mirror of
https://github.com/nillerusr/source-engine.git
synced 2025-01-26 14:54:16 +00:00
571 lines
22 KiB
C++
571 lines
22 KiB
C++
#ifndef CRYPTOPP_INTEGER_H
|
|
#define CRYPTOPP_INTEGER_H
|
|
|
|
/** \file */
|
|
|
|
#include "cryptlib.h"
|
|
#include "secblock.h"
|
|
#include "stdcpp.h"
|
|
|
|
#include <iosfwd>
|
|
|
|
NAMESPACE_BEGIN(CryptoPP)
|
|
|
|
//! \struct InitializeInteger
|
|
//! Performs static intialization of the Integer class
|
|
struct InitializeInteger
|
|
{
|
|
InitializeInteger();
|
|
};
|
|
|
|
typedef SecBlock<word, AllocatorWithCleanup<word, CRYPTOPP_BOOL_X86> > IntegerSecBlock;
|
|
|
|
//! \brief Multiple precision integer with arithmetic operations
|
|
//! \details The Integer class can represent positive and negative integers
|
|
//! with absolute value less than (256**sizeof(word))<sup>(256**sizeof(int))</sup>.
|
|
//! \details Internally, the library uses a sign magnitude representation, and the class
|
|
//! has two data members. The first is a IntegerSecBlock (a SecBlock<word>) and it i
|
|
//! used to hold the representation. The second is a Sign, and its is used to track
|
|
//! the sign of the Integer.
|
|
//! \nosubgrouping
|
|
class CRYPTOPP_DLL Integer : private InitializeInteger, public ASN1Object
|
|
{
|
|
public:
|
|
//! \name ENUMS, EXCEPTIONS, and TYPEDEFS
|
|
//@{
|
|
//! \brief Exception thrown when division by 0 is encountered
|
|
class DivideByZero : public Exception
|
|
{
|
|
public:
|
|
DivideByZero() : Exception(OTHER_ERROR, "Integer: division by zero") {}
|
|
};
|
|
|
|
//! \brief Exception thrown when a random number cannot be found that
|
|
//! satisfies the condition
|
|
class RandomNumberNotFound : public Exception
|
|
{
|
|
public:
|
|
RandomNumberNotFound() : Exception(OTHER_ERROR, "Integer: no integer satisfies the given parameters") {}
|
|
};
|
|
|
|
//! \enum Sign
|
|
//! \brief Used internally to represent the integer
|
|
//! \details Sign is used internally to represent the integer. It is also used in a few API functions.
|
|
//! \sa Signedness
|
|
enum Sign {
|
|
//! \brief the value is positive or 0
|
|
POSITIVE=0,
|
|
//! \brief the value is negative
|
|
NEGATIVE=1};
|
|
|
|
//! \enum Signedness
|
|
//! \brief Used when importing and exporting integers
|
|
//! \details Signedness is usually used in API functions.
|
|
//! \sa Sign
|
|
enum Signedness {
|
|
//! \brief an unsigned value
|
|
UNSIGNED,
|
|
//! \brief a signed value
|
|
SIGNED};
|
|
|
|
//! \enum RandomNumberType
|
|
//! \brief Properties of a random integer
|
|
enum RandomNumberType {
|
|
//! \brief a number with no special properties
|
|
ANY,
|
|
//! \brief a number which is probabilistically prime
|
|
PRIME};
|
|
//@}
|
|
|
|
//! \name CREATORS
|
|
//@{
|
|
//! \brief Creates the zero integer
|
|
Integer();
|
|
|
|
//! copy constructor
|
|
Integer(const Integer& t);
|
|
|
|
//! \brief Convert from signed long
|
|
Integer(signed long value);
|
|
|
|
//! \brief Convert from lword
|
|
//! \param sign enumeration indicating Sign
|
|
//! \param value the long word
|
|
Integer(Sign sign, lword value);
|
|
|
|
//! \brief Convert from two words
|
|
//! \param sign enumeration indicating Sign
|
|
//! \param highWord the high word
|
|
//! \param lowWord the low word
|
|
Integer(Sign sign, word highWord, word lowWord);
|
|
|
|
//! \brief Convert from a C-string
|
|
//! \param str C-string value
|
|
//! \details \p str can be in base 2, 8, 10, or 16. Base is determined by a case
|
|
//! insensitive suffix of 'h', 'o', or 'b'. No suffix means base 10.
|
|
explicit Integer(const char *str);
|
|
|
|
//! \brief Convert from a wide C-string
|
|
//! \param str wide C-string value
|
|
//! \details \p str can be in base 2, 8, 10, or 16. Base is determined by a case
|
|
//! insensitive suffix of 'h', 'o', or 'b'. No suffix means base 10.
|
|
explicit Integer(const wchar_t *str);
|
|
|
|
//! \brief Convert from a big-endian byte array
|
|
//! \param encodedInteger big-endian byte array
|
|
//! \param byteCount length of the byte array
|
|
//! \param sign enumeration indicating Signedness
|
|
Integer(const byte *encodedInteger, size_t byteCount, Signedness sign=UNSIGNED);
|
|
|
|
//! \brief Convert from a big-endian array
|
|
//! \param bt BufferedTransformation object with big-endian byte array
|
|
//! \param byteCount length of the byte array
|
|
//! \param sign enumeration indicating Signedness
|
|
Integer(BufferedTransformation &bt, size_t byteCount, Signedness sign=UNSIGNED);
|
|
|
|
//! \brief Convert from a BER encoded byte array
|
|
//! \param bt BufferedTransformation object with BER encoded byte array
|
|
explicit Integer(BufferedTransformation &bt);
|
|
|
|
//! \brief Create a random integer
|
|
//! \param rng RandomNumberGenerator used to generate material
|
|
//! \param bitCount the number of bits in the resulting integer
|
|
//! \details The random integer created is uniformly distributed over <tt>[0, 2<sup>bitCount</sup>]</tt>.
|
|
Integer(RandomNumberGenerator &rng, size_t bitCount);
|
|
|
|
//! \brief Integer representing 0
|
|
//! \returns an Integer representing 0
|
|
//! \details Zero() avoids calling constructors for frequently used integers
|
|
static const Integer & CRYPTOPP_API Zero();
|
|
//! \brief Integer representing 1
|
|
//! \returns an Integer representing 1
|
|
//! \details One() avoids calling constructors for frequently used integers
|
|
static const Integer & CRYPTOPP_API One();
|
|
//! \brief Integer representing 2
|
|
//! \returns an Integer representing 2
|
|
//! \details Two() avoids calling constructors for frequently used integers
|
|
static const Integer & CRYPTOPP_API Two();
|
|
|
|
//! \brief Create a random integer of special form
|
|
//! \param rng RandomNumberGenerator used to generate material
|
|
//! \param min the minimum value
|
|
//! \param max the maximum value
|
|
//! \param rnType RandomNumberType to specify the type
|
|
//! \param equiv the equivalence class based on the parameter \p mod
|
|
//! \param mod the modulus used to reduce the equivalence class
|
|
//! \throw RandomNumberNotFound if the set is empty.
|
|
//! \details Ideally, the random integer created should be uniformly distributed
|
|
//! over <tt>{x | min \<= x \<= max</tt> and \p x is of rnType and <tt>x \% mod == equiv}</tt>.
|
|
//! However the actual distribution may not be uniform because sequential
|
|
//! search is used to find an appropriate number from a random starting
|
|
//! point.
|
|
//! \details May return (with very small probability) a pseudoprime when a prime
|
|
//! is requested and <tt>max \> lastSmallPrime*lastSmallPrime</tt>. \p lastSmallPrime
|
|
//! is declared in nbtheory.h.
|
|
Integer(RandomNumberGenerator &rng, const Integer &min, const Integer &max, RandomNumberType rnType=ANY, const Integer &equiv=Zero(), const Integer &mod=One());
|
|
|
|
//! \brief Exponentiates to a power of 2
|
|
//! \returns the Integer 2<sup>e</sup>
|
|
//! \sa a_times_b_mod_c() and a_exp_b_mod_c()
|
|
static Integer CRYPTOPP_API Power2(size_t e);
|
|
//@}
|
|
|
|
//! \name ENCODE/DECODE
|
|
//@{
|
|
//! \brief The minimum number of bytes to encode this integer
|
|
//! \param sign enumeration indicating Signedness
|
|
//! \note The MinEncodedSize() of 0 is 1.
|
|
size_t MinEncodedSize(Signedness sign=UNSIGNED) const;
|
|
|
|
//! \brief Encode in big-endian format
|
|
//! \param output big-endian byte array
|
|
//! \param outputLen length of the byte array
|
|
//! \param sign enumeration indicating Signedness
|
|
//! \details Unsigned means encode absolute value, signed means encode two's complement if negative.
|
|
//! \details outputLen can be used to ensure an Integer is encoded to an exact size (rather than a
|
|
//! minimum size). An exact size is useful, for example, when encoding to a field element size.
|
|
void Encode(byte *output, size_t outputLen, Signedness sign=UNSIGNED) const;
|
|
|
|
//! \brief Encode in big-endian format
|
|
//! \param bt BufferedTransformation object
|
|
//! \param outputLen length of the encoding
|
|
//! \param sign enumeration indicating Signedness
|
|
//! \details Unsigned means encode absolute value, signed means encode two's complement if negative.
|
|
//! \details outputLen can be used to ensure an Integer is encoded to an exact size (rather than a
|
|
//! minimum size). An exact size is useful, for example, when encoding to a field element size.
|
|
void Encode(BufferedTransformation &bt, size_t outputLen, Signedness sign=UNSIGNED) const;
|
|
|
|
//! \brief Encode in DER format
|
|
//! \param bt BufferedTransformation object
|
|
//! \details Encodes the Integer using Distinguished Encoding Rules
|
|
//! The result is placed into a BufferedTransformation object
|
|
void DEREncode(BufferedTransformation &bt) const;
|
|
|
|
//! encode absolute value as big-endian octet string
|
|
//! \param bt BufferedTransformation object
|
|
//! \param length the number of mytes to decode
|
|
void DEREncodeAsOctetString(BufferedTransformation &bt, size_t length) const;
|
|
|
|
//! \brief Encode absolute value in OpenPGP format
|
|
//! \param output big-endian byte array
|
|
//! \param bufferSize length of the byte array
|
|
//! \returns length of the output
|
|
//! \details OpenPGPEncode places result into a BufferedTransformation object and returns the
|
|
//! number of bytes used for the encoding
|
|
size_t OpenPGPEncode(byte *output, size_t bufferSize) const;
|
|
|
|
//! \brief Encode absolute value in OpenPGP format
|
|
//! \param bt BufferedTransformation object
|
|
//! \returns length of the output
|
|
//! \details OpenPGPEncode places result into a BufferedTransformation object and returns the
|
|
//! number of bytes used for the encoding
|
|
size_t OpenPGPEncode(BufferedTransformation &bt) const;
|
|
|
|
//! \brief Decode from big-endian byte array
|
|
//! \param input big-endian byte array
|
|
//! \param inputLen length of the byte array
|
|
//! \param sign enumeration indicating Signedness
|
|
void Decode(const byte *input, size_t inputLen, Signedness sign=UNSIGNED);
|
|
|
|
//! \brief Decode nonnegative value from big-endian byte array
|
|
//! \param bt BufferedTransformation object
|
|
//! \param inputLen length of the byte array
|
|
//! \param sign enumeration indicating Signedness
|
|
//! \note <tt>bt.MaxRetrievable() \>= inputLen</tt>.
|
|
void Decode(BufferedTransformation &bt, size_t inputLen, Signedness sign=UNSIGNED);
|
|
|
|
//! \brief Decode from BER format
|
|
//! \param input big-endian byte array
|
|
//! \param inputLen length of the byte array
|
|
void BERDecode(const byte *input, size_t inputLen);
|
|
|
|
//! \brief Decode from BER format
|
|
//! \param bt BufferedTransformation object
|
|
void BERDecode(BufferedTransformation &bt);
|
|
|
|
//! \brief Decode nonnegative value from big-endian octet string
|
|
//! \param bt BufferedTransformation object
|
|
//! \param length length of the byte array
|
|
void BERDecodeAsOctetString(BufferedTransformation &bt, size_t length);
|
|
|
|
//! \brief Exception thrown when an error is encountered decoding an OpenPGP integer
|
|
class OpenPGPDecodeErr : public Exception
|
|
{
|
|
public:
|
|
OpenPGPDecodeErr() : Exception(INVALID_DATA_FORMAT, "OpenPGP decode error") {}
|
|
};
|
|
|
|
//! \brief Decode from OpenPGP format
|
|
//! \param input big-endian byte array
|
|
//! \param inputLen length of the byte array
|
|
void OpenPGPDecode(const byte *input, size_t inputLen);
|
|
//! \brief Decode from OpenPGP format
|
|
//! \param bt BufferedTransformation object
|
|
void OpenPGPDecode(BufferedTransformation &bt);
|
|
//@}
|
|
|
|
//! \name ACCESSORS
|
|
//@{
|
|
//! return true if *this can be represented as a signed long
|
|
bool IsConvertableToLong() const;
|
|
//! return equivalent signed long if possible, otherwise undefined
|
|
signed long ConvertToLong() const;
|
|
|
|
//! number of significant bits = floor(log2(abs(*this))) + 1
|
|
unsigned int BitCount() const;
|
|
//! number of significant bytes = ceiling(BitCount()/8)
|
|
unsigned int ByteCount() const;
|
|
//! number of significant words = ceiling(ByteCount()/sizeof(word))
|
|
unsigned int WordCount() const;
|
|
|
|
//! return the i-th bit, i=0 being the least significant bit
|
|
bool GetBit(size_t i) const;
|
|
//! return the i-th byte
|
|
byte GetByte(size_t i) const;
|
|
//! return n lowest bits of *this >> i
|
|
lword GetBits(size_t i, size_t n) const;
|
|
|
|
//!
|
|
bool IsZero() const {return !*this;}
|
|
//!
|
|
bool NotZero() const {return !IsZero();}
|
|
//!
|
|
bool IsNegative() const {return sign == NEGATIVE;}
|
|
//!
|
|
bool NotNegative() const {return !IsNegative();}
|
|
//!
|
|
bool IsPositive() const {return NotNegative() && NotZero();}
|
|
//!
|
|
bool NotPositive() const {return !IsPositive();}
|
|
//!
|
|
bool IsEven() const {return GetBit(0) == 0;}
|
|
//!
|
|
bool IsOdd() const {return GetBit(0) == 1;}
|
|
//@}
|
|
|
|
//! \name MANIPULATORS
|
|
//@{
|
|
//!
|
|
Integer& operator=(const Integer& t);
|
|
|
|
//!
|
|
Integer& operator+=(const Integer& t);
|
|
//!
|
|
Integer& operator-=(const Integer& t);
|
|
//!
|
|
//! \sa a_times_b_mod_c() and a_exp_b_mod_c()
|
|
Integer& operator*=(const Integer& t) {return *this = Times(t);}
|
|
//!
|
|
Integer& operator/=(const Integer& t) {return *this = DividedBy(t);}
|
|
//!
|
|
//! \sa a_times_b_mod_c() and a_exp_b_mod_c()
|
|
Integer& operator%=(const Integer& t) {return *this = Modulo(t);}
|
|
//!
|
|
Integer& operator/=(word t) {return *this = DividedBy(t);}
|
|
//!
|
|
//! \sa a_times_b_mod_c() and a_exp_b_mod_c()
|
|
Integer& operator%=(word t) {return *this = Integer(POSITIVE, 0, Modulo(t));}
|
|
|
|
//!
|
|
Integer& operator<<=(size_t);
|
|
//!
|
|
Integer& operator>>=(size_t);
|
|
|
|
//! \brief Set this Integer to random integer
|
|
//! \param rng RandomNumberGenerator used to generate material
|
|
//! \param bitCount the number of bits in the resulting integer
|
|
//! \details The random integer created is uniformly distributed over <tt>[0, 2<sup>bitCount</sup>]</tt>.
|
|
void Randomize(RandomNumberGenerator &rng, size_t bitCount);
|
|
|
|
//! \brief Set this Integer to random integer
|
|
//! \param rng RandomNumberGenerator used to generate material
|
|
//! \param min the minimum value
|
|
//! \param max the maximum value
|
|
//! \details The random integer created is uniformly distributed over <tt>[min, max]</tt>.
|
|
void Randomize(RandomNumberGenerator &rng, const Integer &min, const Integer &max);
|
|
|
|
//! \brief Set this Integer to random integer of special form
|
|
//! \param rng RandomNumberGenerator used to generate material
|
|
//! \param min the minimum value
|
|
//! \param max the maximum value
|
|
//! \param rnType RandomNumberType to specify the type
|
|
//! \param equiv the equivalence class based on the parameter \p mod
|
|
//! \param mod the modulus used to reduce the equivalence class
|
|
//! \throw RandomNumberNotFound if the set is empty.
|
|
//! \details Ideally, the random integer created should be uniformly distributed
|
|
//! over <tt>{x | min \<= x \<= max</tt> and \p x is of rnType and <tt>x \% mod == equiv}</tt>.
|
|
//! However the actual distribution may not be uniform because sequential
|
|
//! search is used to find an appropriate number from a random starting
|
|
//! point.
|
|
//! \details May return (with very small probability) a pseudoprime when a prime
|
|
//! is requested and <tt>max \> lastSmallPrime*lastSmallPrime</tt>. \p lastSmallPrime
|
|
//! is declared in nbtheory.h.
|
|
bool Randomize(RandomNumberGenerator &rng, const Integer &min, const Integer &max, RandomNumberType rnType, const Integer &equiv=Zero(), const Integer &mod=One());
|
|
|
|
bool GenerateRandomNoThrow(RandomNumberGenerator &rng, const NameValuePairs ¶ms = g_nullNameValuePairs);
|
|
void GenerateRandom(RandomNumberGenerator &rng, const NameValuePairs ¶ms = g_nullNameValuePairs)
|
|
{
|
|
if (!GenerateRandomNoThrow(rng, params))
|
|
throw RandomNumberNotFound();
|
|
}
|
|
|
|
//! \brief Set the n-th bit to value
|
|
//! \details 0-based numbering.
|
|
void SetBit(size_t n, bool value=1);
|
|
|
|
//! \brief Set the n-th byte to value
|
|
//! \details 0-based numbering.
|
|
void SetByte(size_t n, byte value);
|
|
|
|
//! \brief Reverse the Sign of the Integer
|
|
void Negate();
|
|
|
|
//! \brief Sets the Integer to positive
|
|
void SetPositive() {sign = POSITIVE;}
|
|
|
|
//! \brief Sets the Integer to negative
|
|
void SetNegative() {if (!!(*this)) sign = NEGATIVE;}
|
|
|
|
//! \brief Swaps this Integer with another Integer
|
|
void swap(Integer &a);
|
|
//@}
|
|
|
|
//! \name UNARY OPERATORS
|
|
//@{
|
|
//!
|
|
bool operator!() const;
|
|
//!
|
|
Integer operator+() const {return *this;}
|
|
//!
|
|
Integer operator-() const;
|
|
//!
|
|
Integer& operator++();
|
|
//!
|
|
Integer& operator--();
|
|
//!
|
|
Integer operator++(int) {Integer temp = *this; ++*this; return temp;}
|
|
//!
|
|
Integer operator--(int) {Integer temp = *this; --*this; return temp;}
|
|
//@}
|
|
|
|
//! \name BINARY OPERATORS
|
|
//@{
|
|
//! \brief Perform signed comparison
|
|
//! \param a the Integer to comapre
|
|
//! \retval -1 if <tt>*this < a</tt>
|
|
//! \retval 0 if <tt>*this = a</tt>
|
|
//! \retval 1 if <tt>*this > a</tt>
|
|
int Compare(const Integer& a) const;
|
|
|
|
//!
|
|
Integer Plus(const Integer &b) const;
|
|
//!
|
|
Integer Minus(const Integer &b) const;
|
|
//!
|
|
//! \sa a_times_b_mod_c() and a_exp_b_mod_c()
|
|
Integer Times(const Integer &b) const;
|
|
//!
|
|
Integer DividedBy(const Integer &b) const;
|
|
//!
|
|
//! \sa a_times_b_mod_c() and a_exp_b_mod_c()
|
|
Integer Modulo(const Integer &b) const;
|
|
//!
|
|
Integer DividedBy(word b) const;
|
|
//!
|
|
//! \sa a_times_b_mod_c() and a_exp_b_mod_c()
|
|
word Modulo(word b) const;
|
|
|
|
//!
|
|
Integer operator>>(size_t n) const {return Integer(*this)>>=n;}
|
|
//!
|
|
Integer operator<<(size_t n) const {return Integer(*this)<<=n;}
|
|
//@}
|
|
|
|
//! \name OTHER ARITHMETIC FUNCTIONS
|
|
//@{
|
|
//!
|
|
Integer AbsoluteValue() const;
|
|
//!
|
|
Integer Doubled() const {return Plus(*this);}
|
|
//!
|
|
//! \sa a_times_b_mod_c() and a_exp_b_mod_c()
|
|
Integer Squared() const {return Times(*this);}
|
|
//! extract square root, if negative return 0, else return floor of square root
|
|
Integer SquareRoot() const;
|
|
//! return whether this integer is a perfect square
|
|
bool IsSquare() const;
|
|
|
|
//! is 1 or -1
|
|
bool IsUnit() const;
|
|
//! return inverse if 1 or -1, otherwise return 0
|
|
Integer MultiplicativeInverse() const;
|
|
|
|
//! calculate r and q such that (a == d*q + r) && (0 <= r < abs(d))
|
|
static void CRYPTOPP_API Divide(Integer &r, Integer &q, const Integer &a, const Integer &d);
|
|
//! use a faster division algorithm when divisor is short
|
|
static void CRYPTOPP_API Divide(word &r, Integer &q, const Integer &a, word d);
|
|
|
|
//! returns same result as Divide(r, q, a, Power2(n)), but faster
|
|
static void CRYPTOPP_API DivideByPowerOf2(Integer &r, Integer &q, const Integer &a, unsigned int n);
|
|
|
|
//! greatest common divisor
|
|
static Integer CRYPTOPP_API Gcd(const Integer &a, const Integer &n);
|
|
//! calculate multiplicative inverse of *this mod n
|
|
//! \sa a_times_b_mod_c() and a_exp_b_mod_c()
|
|
Integer InverseMod(const Integer &n) const;
|
|
//!
|
|
//! \sa a_times_b_mod_c() and a_exp_b_mod_c()
|
|
word InverseMod(word n) const;
|
|
//@}
|
|
|
|
//! \name INPUT/OUTPUT
|
|
//@{
|
|
//! \brief Extraction operator
|
|
//! \param in a reference to a std::istream
|
|
//! \param a a reference to an Integer
|
|
//! \returns a reference to a std::istream reference
|
|
friend CRYPTOPP_DLL std::istream& CRYPTOPP_API operator>>(std::istream& in, Integer &a);
|
|
//!
|
|
//! \brief Insertion operator
|
|
//! \param out a reference to a std::ostream
|
|
//! \param a a constant reference to an Integer
|
|
//! \returns a reference to a std::ostream reference
|
|
//! \details The output integer responds to std::hex, std::oct, std::hex, std::upper and
|
|
//! std::lower. The output includes the suffix \a \b h (for hex), \a \b . (\a \b dot, for dec)
|
|
//! and \a \b o (for octal). There is currently no way to supress the suffix.
|
|
//! \details If you want to print an Integer without the suffix or using an arbitrary base, then
|
|
//! use IntToString<Integer>().
|
|
//! \sa IntToString<Integer>
|
|
friend CRYPTOPP_DLL std::ostream& CRYPTOPP_API operator<<(std::ostream& out, const Integer &a);
|
|
//@}
|
|
|
|
#ifndef CRYPTOPP_DOXYGEN_PROCESSING
|
|
//! modular multiplication
|
|
CRYPTOPP_DLL friend Integer CRYPTOPP_API a_times_b_mod_c(const Integer &x, const Integer& y, const Integer& m);
|
|
//! modular exponentiation
|
|
CRYPTOPP_DLL friend Integer CRYPTOPP_API a_exp_b_mod_c(const Integer &x, const Integer& e, const Integer& m);
|
|
#endif
|
|
|
|
private:
|
|
|
|
Integer(word value, size_t length);
|
|
int PositiveCompare(const Integer &t) const;
|
|
|
|
IntegerSecBlock reg;
|
|
Sign sign;
|
|
|
|
#ifndef CRYPTOPP_DOXYGEN_PROCESSING
|
|
friend class ModularArithmetic;
|
|
friend class MontgomeryRepresentation;
|
|
friend class HalfMontgomeryRepresentation;
|
|
|
|
friend void PositiveAdd(Integer &sum, const Integer &a, const Integer &b);
|
|
friend void PositiveSubtract(Integer &diff, const Integer &a, const Integer &b);
|
|
friend void PositiveMultiply(Integer &product, const Integer &a, const Integer &b);
|
|
friend void PositiveDivide(Integer &remainder, Integer "ient, const Integer ÷nd, const Integer &divisor);
|
|
#endif
|
|
};
|
|
|
|
//!
|
|
inline bool operator==(const CryptoPP::Integer& a, const CryptoPP::Integer& b) {return a.Compare(b)==0;}
|
|
//!
|
|
inline bool operator!=(const CryptoPP::Integer& a, const CryptoPP::Integer& b) {return a.Compare(b)!=0;}
|
|
//!
|
|
inline bool operator> (const CryptoPP::Integer& a, const CryptoPP::Integer& b) {return a.Compare(b)> 0;}
|
|
//!
|
|
inline bool operator>=(const CryptoPP::Integer& a, const CryptoPP::Integer& b) {return a.Compare(b)>=0;}
|
|
//!
|
|
inline bool operator< (const CryptoPP::Integer& a, const CryptoPP::Integer& b) {return a.Compare(b)< 0;}
|
|
//!
|
|
inline bool operator<=(const CryptoPP::Integer& a, const CryptoPP::Integer& b) {return a.Compare(b)<=0;}
|
|
//!
|
|
inline CryptoPP::Integer operator+(const CryptoPP::Integer &a, const CryptoPP::Integer &b) {return a.Plus(b);}
|
|
//!
|
|
inline CryptoPP::Integer operator-(const CryptoPP::Integer &a, const CryptoPP::Integer &b) {return a.Minus(b);}
|
|
//!
|
|
//! \sa a_times_b_mod_c() and a_exp_b_mod_c()
|
|
inline CryptoPP::Integer operator*(const CryptoPP::Integer &a, const CryptoPP::Integer &b) {return a.Times(b);}
|
|
//!
|
|
inline CryptoPP::Integer operator/(const CryptoPP::Integer &a, const CryptoPP::Integer &b) {return a.DividedBy(b);}
|
|
//!
|
|
//! \sa a_times_b_mod_c() and a_exp_b_mod_c()
|
|
inline CryptoPP::Integer operator%(const CryptoPP::Integer &a, const CryptoPP::Integer &b) {return a.Modulo(b);}
|
|
//!
|
|
inline CryptoPP::Integer operator/(const CryptoPP::Integer &a, CryptoPP::word b) {return a.DividedBy(b);}
|
|
//!
|
|
//! \sa a_times_b_mod_c() and a_exp_b_mod_c()
|
|
inline CryptoPP::word operator%(const CryptoPP::Integer &a, CryptoPP::word b) {return a.Modulo(b);}
|
|
|
|
NAMESPACE_END
|
|
|
|
#ifndef __BORLANDC__
|
|
NAMESPACE_BEGIN(std)
|
|
inline void swap(CryptoPP::Integer &a, CryptoPP::Integer &b)
|
|
{
|
|
a.swap(b);
|
|
}
|
|
NAMESPACE_END
|
|
#endif
|
|
|
|
#endif
|