Modified source engine (2017) developed by valve and leaked in 2020. Not for commercial purporses
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

621 lines
16 KiB

// zinflate.cpp - written and placed in the public domain by Wei Dai
// This is a complete reimplementation of the DEFLATE decompression algorithm.
// It should not be affected by any security vulnerabilities in the zlib
// compression library. In particular it is not affected by the double free bug
// (http://www.kb.cert.org/vuls/id/368819).
#include "pch.h"
#include "zinflate.h"
NAMESPACE_BEGIN(CryptoPP)
struct CodeLessThan
{
inline bool operator()(CryptoPP::HuffmanDecoder::code_t lhs, const CryptoPP::HuffmanDecoder::CodeInfo &rhs)
{return lhs < rhs.code;}
// needed for MSVC .NET 2005
inline bool operator()(const CryptoPP::HuffmanDecoder::CodeInfo &lhs, const CryptoPP::HuffmanDecoder::CodeInfo &rhs)
{return lhs.code < rhs.code;}
};
inline bool LowFirstBitReader::FillBuffer(unsigned int length)
{
while (m_bitsBuffered < length)
{
byte b;
if (!m_store.Get(b))
return false;
m_buffer |= (unsigned long)b << m_bitsBuffered;
m_bitsBuffered += 8;
}
assert(m_bitsBuffered <= sizeof(unsigned long)*8);
return true;
}
inline unsigned long LowFirstBitReader::PeekBits(unsigned int length)
{
bool result = FillBuffer(length);
assert(result);
return m_buffer & (((unsigned long)1 << length) - 1);
}
inline void LowFirstBitReader::SkipBits(unsigned int length)
{
assert(m_bitsBuffered >= length);
m_buffer >>= length;
m_bitsBuffered -= length;
}
inline unsigned long LowFirstBitReader::GetBits(unsigned int length)
{
unsigned long result = PeekBits(length);
SkipBits(length);
return result;
}
inline HuffmanDecoder::code_t HuffmanDecoder::NormalizeCode(HuffmanDecoder::code_t code, unsigned int codeBits)
{
return code << (MAX_CODE_BITS - codeBits);
}
void HuffmanDecoder::Initialize(const unsigned int *codeBits, unsigned int nCodes)
{
// the Huffman codes are represented in 3 ways in this code:
//
// 1. most significant code bit (i.e. top of code tree) in the least significant bit position
// 2. most significant code bit (i.e. top of code tree) in the most significant bit position
// 3. most significant code bit (i.e. top of code tree) in n-th least significant bit position,
// where n is the maximum code length for this code tree
//
// (1) is the way the codes come in from the deflate stream
// (2) is used to sort codes so they can be binary searched
// (3) is used in this function to compute codes from code lengths
//
// a code in representation (2) is called "normalized" here
// The BitReverse() function is used to convert between (1) and (2)
// The NormalizeCode() function is used to convert from (3) to (2)
if (nCodes == 0)
throw Err("null code");
m_maxCodeBits = *std::max_element(codeBits, codeBits+nCodes);
if (m_maxCodeBits > MAX_CODE_BITS)
throw Err("code length exceeds maximum");
if (m_maxCodeBits == 0)
throw Err("null code");
// count number of codes of each length
SecBlockWithHint<unsigned int, 15+1> blCount(m_maxCodeBits+1);
std::fill(blCount.begin(), blCount.end(), 0);
unsigned int i;
for (i=0; i<nCodes; i++)
blCount[codeBits[i]]++;
// compute the starting code of each length
code_t code = 0;
SecBlockWithHint<code_t, 15+1> nextCode(m_maxCodeBits+1);
nextCode[1] = 0;
for (i=2; i<=m_maxCodeBits; i++)
{
// compute this while checking for overflow: code = (code + blCount[i-1]) << 1
if (code > code + blCount[i-1])
throw Err("codes oversubscribed");
code += blCount[i-1];
if (code > (code << 1))
throw Err("codes oversubscribed");
code <<= 1;
nextCode[i] = code;
}
if (code > (1 << m_maxCodeBits) - blCount[m_maxCodeBits])
throw Err("codes oversubscribed");
else if (m_maxCodeBits != 1 && code < (1 << m_maxCodeBits) - blCount[m_maxCodeBits])
throw Err("codes incomplete");
// compute a vector of <code, length, value> triples sorted by code
m_codeToValue.resize(nCodes - blCount[0]);
unsigned int j=0;
for (i=0; i<nCodes; i++)
{
unsigned int len = codeBits[i];
if (len != 0)
{
code = NormalizeCode(nextCode[len]++, len);
m_codeToValue[j].code = code;
m_codeToValue[j].len = len;
m_codeToValue[j].value = i;
j++;
}
}
std::sort(m_codeToValue.begin(), m_codeToValue.end());
// initialize the decoding cache
m_cacheBits = STDMIN(9U, m_maxCodeBits);
m_cacheMask = (1 << m_cacheBits) - 1;
m_normalizedCacheMask = NormalizeCode(m_cacheMask, m_cacheBits);
assert(m_normalizedCacheMask == BitReverse(m_cacheMask));
if (m_cache.size() != size_t(1) << m_cacheBits)
m_cache.resize(1 << m_cacheBits);
for (i=0; i<m_cache.size(); i++)
m_cache[i].type = 0;
}
void HuffmanDecoder::FillCacheEntry(LookupEntry &entry, code_t normalizedCode) const
{
normalizedCode &= m_normalizedCacheMask;
const CodeInfo &codeInfo = *(std::upper_bound(m_codeToValue.begin(), m_codeToValue.end(), normalizedCode, CodeLessThan())-1);
if (codeInfo.len <= m_cacheBits)
{
entry.type = 1;
entry.value = codeInfo.value;
entry.len = codeInfo.len;
}
else
{
entry.begin = &codeInfo;
const CodeInfo *last = & *(std::upper_bound(m_codeToValue.begin(), m_codeToValue.end(), normalizedCode + ~m_normalizedCacheMask, CodeLessThan())-1);
if (codeInfo.len == last->len)
{
entry.type = 2;
entry.len = codeInfo.len;
}
else
{
entry.type = 3;
entry.end = last+1;
}
}
}
inline unsigned int HuffmanDecoder::Decode(code_t code, /* out */ value_t &value) const
{
assert(m_codeToValue.size() > 0);
LookupEntry &entry = m_cache[code & m_cacheMask];
code_t normalizedCode;
if (entry.type != 1)
normalizedCode = BitReverse(code);
if (entry.type == 0)
FillCacheEntry(entry, normalizedCode);
if (entry.type == 1)
{
value = entry.value;
return entry.len;
}
else
{
const CodeInfo &codeInfo = (entry.type == 2)
? entry.begin[(normalizedCode << m_cacheBits) >> (MAX_CODE_BITS - (entry.len - m_cacheBits))]
: *(std::upper_bound(entry.begin, entry.end, normalizedCode, CodeLessThan())-1);
value = codeInfo.value;
return codeInfo.len;
}
}
bool HuffmanDecoder::Decode(LowFirstBitReader &reader, value_t &value) const
{
reader.FillBuffer(m_maxCodeBits);
unsigned int codeBits = Decode(reader.PeekBuffer(), value);
if (codeBits > reader.BitsBuffered())
return false;
reader.SkipBits(codeBits);
return true;
}
// *************************************************************
Inflator::Inflator(BufferedTransformation *attachment, bool repeat, int propagation)
: AutoSignaling<Filter>(propagation)
, m_state(PRE_STREAM), m_repeat(repeat), m_reader(m_inQueue)
{
Detach(attachment);
}
void Inflator::IsolatedInitialize(const NameValuePairs &parameters)
{
m_state = PRE_STREAM;
parameters.GetValue("Repeat", m_repeat);
m_inQueue.Clear();
m_reader.SkipBits(m_reader.BitsBuffered());
}
void Inflator::OutputByte(byte b)
{
m_window[m_current++] = b;
if (m_current == m_window.size())
{
ProcessDecompressedData(m_window + m_lastFlush, m_window.size() - m_lastFlush);
m_lastFlush = 0;
m_current = 0;
m_wrappedAround = true;
}
}
void Inflator::OutputString(const byte *string, size_t length)
{
while (length)
{
size_t len = UnsignedMin(length, m_window.size() - m_current);
memcpy(m_window + m_current, string, len);
m_current += len;
if (m_current == m_window.size())
{
ProcessDecompressedData(m_window + m_lastFlush, m_window.size() - m_lastFlush);
m_lastFlush = 0;
m_current = 0;
m_wrappedAround = true;
}
string += len;
length -= len;
}
}
void Inflator::OutputPast(unsigned int length, unsigned int distance)
{
size_t start;
if (distance <= m_current)
start = m_current - distance;
else if (m_wrappedAround && distance <= m_window.size())
start = m_current + m_window.size() - distance;
else
throw BadBlockErr();
if (start + length > m_window.size())
{
for (; start < m_window.size(); start++, length--)
OutputByte(m_window[start]);
start = 0;
}
if (start + length > m_current || m_current + length >= m_window.size())
{
while (length--)
OutputByte(m_window[start++]);
}
else
{
memcpy(m_window + m_current, m_window + start, length);
m_current += length;
}
}
size_t Inflator::Put2(const byte *inString, size_t length, int messageEnd, bool blocking)
{
if (!blocking)
throw BlockingInputOnly("Inflator");
LazyPutter lp(m_inQueue, inString, length);
ProcessInput(messageEnd != 0);
if (messageEnd)
if (!(m_state == PRE_STREAM || m_state == AFTER_END))
throw UnexpectedEndErr();
Output(0, NULL, 0, messageEnd, blocking);
return 0;
}
bool Inflator::IsolatedFlush(bool hardFlush, bool blocking)
{
if (!blocking)
throw BlockingInputOnly("Inflator");
if (hardFlush)
ProcessInput(true);
FlushOutput();
return false;
}
void Inflator::ProcessInput(bool flush)
{
while (true)
{
switch (m_state)
{
case PRE_STREAM:
if (!flush && m_inQueue.CurrentSize() < MaxPrestreamHeaderSize())
return;
ProcessPrestreamHeader();
m_state = WAIT_HEADER;
m_wrappedAround = false;
m_current = 0;
m_lastFlush = 0;
m_window.New(1 << GetLog2WindowSize());
break;
case WAIT_HEADER:
{
// maximum number of bytes before actual compressed data starts
const size_t MAX_HEADER_SIZE = BitsToBytes(3+5+5+4+19*7+286*15+19*15);
if (m_inQueue.CurrentSize() < (flush ? 1 : MAX_HEADER_SIZE))
return;
DecodeHeader();
break;
}
case DECODING_BODY:
if (!DecodeBody())
return;
break;
case POST_STREAM:
if (!flush && m_inQueue.CurrentSize() < MaxPoststreamTailSize())
return;
ProcessPoststreamTail();
m_state = m_repeat ? PRE_STREAM : AFTER_END;
Output(0, NULL, 0, GetAutoSignalPropagation(), true); // TODO: non-blocking
if (m_inQueue.IsEmpty())
return;
break;
case AFTER_END:
m_inQueue.TransferTo(*AttachedTransformation());
return;
}
}
}
void Inflator::DecodeHeader()
{
if (!m_reader.FillBuffer(3))
throw UnexpectedEndErr();
m_eof = m_reader.GetBits(1) != 0;
m_blockType = (byte)m_reader.GetBits(2);
switch (m_blockType)
{
case 0: // stored
{
m_reader.SkipBits(m_reader.BitsBuffered() % 8);
if (!m_reader.FillBuffer(32))
throw UnexpectedEndErr();
m_storedLen = (word16)m_reader.GetBits(16);
word16 nlen = (word16)m_reader.GetBits(16);
if (nlen != (word16)~m_storedLen)
throw BadBlockErr();
break;
}
case 1: // fixed codes
m_nextDecode = LITERAL;
break;
case 2: // dynamic codes
{
if (!m_reader.FillBuffer(5+5+4))
throw UnexpectedEndErr();
unsigned int hlit = m_reader.GetBits(5);
unsigned int hdist = m_reader.GetBits(5);
unsigned int hclen = m_reader.GetBits(4);
FixedSizeSecBlock<unsigned int, 286+32> codeLengths;
unsigned int i;
static const unsigned int border[] = { // Order of the bit length code lengths
16, 17, 18, 0, 8, 7, 9, 6, 10, 5, 11, 4, 12, 3, 13, 2, 14, 1, 15};
std::fill(codeLengths.begin(), codeLengths+19, 0);
for (i=0; i<hclen+4; i++)
codeLengths[border[i]] = m_reader.GetBits(3);
try
{
HuffmanDecoder codeLengthDecoder(codeLengths, 19);
for (i = 0; i < hlit+257+hdist+1; )
{
unsigned int k, count, repeater;
bool result = codeLengthDecoder.Decode(m_reader, k);
if (!result)
throw UnexpectedEndErr();
if (k <= 15)
{
count = 1;
repeater = k;
}
else switch (k)
{
case 16:
if (!m_reader.FillBuffer(2))
throw UnexpectedEndErr();
count = 3 + m_reader.GetBits(2);
if (i == 0)
throw BadBlockErr();
repeater = codeLengths[i-1];
break;
case 17:
if (!m_reader.FillBuffer(3))
throw UnexpectedEndErr();
count = 3 + m_reader.GetBits(3);
repeater = 0;
break;
case 18:
if (!m_reader.FillBuffer(7))
throw UnexpectedEndErr();
count = 11 + m_reader.GetBits(7);
repeater = 0;
break;
}
if (i + count > hlit+257+hdist+1)
throw BadBlockErr();
std::fill(codeLengths + i, codeLengths + i + count, repeater);
i += count;
}
m_dynamicLiteralDecoder.Initialize(codeLengths, hlit+257);
if (hdist == 0 && codeLengths[hlit+257] == 0)
{
if (hlit != 0) // a single zero distance code length means all literals
throw BadBlockErr();
}
else
m_dynamicDistanceDecoder.Initialize(codeLengths+hlit+257, hdist+1);
m_nextDecode = LITERAL;
}
catch (HuffmanDecoder::Err &)
{
throw BadBlockErr();
}
break;
}
default:
throw BadBlockErr(); // reserved block type
}
m_state = DECODING_BODY;
}
bool Inflator::DecodeBody()
{
bool blockEnd = false;
switch (m_blockType)
{
case 0: // stored
assert(m_reader.BitsBuffered() == 0);
while (!m_inQueue.IsEmpty() && !blockEnd)
{
size_t size;
const byte *block = m_inQueue.Spy(size);
size = UnsignedMin(m_storedLen, size);
OutputString(block, size);
m_inQueue.Skip(size);
m_storedLen -= (word16)size;
if (m_storedLen == 0)
blockEnd = true;
}
break;
case 1: // fixed codes
case 2: // dynamic codes
static const unsigned int lengthStarts[] = {
3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 15, 17, 19, 23, 27, 31,
35, 43, 51, 59, 67, 83, 99, 115, 131, 163, 195, 227, 258};
static const unsigned int lengthExtraBits[] = {
0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2,
3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 0};
static const unsigned int distanceStarts[] = {
1, 2, 3, 4, 5, 7, 9, 13, 17, 25, 33, 49, 65, 97, 129, 193,
257, 385, 513, 769, 1025, 1537, 2049, 3073, 4097, 6145,
8193, 12289, 16385, 24577};
static const unsigned int distanceExtraBits[] = {
0, 0, 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6,
7, 7, 8, 8, 9, 9, 10, 10, 11, 11,
12, 12, 13, 13};
const HuffmanDecoder& literalDecoder = GetLiteralDecoder();
const HuffmanDecoder& distanceDecoder = GetDistanceDecoder();
switch (m_nextDecode)
{
case LITERAL:
while (true)
{
if (!literalDecoder.Decode(m_reader, m_literal))
{
m_nextDecode = LITERAL;
break;
}
if (m_literal < 256)
OutputByte((byte)m_literal);
else if (m_literal == 256) // end of block
{
blockEnd = true;
break;
}
else
{
if (m_literal > 285)
throw BadBlockErr();
unsigned int bits;
case LENGTH_BITS:
bits = lengthExtraBits[m_literal-257];
if (!m_reader.FillBuffer(bits))
{
m_nextDecode = LENGTH_BITS;
break;
}
m_literal = m_reader.GetBits(bits) + lengthStarts[m_literal-257];
case DISTANCE:
if (!distanceDecoder.Decode(m_reader, m_distance))
{
m_nextDecode = DISTANCE;
break;
}
case DISTANCE_BITS:
bits = distanceExtraBits[m_distance];
if (!m_reader.FillBuffer(bits))
{
m_nextDecode = DISTANCE_BITS;
break;
}
m_distance = m_reader.GetBits(bits) + distanceStarts[m_distance];
OutputPast(m_literal, m_distance);
}
}
}
}
if (blockEnd)
{
if (m_eof)
{
FlushOutput();
m_reader.SkipBits(m_reader.BitsBuffered()%8);
if (m_reader.BitsBuffered())
{
// undo too much lookahead
SecBlockWithHint<byte, 4> buffer(m_reader.BitsBuffered() / 8);
for (unsigned int i=0; i<buffer.size(); i++)
buffer[i] = (byte)m_reader.GetBits(8);
m_inQueue.Unget(buffer, buffer.size());
}
m_state = POST_STREAM;
}
else
m_state = WAIT_HEADER;
}
return blockEnd;
}
void Inflator::FlushOutput()
{
if (m_state != PRE_STREAM)
{
assert(m_current >= m_lastFlush);
ProcessDecompressedData(m_window + m_lastFlush, m_current - m_lastFlush);
m_lastFlush = m_current;
}
}
struct NewFixedLiteralDecoder
{
HuffmanDecoder * operator()() const
{
unsigned int codeLengths[288];
std::fill(codeLengths + 0, codeLengths + 144, 8);
std::fill(codeLengths + 144, codeLengths + 256, 9);
std::fill(codeLengths + 256, codeLengths + 280, 7);
std::fill(codeLengths + 280, codeLengths + 288, 8);
std::auto_ptr<HuffmanDecoder> pDecoder(new HuffmanDecoder);
pDecoder->Initialize(codeLengths, 288);
return pDecoder.release();
}
};
struct NewFixedDistanceDecoder
{
HuffmanDecoder * operator()() const
{
unsigned int codeLengths[32];
std::fill(codeLengths + 0, codeLengths + 32, 5);
std::auto_ptr<HuffmanDecoder> pDecoder(new HuffmanDecoder);
pDecoder->Initialize(codeLengths, 32);
return pDecoder.release();
}
};
const HuffmanDecoder& Inflator::GetLiteralDecoder() const
{
return m_blockType == 1 ? Singleton<HuffmanDecoder, NewFixedLiteralDecoder>().Ref() : m_dynamicLiteralDecoder;
}
const HuffmanDecoder& Inflator::GetDistanceDecoder() const
{
return m_blockType == 1 ? Singleton<HuffmanDecoder, NewFixedDistanceDecoder>().Ref() : m_dynamicDistanceDecoder;
}
NAMESPACE_END