mutex)), mutex )
#elif defined( __clang__ )
#define AUTO_LOCK( mutex ) \
AUTO_LOCK_( typename CAutoLockTypeDeducer<sizeof(mutex)>::Type_t, mutex )
#else
#define AUTO_LOCK( mutex ) \
AUTO_LOCK_( CAutoLockTypeDeducer<sizeof(mutex)>::Type_t, mutex )
#endif
#define AUTO_LOCK_FM( mutex ) \
AUTO_LOCK_( CThreadFastMutex, mutex )
#define LOCAL_THREAD_LOCK_( tag ) \
; \
static CThreadFastMutex autoMutex_##tag; \
AUTO_LOCK( autoMutex_##tag )
#define LOCAL_THREAD_LOCK() \
LOCAL_THREAD_LOCK_(_)
//-----------------------------------------------------------------------------
//
// Base class for event, semaphore and mutex objects.
//
//-----------------------------------------------------------------------------
// TW_TIMEOUT must match WAIT_TIMEOUT definition
#define TW_TIMEOUT 0x00000102
// TW_FAILED must match WAIT_FAILED definition
#define TW_FAILED 0xFFFFFFFF
class PLATFORM_CLASS CThreadSyncObject
{
public:
~CThreadSyncObject();
//-----------------------------------------------------
// Query if object is useful
//-----------------------------------------------------
bool operator!() const;
//-----------------------------------------------------
// Access handle
//-----------------------------------------------------
#ifdef _WIN32
operator HANDLE() { return GetHandle(); }
const HANDLE GetHandle() const { return m_hSyncObject; }
#endif
//-----------------------------------------------------
// Wait for a signal from the object
//-----------------------------------------------------
bool Wait( uint32 dwTimeout = TT_INFINITE );
//-----------------------------------------------------
// Wait for a signal from any of the specified objects.
//
// Returns the index of the object that signaled the event
// or THREADSYNC_TIMEOUT if the timeout was hit before the wait condition was met.
//
// Returns TW_FAILED if an incoming object is invalid.
//
// If bWaitAll=true, then it'll return 0 if all the objects were set.
//-----------------------------------------------------
static uint32 WaitForMultiple( int nObjects, CThreadSyncObject **ppObjects, bool bWaitAll, uint32 dwTimeout = TT_INFINITE );
// This builds a list of pointers and calls straight through to the other WaitForMultiple.
static uint32 WaitForMultiple( int nObjects, CThreadSyncObject *ppObjects, bool bWaitAll, uint32 dwTimeout = TT_INFINITE );
protected:
CThreadSyncObject();
void AssertUseable();
#ifdef _WIN32
HANDLE m_hSyncObject;
bool m_bCreatedHandle;
#elif defined( _PS3 )
static sys_lwmutex_t m_staticMutex;
static uint32_t m_bstaticMutexInitialized;
static uint32_t m_bstaticMutexInitializing;
#elif defined(POSIX)
pthread_mutex_t m_Mutex;
pthread_cond_t m_Condition;
bool m_bInitalized;
int m_cSet;
bool m_bManualReset;
bool m_bWakeForEvent;
#else
#error "Implement me"
#endif
private:
CThreadSyncObject( const CThreadSyncObject & );
CThreadSyncObject &operator=( const CThreadSyncObject & );
};
//-----------------------------------------------------------------------------
//
// Wrapper for unnamed event objects
//
//-----------------------------------------------------------------------------
//-----------------------------------------------------------------------------
//
// CThreadSemaphore
//
//-----------------------------------------------------------------------------
class PLATFORM_CLASS CThreadSemaphore : public CThreadSyncObject
{
public:
CThreadSemaphore(int32 initialValue, int32 maxValue);
//-----------------------------------------------------
// Increases the count of the semaphore object by a specified
// amount. Wait() decreases the count by one on return.
//-----------------------------------------------------
bool Release(int32 releaseCount = 1, int32 * pPreviousCount = NULL );
bool Wait( uint32 dwTimeout = TT_INFINITE );
private:
CThreadSemaphore(const CThreadSemaphore &);
CThreadSemaphore &operator=(const CThreadSemaphore &);
#ifdef _PS3
bool AddWaitingThread();
void RemoveWaitingThread();
sys_semaphore_t m_Semaphore;
sys_semaphore_value_t m_sema_max_val;
uint32_t m_numWaitingThread;
uint32_t m_bInitalized;
uint32_t m_semaCount;
#endif
};
#if defined( _WIN32 )
//-----------------------------------------------------------------------------
//
// A mutex suitable for out-of-process, multi-processor usage
//
//-----------------------------------------------------------------------------
class PLATFORM_CLASS CThreadFullMutex : public CThreadSyncObject
{
public:
CThreadFullMutex( bool bEstablishInitialOwnership = false, const char * pszName = NULL );
//-----------------------------------------------------
// Release ownership of the mutex
//-----------------------------------------------------
bool Release();
// To match regular CThreadMutex:
void Lock() { Wait(); }
void Lock( unsigned timeout ) { Wait( timeout ); }
void Unlock() { Release(); }
bool AssertOwnedByCurrentThread() { return true; }
void SetTrace( bool ) {}
private:
CThreadFullMutex( const CThreadFullMutex & );
CThreadFullMutex &operator=( const CThreadFullMutex & );
};
#endif
enum NamedEventResult_t
{
TT_EventDoesntExist = 0,
TT_EventNotSignaled,
TT_EventSignaled
};
#if defined( _PS3 )
//---------------------------------------------------------------------------
// CThreadEventWaitObject - the purpose of this class is to help implement
// WaitForMultipleObejcts on PS3.
//
// Each event maintains a linked list of CThreadEventWaitObjects. When a
// thread wants to wait on an event it passes the event a semaphore that
// ptr to see the index of the event that triggered it
//
// The thread-specific mutex is to ensure that setting the index and setting the
// semaphore are atomic
//---------------------------------------------------------------------------
class CThreadEventWaitObject
{
public:
CThreadEventWaitObject *m_pPrev, *m_pNext;
sys_semaphore_t *m_pSemaphore;
int m_index;
int *m_pFlag;
CThreadEventWaitObject() {}
void Init(sys_semaphore_t *pSem, int index, int *pFlag)
{
m_pSemaphore = pSem;
m_index = index;
m_pFlag = pFlag;
}
void Set();
};
#endif //_PS3
class PLATFORM_CLASS CThreadEvent : public CThreadSyncObject
{
public:
CThreadEvent( bool fManualReset = false );
#ifdef PLATFORM_WINDOWS
CThreadEvent( const char *name, bool initialState = false, bool bManualReset = false );
static NamedEventResult_t CheckNamedEvent( const char *name, uint32 dwTimeout = 0 );
CThreadEvent( HANDLE hHandle );
#endif
//-----------------------------------------------------
// Set the state to signaled
//-----------------------------------------------------
bool Set();
//-----------------------------------------------------
// Set the state to nonsignaled
//-----------------------------------------------------
bool Reset();
//-----------------------------------------------------
// Check if the event is signaled
//-----------------------------------------------------
bool Check(); // Please, use for debugging only!
bool Wait( uint32 dwTimeout = TT_INFINITE );
// See CThreadSyncObject for definitions of these functions.
static uint32 WaitForMultiple( int nObjects, CThreadEvent **ppObjects, bool bWaitAll, uint32 dwTimeout = TT_INFINITE );
// To implement these, I need to check that casts are safe
static uint32 WaitForMultiple( int nObjects, CThreadEvent *ppObjects, bool bWaitAll, uint32 dwTimeout = TT_INFINITE );
#ifdef _PS3
void RegisterWaitingThread(sys_semaphore_t *pSemaphore, int index, int *flag);
void UnregisterWaitingThread(sys_semaphore_t *pSemaphore);
#endif
protected:
#ifdef _PS3
// These virtual functions need to be inline in order for the class to be exported from tier0.prx
virtual bool AddWaitingThread()
{
//This checks if the event is already signaled and if not creates a semaphore which will be signaled
//when the event is finally signaled.
bool result;
sys_lwmutex_lock(&m_staticMutex, 0);
if (m_bSet)
result=false;
else
{
result=true;
m_numWaitingThread++;
if ( m_numWaitingThread == 1 )
{
sys_semaphore_attribute_t semAttr;
sys_semaphore_attribute_initialize( semAttr );
int err = sys_semaphore_create( &m_Semaphore, &semAttr, 0, 256 );
Assert( err == CELL_OK );
m_bInitalized = true;
}
}
sys_lwmutex_unlock(&m_staticMutex);
return result;
}
virtual void RemoveWaitingThread()
{
sys_lwmutex_lock(&m_staticMutex, 0);
m_numWaitingThread--;
if ( m_numWaitingThread == 0)
{
int err = sys_semaphore_destroy( m_Semaphore );
Assert( err == CELL_OK );
m_bInitalized = false;
}
sys_lwmutex_unlock(&m_staticMutex);
}
#endif
private:
CThreadEvent( const CThreadEvent & );
CThreadEvent &operator=( const CThreadEvent & );
#if defined( _PS3 )
uint32_t m_bSet;
bool m_bManualReset;
sys_semaphore_t m_Semaphore;
uint32_t m_numWaitingThread;
uint32_t m_bInitalized;
CThreadEventWaitObject m_waitObjects[CTHREADEVENT_MAX_WAITING_THREADS+2];
CThreadEventWaitObject *m_pWaitObjectsPool;
CThreadEventWaitObject *m_pWaitObjectsList;
CThreadEventWaitObject* LLUnlinkNode(CThreadEventWaitObject *node);
CThreadEventWaitObject* LLLinkNode(CThreadEventWaitObject* list, CThreadEventWaitObject *node);
#endif
};
// Hard-wired manual event for use in array declarations
class CThreadManualEvent : public CThreadEvent
{
public:
CThreadManualEvent()
: CThreadEvent( true )
{
}
};
#ifdef _WIN32
PLATFORM_INTERFACE int ThreadWaitForObjects( int nEvents, const HANDLE *pHandles, bool bWaitAll = true, unsigned timeout = TT_INFINITE );
inline int ThreadWaitForEvents( int nEvents, const CThreadEvent *pEvents, bool bWaitAll = true, unsigned timeout = TT_INFINITE ) { return ThreadWaitForObjects( nEvents, (const HANDLE *)pEvents, bWaitAll, timeout ); }
inline int ThreadWaitForObject(HANDLE handle, bool bWaitAll = true, unsigned timeout = TT_INFINITE) { return ThreadWaitForObjects(1, &handle, bWaitAll, timeout); }
#endif
//-----------------------------------------------------------------------------
//
// CThreadRWLock
//
//-----------------------------------------------------------------------------
class PLATFORM_CLASS CThreadRWLock
{
public:
CThreadRWLock();
void LockForRead();
void UnlockRead();
void LockForWrite();
void UnlockWrite();
void LockForRead() const { const_cast<CThreadRWLock *>(this)->LockForRead(); }
void UnlockRead() const { const_cast<CThreadRWLock *>(this)->UnlockRead(); }
void LockForWrite() const { const_cast<CThreadRWLock *>(this)->LockForWrite(); }
void UnlockWrite() const { const_cast<CThreadRWLock *>(this)->UnlockWrite(); }
private:
void WaitForRead();
#ifdef WIN32
CThreadFastMutex m_mutex;
#else
CThreadMutex m_mutex;
#endif
CThreadEvent m_CanWrite;
CThreadEvent m_CanRead;
int m_nWriters;
int m_nActiveReaders;
int m_nPendingReaders;
};
//-----------------------------------------------------------------------------
//
// CThreadSpinRWLock
//
//-----------------------------------------------------------------------------
#ifndef OLD_SPINRWLOCK
class ALIGN8 PLATFORM_CLASS CThreadSpinRWLock
{
public:
CThreadSpinRWLock()
{
m_lockInfo.m_i32 = 0;
m_writerId = 0;
#ifdef REENTRANT_THREAD_SPIN_RW_LOCK
m_iWriteDepth = 0;
#endif
}
bool IsLockedForWrite();
bool IsLockedForRead();
FORCEINLINE bool TryLockForWrite();
bool TryLockForWrite_UnforcedInline();
void LockForWrite();
void SpinLockForWrite();
FORCEINLINE bool TryLockForRead();
bool TryLockForRead_UnforcedInline();
void LockForRead();
void SpinLockForRead();
void UnlockWrite();
void UnlockRead();
bool TryLockForWrite() const { return const_cast<CThreadSpinRWLock *>(this)->TryLockForWrite(); }
bool TryLockForRead() const { return const_cast<CThreadSpinRWLock *>(this)->TryLockForRead(); }
void LockForRead() const { const_cast<CThreadSpinRWLock *>(this)->LockForRead(); }
void UnlockRead() const { const_cast<CThreadSpinRWLock *>(this)->UnlockRead(); }
void LockForWrite() const { const_cast<CThreadSpinRWLock *>(this)->LockForWrite(); }
void UnlockWrite() const { const_cast<CThreadSpinRWLock *>(this)->UnlockWrite(); }
private:
enum
{
THREAD_SPIN = (8*1024)
};
union LockInfo_t
{
struct
{
#if PLAT_LITTLE_ENDIAN
uint16 m_nReaders;
uint16 m_fWriting;
#else
uint16 m_fWriting;
uint16 m_nReaders;
#endif
};
uint32 m_i32;
};
LockInfo_t m_lockInfo;
ThreadId_t m_writerId;
#ifdef REENTRANT_THREAD_SPIN_RW_LOCK
int m_iWriteDepth;
uint32 pad;
#endif
} ALIGN8_POST;
#else
/* (commented out to reduce distraction in colorized editor, remove entirely when new implementation settles)
class ALIGN8 PLATFORM_CLASS CThreadSpinRWLock
{
public:
CThreadSpinRWLock() { COMPILE_TIME_ASSERT( sizeof( LockInfo_t ) == sizeof( int64 ) ); Assert( (intp)this % 8 == 0 ); memset( this, 0, sizeof( *this ) ); }
bool TryLockForWrite();
bool TryLockForRead();
void LockForRead();
void UnlockRead();
void LockForWrite();
void UnlockWrite();
bool TryLockForWrite() const { return const_cast<CThreadSpinRWLock *>(this)->TryLockForWrite(); }
bool TryLockForRead() const { return const_cast<CThreadSpinRWLock *>(this)->TryLockForRead(); }
void LockForRead() const { const_cast<CThreadSpinRWLock *>(this)->LockForRead(); }
void UnlockRead() const { const_cast<CThreadSpinRWLock *>(this)->UnlockRead(); }
void LockForWrite() const { const_cast<CThreadSpinRWLock *>(this)->LockForWrite(); }
void UnlockWrite() const { const_cast<CThreadSpinRWLock *>(this)->UnlockWrite(); }
private:
// This structure is used as an atomic & exchangeable 64-bit value. It would probably be better to just have one 64-bit value
// and accessor functions that make/break it, but at this late stage of development, I'm just wrapping it into union
// Beware of endianness: on Xbox/PowerPC m_writerId is high-word of m_i64; on PC, it's low-dword of m_i64
union LockInfo_t
{
struct
{
uint32 m_writerId;
int m_nReaders;
};
int64 m_i64;
};
bool AssignIf( const LockInfo_t &newValue, const LockInfo_t &comperand );
bool TryLockForWrite( const uint32 threadId );
void SpinLockForWrite( const uint32 threadId );
volatile LockInfo_t m_lockInfo;
CInterlockedInt m_nWriters;
} ALIGN8_POST;
*/
#endif
//-----------------------------------------------------------------------------
//
// A thread wrapper similar to a Java thread.
//
//-----------------------------------------------------------------------------
#ifdef _PS3
// Everything must be inline for this to work across PRX boundaries
class CThread;
PLATFORM_INTERFACE CThread *GetCurThreadPS3();
PLATFORM_INTERFACE void SetCurThreadPS3( CThread * );
PLATFORM_INTERFACE void AllocateThreadID( void );
PLATFORM_INTERFACE void FreeThreadID( void );
#endif
class PLATFORM_CLASS CThread
{
public:
CThread();
virtual ~CThread();
//-----------------------------------------------------
const char *GetName();
void SetName( const char *pszName );
size_t CalcStackDepth( void *pStackVariable ) { return ((byte *)m_pStackBase - (byte *)pStackVariable); }
//-----------------------------------------------------
// Functions for the other threads
//-----------------------------------------------------
// Start thread running - error if already running
virtual bool Start( unsigned nBytesStack = 0, ThreadPriorityEnum_t nPriority = TP_PRIORITY_DEFAULT );
// Returns true if thread has been created and hasn't yet exited
bool IsAlive();
// This method causes the current thread to wait until this thread
// is no longer alive.
bool Join( unsigned timeout = TT_INFINITE );
// Access the thread handle directly
ThreadHandle_t GetThreadHandle();
#ifdef _WIN32
uint GetThreadId();
#endif
//-----------------------------------------------------
int GetResult();
//-----------------------------------------------------
// Functions for both this, and maybe, and other threads
//-----------------------------------------------------
// Forcibly, abnormally, but relatively cleanly stop the thread
void Stop( int exitCode = 0 );
// Get the priority
int GetPriority() const;
// Set the priority
bool SetPriority( int priority );
// Suspend a thread, can only call from the thread itself
unsigned Suspend();
// Resume a suspended thread
unsigned Resume();
// Check if thread is suspended
bool IsSuspended() { return !m_NotSuspendedEvent.Check(); }
// Force hard-termination of thread. Used for critical failures.
bool Terminate( int exitCode = 0 );
//-----------------------------------------------------
// Global methods
//-----------------------------------------------------
// Get the Thread object that represents the current thread, if any.
// Can return NULL if the current thread was not created using
// CThread
static CThread *GetCurrentCThread();
// Offer a context switch. Under Win32, equivalent to Sleep(0)
#ifdef Yield
#undef Yield
#endif
static void Yield();
// This method causes the current thread to yield and not to be
// scheduled for further execution until a certain amount of real
// time has elapsed, more or less. Duration is in milliseconds
static void Sleep( unsigned duration );
protected:
// Optional pre-run call, with ability to fail-create. Note Init()
// is forced synchronous with Start()
virtual bool Init();
// Thread will run this function on startup, must be supplied by
// derived class, performs the intended action of the thread.
virtual int Run() = 0;
// Called when the thread exits
virtual void OnExit();
// Allow for custom start waiting
virtual bool WaitForCreateComplete( CThreadEvent *pEvent );
const ThreadId_t GetThreadID() const { return (ThreadId_t)m_threadId; }
#ifdef PLATFORM_WINDOWS
const ThreadHandle_t GetThreadHandle() const { return (ThreadHandle_t)m_hThread; }
static unsigned long __stdcall ThreadProc( void * pv );
typedef unsigned long (__stdcall *ThreadProc_t)( void * );
#else
static void* ThreadProc( void * pv );
typedef void* (*ThreadProc_t)( void * pv );
#endif
static void ThreadProcRunWithMinidumpHandler( void *pv );
virtual ThreadProc_t GetThreadProc();
virtual bool IsThreadRunning();
CThreadMutex m_Lock;
CThreadEvent m_ExitEvent; // Set right before the thread's function exits.
private:
enum Flags
{
SUPPORT_STOP_PROTOCOL = 1 << 0
};
// Thread initially runs this. param is actually 'this'. function
// just gets this and calls ThreadProc
struct ThreadInit_t
{
CThread * pThread;
CThreadEvent *pInitCompleteEvent;
bool * pfInitSuccess;
#if defined( THREAD_PARENT_STACK_TRACE_ENABLED )
void * ParentStackTrace[THREAD_PARENT_STACK_TRACE_LENGTH];
#endif
};
// make copy constructor and assignment operator inaccessible
CThread( const CThread & );
CThread &operator=( const CThread & );
#ifdef _WIN32
HANDLE m_hThread;
ThreadId_t m_threadId;
#elif defined( _PS3 )
sys_ppu_thread_t m_threadId;
volatile sys_ppu_thread_t m_threadZombieId;
// Mutex and condition variable used by the Suspend / Resume logic
sys_mutex_t m_mutexSuspend;
sys_cond_t m_condSuspend;
//EAPS3 Event to indicate that a thread has terminated. This helps with the replacing of WaitForMultipleObjects
// on the PS3, since it waits for a thread to finish.
CThreadEvent m_threadEnd;
#elif defined(POSIX)
pthread_t m_threadId;
volatile pthread_t m_threadZombieId;
//lwss add - Thread params. These were previously allocated on the heap and leaked.
ThreadInit_t m_threadInit;
//lwss end
#endif
int m_result;
char m_szName[32];
void * m_pStackBase;
unsigned m_flags;
CThreadManualEvent m_NotSuspendedEvent;
};
// The CThread implementation needs to be inlined for performance on the PS3 - It makes a difference of more than 1ms/frame
// Since the dependency checker isn't smart enough to take an #ifdef _PS3 into account, all platforms will inline it.
#ifdef _PS3
#include "threadtools.inl"
#endif
//-----------------------------------------------------------------------------
//
// A helper class to let you sleep a thread for memory validation, you need to handle
// m_bSleepForValidate in your ::Run() call and set m_bSleepingForValidate when sleeping
//
//-----------------------------------------------------------------------------
class PLATFORM_CLASS CValidatableThread : public CThread
{
public:
CValidatableThread()
{
m_bSleepForValidate = false;
m_bSleepingForValidate = false;
}
#ifdef DBGFLAG_VALIDATE
virtual void SleepForValidate() { m_bSleepForValidate = true; }
bool BSleepingForValidate() { return m_bSleepingForValidate; }
virtual void WakeFromValidate() { m_bSleepForValidate = false; }
#endif
protected:
bool m_bSleepForValidate;
bool m_bSleepingForValidate;
};
//-----------------------------------------------------------------------------
// Simple thread class encompasses the notion of a worker thread, handing
// synchronized communication.
//-----------------------------------------------------------------------------
// These are internal reserved error results from a call attempt
enum WTCallResult_t
{
WTCR_FAIL = -1,
WTCR_TIMEOUT = -2,
WTCR_THREAD_GONE = -3,
};
class PLATFORM_CLASS CWorkerThread : public CThread
{
public:
CWorkerThread();
//-----------------------------------------------------
//
// Inter-thread communication
//
// Calls in either direction take place on the same "channel."
// Seperate functions are specified to make identities obvious
//
//-----------------------------------------------------
// Master: Signal the thread, and block for a response
int CallWorker( unsigned, unsigned timeout = TT_INFINITE, bool fBoostWorkerPriorityToMaster = true );
// Worker: Signal the thread, and block for a response
int CallMaster( unsigned, unsigned timeout = TT_INFINITE );
// Wait for the next request
bool WaitForCall( unsigned dwTimeout, unsigned *pResult = NULL );
bool WaitForCall( unsigned *pResult = NULL );
// Is there a request?
bool PeekCall( unsigned *pParam = NULL );
// Reply to the request
void Reply( unsigned );
// Wait for a reply in the case when CallWorker() with timeout != TT_INFINITE
int WaitForReply( unsigned timeout = TT_INFINITE );
// If you want to do WaitForMultipleObjects you'll need to include
// this handle in your wait list or you won't be responsive
CThreadEvent& GetCallHandle(); // (returns m_EventSend)
// Find out what the request was
unsigned GetCallParam() const;
// Boost the worker thread to the master thread, if worker thread is lesser, return old priority
int BoostPriority();
protected:
typedef uint32 ( *WaitFunc_t)( uint32 nHandles, CThreadEvent** ppHandles, int bWaitAll, uint32 timeout );
int Call( unsigned, unsigned timeout, bool fBoost, WaitFunc_t = NULL );
int WaitForReply( unsigned timeout, WaitFunc_t );
private:
CWorkerThread( const CWorkerThread & );
CWorkerThread &operator=( const CWorkerThread & );
CThreadEvent m_EventSend;
CThreadEvent m_EventComplete;
unsigned m_Param;
int m_ReturnVal;
};
// a unidirectional message queue. A queue of type T. Not especially high speed since each message
// is malloced/freed. Note that if your message class has destructors/constructors, they MUST be
// thread safe!
template<class T> class CMessageQueue
{
CThreadEvent SignalEvent; // signals presence of data
CThreadMutex QueueAccessMutex;
// the parts protected by the mutex
struct MsgNode
{
MsgNode *Next;
T Data;
};
MsgNode *Head;
MsgNode *Tail;
public:
CMessageQueue( void )
{
Head = Tail = NULL;
}
// check for a message. not 100% reliable - someone could grab the message first
bool MessageWaiting( void )
{
return ( Head != NULL );
}
void WaitMessage( T *pMsg )
{
for(;;)
{
while( ! MessageWaiting() )
SignalEvent.Wait();
QueueAccessMutex.Lock();
if (! Head )
{
// multiple readers could make this null
QueueAccessMutex.Unlock();
continue;
}
*( pMsg ) = Head->Data;
MsgNode *remove_this = Head;
Head = Head->Next;
if (! Head) // if empty, fix tail ptr
Tail = NULL;
QueueAccessMutex.Unlock();
delete remove_this;
break;
}
}
void QueueMessage( T const &Msg)
{
MsgNode *new1=new MsgNode;
new1->Data=Msg;
new1->Next=NULL;
QueueAccessMutex.Lock();
if ( Tail )
{
Tail->Next=new1;
Tail = new1;
}
else
{
Head = new1;
Tail = new1;
}
SignalEvent.Set();
QueueAccessMutex.Unlock();
}
};
//-----------------------------------------------------------------------------
//
// CThreadMutex. Inlining to reduce overhead and to allow client code
// to decide debug status (tracing)
//
//-----------------------------------------------------------------------------
#ifdef MSVC
typedef struct _RTL_CRITICAL_SECTION RTL_CRITICAL_SECTION;
typedef RTL_CRITICAL_SECTION CRITICAL_SECTION;
#ifndef _X360
extern "C"
{
void __declspec(dllimport) __stdcall InitializeCriticalSection(CRITICAL_SECTION *);
void __declspec(dllimport) __stdcall EnterCriticalSection(CRITICAL_SECTION *);
void __declspec(dllimport) __stdcall LeaveCriticalSection(CRITICAL_SECTION *);
void __declspec(dllimport) __stdcall DeleteCriticalSection(CRITICAL_SECTION *);
};
#endif
#endif
//---------------------------------------------------------
#if !defined(POSIX) || defined( _GAMECONSOLE )
inline void CThreadMutex::Lock()
{
#if defined(_PS3)
#ifndef NO_THREAD_SYNC
sys_mutex_lock( m_Mutex, 0 );
#endif
#else
#if defined( THREAD_MUTEX_TRACING_ENABLED )
uint thisThreadID = ThreadGetCurrentId();
if ( m_bTrace && m_currentOwnerID && ( m_currentOwnerID != thisThreadID ) )
Msg( _T( "Thread %u about to wait for lock %p owned by %u\n" ), ThreadGetCurrentId(), (CRITICAL_SECTION *)&m_CriticalSection, m_currentOwnerID );
#endif
LockSilent();
#ifdef THREAD_MUTEX_TRACING_ENABLED
if (m_lockCount == 0)
{
// we now own it for the first time. Set owner information
m_currentOwnerID = thisThreadID;
if ( m_bTrace )
Msg( _T( "Thread %u now owns lock 0x%p\n" ), m_currentOwnerID, (CRITICAL_SECTION *)&m_CriticalSection );
}
m_lockCount++;
#endif
#endif
}
//---------------------------------------------------------
inline void CThreadMutex::Unlock()
{
#if defined( _PS3 )
#ifndef NO_THREAD_SYNC
sys_mutex_unlock( m_Mutex );
#endif
#else
#ifdef THREAD_MUTEX_TRACING_ENABLED
AssertMsg( m_lockCount >= 1, "Invalid unlock of thread lock" );
m_lockCount--;
if (m_lockCount == 0)
{
if ( m_bTrace )
Msg( _T( "Thread %u releasing lock 0x%p\n" ), m_currentOwnerID, (CRITICAL_SECTION *)&m_CriticalSection );
m_currentOwnerID = 0;
}
#endif
UnlockSilent();
#endif
}
//---------------------------------------------------------
inline void CThreadMutex::LockSilent()
{
#ifdef MSVC
EnterCriticalSection((CRITICAL_SECTION *)&m_CriticalSection);
#else
DebuggerBreak(); // should not be called - not defined for this platform/compiler!!!
#endif
}
//---------------------------------------------------------
inline void CThreadMutex::UnlockSilent()
{
#ifdef MSVC
LeaveCriticalSection((CRITICAL_SECTION *)&m_CriticalSection);
#else
DebuggerBreak(); // should not be called - not defined for this platform/compiler!!!
#endif
}
//---------------------------------------------------------
inline bool CThreadMutex::AssertOwnedByCurrentThread()
{
#ifdef THREAD_MUTEX_TRACING_ENABLED
#ifdef _WIN32
if (ThreadGetCurrentId() == m_currentOwnerID)
return true;
AssertMsg3( 0, "Expected thread %u as owner of lock 0x%p, but %u owns", ThreadGetCurrentId(), (CRITICAL_SECTION *)&m_CriticalSection, m_currentOwnerID );
return false;
#elif defined( _PS3 )
return true;
#endif
#else
return true;
#endif
}
inline bool CThreadMutex::IsOwnedByCurrentThread_DebugOnly()
{
#if defined ( THREAD_MUTEX_TRACING_ENABLED ) && defined ( _WIN32 )
return ThreadGetCurrentId() == m_currentOwnerID;
#else
return true;
#endif
}
//---------------------------------------------------------
inline void CThreadMutex::SetTrace( bool bTrace )
{
#ifdef _WIN32
#ifdef THREAD_MUTEX_TRACING_ENABLED
m_bTrace = bTrace;
#endif
#elif defined _PS3
//EAPS3
#endif
}
//---------------------------------------------------------
#elif defined(POSIX) && !defined( _GAMECONSOLE )
inline CThreadMutex::CThreadMutex()
{
// enable recursive locks as we need them
pthread_mutexattr_init( &m_Attr );
pthread_mutexattr_settype( &m_Attr, PTHREAD_MUTEX_RECURSIVE );
pthread_mutex_init( &m_Mutex, &m_Attr );
}
//---------------------------------------------------------
inline CThreadMutex::~CThreadMutex()
{
pthread_mutex_destroy( &m_Mutex );
}
//---------------------------------------------------------
inline void CThreadMutex::Lock()
{
pthread_mutex_lock( &m_Mutex );
}
//---------------------------------------------------------
inline void CThreadMutex::Unlock()
{
pthread_mutex_unlock( &m_Mutex );
}
//---------------------------------------------------------
inline void CThreadMutex::LockSilent()
{
pthread_mutex_lock( &m_Mutex );
}
//---------------------------------------------------------
inline void CThreadMutex::UnlockSilent()
{
pthread_mutex_unlock( &m_Mutex );
}
//---------------------------------------------------------
inline bool CThreadMutex::AssertOwnedByCurrentThread()
{
return true;
}
//---------------------------------------------------------
inline void CThreadMutex::SetTrace(bool fTrace)
{
}
#else
#error
#endif // POSIX
//-----------------------------------------------------------------------------
//
// CThreadRWLock inline functions
//
//-----------------------------------------------------------------------------
inline CThreadRWLock::CThreadRWLock()
: m_CanRead( true ),
m_nWriters( 0 ),
m_nActiveReaders( 0 ),
m_nPendingReaders( 0 )
{
}
inline void CThreadRWLock::LockForRead()
{
m_mutex.Lock();
if ( m_nWriters)
{
WaitForRead();
}
m_nActiveReaders++;
m_mutex.Unlock();
}
inline void CThreadRWLock::UnlockRead()
{
m_mutex.Lock();
m_nActiveReaders--;
if ( m_nActiveReaders == 0 && m_nWriters != 0 )
{
m_CanWrite.Set();
}
m_mutex.Unlock();
}
//-----------------------------------------------------------------------------
//
// CThreadSpinRWLock inline functions
//
//-----------------------------------------------------------------------------
#ifndef OLD_SPINRWLOCK
#if defined(TEST_THREAD_SPIN_RW_LOCK)
#define RWLAssert( exp ) if ( exp ) ; else DebuggerBreak();
#else
#define RWLAssert( exp ) ((void)0)
#endif
inline bool CThreadSpinRWLock::IsLockedForWrite()
{
return ( m_lockInfo.m_fWriting == 1 );
}
inline bool CThreadSpinRWLock::IsLockedForRead()
{
return ( m_lockInfo.m_nReaders > 0 );
}
FORCEINLINE bool CThreadSpinRWLock::TryLockForWrite()
{
volatile LockInfo_t &curValue = m_lockInfo;
if ( !( curValue.m_i32 & 0x00010000 ) && ThreadInterlockedAssignIf( &curValue.m_i32, 0x00010000, 0 ) )
{
ThreadMemoryBarrier();
RWLAssert( m_iWriteDepth == 0 && m_writerId == 0 );
m_writerId = ThreadGetCurrentId();
#ifdef REENTRANT_THREAD_SPIN_RW_LOCK
m_iWriteDepth++;
#endif
return true;
}
return false;
}
inline bool CThreadSpinRWLock::TryLockForWrite_UnforcedInline()
{
if ( TryLockForWrite() )
{
return true;
}
#ifdef REENTRANT_THREAD_SPIN_RW_LOCK
if ( m_writerId != ThreadGetCurrentId() )
{
return false;
}
m_iWriteDepth++;
return true;
#else
return false;
#endif
}
FORCEINLINE void CThreadSpinRWLock::LockForWrite()
{
if ( !TryLockForWrite() )
{
SpinLockForWrite();
}
}
FORCEINLINE bool CThreadSpinRWLock::TryLockForRead()
{
volatile LockInfo_t &curValue = m_lockInfo;
if ( !( curValue.m_i32 & 0x00010000 ) ) // !m_lockInfo.m_fWriting
{
LockInfo_t oldValue;
LockInfo_t newValue;
oldValue.m_i32 = ( curValue.m_i32 & 0xffff );
newValue.m_i32 = oldValue.m_i32 + 1;
if ( ThreadInterlockedAssignIf( &m_lockInfo.m_i32, newValue.m_i32, oldValue.m_i32 ) )
{
ThreadMemoryBarrier();
RWLAssert( m_lockInfo.m_fWriting == 0 );
return true;
}
}
return false;
}
inline bool CThreadSpinRWLock::TryLockForRead_UnforcedInline()
{
#ifdef REENTRANT_THREAD_SPIN_RW_LOCK
if ( m_lockInfo.m_i32 & 0x00010000 ) // m_lockInfo.m_fWriting
{
if ( m_writerId == ThreadGetCurrentId() )
{
m_lockInfo.m_nReaders++;
return true;
}
return false;
}
#endif
return TryLockForRead();
}
FORCEINLINE void CThreadSpinRWLock::LockForRead()
{
if ( !TryLockForRead() )
{
SpinLockForRead();
}
}
FORCEINLINE void CThreadSpinRWLock::UnlockWrite()
{
RWLAssert( m_writerId == ThreadGetCurrentId() );
#ifdef REENTRANT_THREAD_SPIN_RW_LOCK
if ( --m_iWriteDepth == 0 )
#endif
{
m_writerId = 0;
ThreadMemoryBarrier();
m_lockInfo.m_i32 = 0;
}
}
#ifndef REENTRANT_THREAD_SPIN_RW_LOCK
FORCEINLINE
#else
inline
#endif
void CThreadSpinRWLock::UnlockRead()
{
RWLAssert( m_writerId == 0 || ( m_writerId == ThreadGetCurrentId() && m_lockInfo.m_fWriting ) );
#ifdef REENTRANT_THREAD_SPIN_RW_LOCK
if ( !( m_lockInfo.m_i32 & 0x00010000 ) ) // !m_lockInfo.m_fWriting
#endif
{
ThreadMemoryBarrier();
ThreadInterlockedDecrement( &m_lockInfo.m_i32 );
RWLAssert( m_writerId == 0 && !m_lockInfo.m_fWriting );
}
#ifdef REENTRANT_THREAD_SPIN_RW_LOCK
else if ( m_writerId == ThreadGetCurrentId() )
{
m_lockInfo.m_nReaders--;
}
else
{
RWLAssert( 0 );
}
#endif
}
#else
/* (commented out to reduce distraction in colorized editor, remove entirely when new implementation settles)
inline bool CThreadSpinRWLock::AssignIf( const LockInfo_t &newValue, const LockInfo_t &comperand )
{
// Note: using unions guarantees no aliasing bugs. Casting structures through *(int64*)&
// may create hard-to-catch bugs because when you do that, compiler doesn't know that the newly computed pointer
// is actually aliased with LockInfo_t structure. It's rarely a problem in practice, but when it is, it's a royal pain to debug.
return ThreadInterlockedAssignIf64( &m_lockInfo.m_i64, newValue.m_i64, comperand.m_i64 );
}
FORCEINLINE bool CThreadSpinRWLock::TryLockForWrite( const uint32 threadId )
{
// In order to grab a write lock, there can be no readers and no owners of the write lock
if ( m_lockInfo.m_nReaders > 0 || ( m_lockInfo.m_writerId && m_lockInfo.m_writerId != threadId ) )
{
return false;
}
static const LockInfo_t oldValue = { {0, 0} };
LockInfo_t newValue = { { threadId, 0 } };
if ( AssignIf( newValue, oldValue ) )
{
ThreadMemoryBarrier();
return true;
}
return false;
}
inline bool CThreadSpinRWLock::TryLockForWrite()
{
m_nWriters++;
if ( !TryLockForWrite( ThreadGetCurrentId() ) )
{
m_nWriters--;
return false;
}
return true;
}
FORCEINLINE bool CThreadSpinRWLock::TryLockForRead()
{
if ( m_nWriters != 0 )
{
return false;
}
// In order to grab a write lock, the number of readers must not change and no thread can own the write
LockInfo_t oldValue;
LockInfo_t newValue;
if( IsX360() || IsPS3() )
{
// this is the code equivalent to original code (see below) that doesn't cause LHS on Xbox360
// WARNING: This code assumes BIG Endian CPU
oldValue.m_i64 = uint32( m_lockInfo.m_nReaders );
newValue.m_i64 = oldValue.m_i64 + 1; // NOTE: when we have -1 (or 0xFFFFFFFF) readers, this will result in non-equivalent code
}
else
{
// this is the original code that worked here for a while
oldValue.m_nReaders = m_lockInfo.m_nReaders;
oldValue.m_writerId = 0;
newValue.m_nReaders = oldValue.m_nReaders + 1;
newValue.m_writerId = 0;
}
if ( AssignIf( newValue, oldValue ) )
{
ThreadMemoryBarrier();
return true;
}
return false;
}
inline void CThreadSpinRWLock::LockForWrite()
{
const uint32 threadId = ThreadGetCurrentId();
m_nWriters++;
if ( !TryLockForWrite( threadId ) )
{
ThreadPause();
SpinLockForWrite( threadId );
}
}
*/
#endif
// read data from a memory address
template<class T> FORCEINLINE T ReadVolatileMemory( T const *pPtr )
{
volatile const T * pVolatilePtr = ( volatile const T * ) pPtr;
return *pVolatilePtr;
}
//-----------------------------------------------------------------------------
#if defined( _WIN32 )
#pragma warning(pop)
#endif
#if defined( _PS3 )
BOOL SetEvent( CThreadEvent *pEvent );
BOOL ResetEvent( CThreadEvent *pEvent );
DWORD WaitForMultipleObjects(DWORD nCount, CThreadEvent **lppHandles, BOOL bWaitAll, DWORD dwMilliseconds );
#endif // _PS3
#endif // THREADTOOLS_H