Modified source engine (2017) developed by valve and leaked in 2020. Not for commercial purporses
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

321 lines
7.9 KiB

// smartptr.h - written and placed in the public domain by Wei Dai
//! \file
//! \headerfile smartptr.h
//! \brief Classes for automatic resource management
#ifndef CRYPTOPP_SMARTPTR_H
#define CRYPTOPP_SMARTPTR_H
#include "config.h"
#include "stdcpp.h"
NAMESPACE_BEGIN(CryptoPP)
//! \class simple_ptr
//! \brief Manages resources for a single object
//! \tparam T class or type
//! \details \p simple_ptr is used frequently in the library to manage resources and
//! ensure cleanup under the RAII pattern (Resource Acquisition Is Initialization).
template <class T> class simple_ptr
{
public:
simple_ptr(T *p = NULL) : m_p(p) {}
~simple_ptr()
{
delete m_p;
*((volatile T**)&m_p) = NULL;
}
T *m_p;
};
//! \class member_ptr
//! \brief Pointer that overloads operator→
//! \tparam T class or type
//! \details member_ptr is used frequently in the library to avoid the issues related to
//! std::auto_ptr in C++11 (deprecated) and std::unique_ptr in C++03 (non-existent).
//! \bug <a href="http://github.com/weidai11/cryptopp/issues/48">Issue 48: "Use of auto_ptr causes dirty compile under C++11"</a>
template <class T> class member_ptr
{
public:
explicit member_ptr(T *p = NULL) : m_p(p) {}
~member_ptr();
const T& operator*() const { return *m_p; }
T& operator*() { return *m_p; }
const T* operator->() const { return m_p; }
T* operator->() { return m_p; }
const T* get() const { return m_p; }
T* get() { return m_p; }
T* release()
{
T *old_p = m_p;
*((volatile T**)&m_p) = NULL;
return old_p;
}
void reset(T *p = 0);
protected:
member_ptr(const member_ptr<T>& rhs); // copy not allowed
void operator=(const member_ptr<T>& rhs); // assignment not allowed
T *m_p;
};
template <class T> member_ptr<T>::~member_ptr() {delete m_p;}
template <class T> void member_ptr<T>::reset(T *p) {delete m_p; m_p = p;}
// ********************************************************
//! \class value_ptr
//! \brief Value pointer
//! \tparam T class or type
template<class T> class value_ptr : public member_ptr<T>
{
public:
value_ptr(const T &obj) : member_ptr<T>(new T(obj)) {}
value_ptr(T *p = NULL) : member_ptr<T>(p) {}
value_ptr(const value_ptr<T>& rhs)
: member_ptr<T>(rhs.m_p ? new T(*rhs.m_p) : NULL) {}
value_ptr<T>& operator=(const value_ptr<T>& rhs);
bool operator==(const value_ptr<T>& rhs)
{
return (!this->m_p && !rhs.m_p) || (this->m_p && rhs.m_p && *this->m_p == *rhs.m_p);
}
};
template <class T> value_ptr<T>& value_ptr<T>::operator=(const value_ptr<T>& rhs)
{
T *old_p = this->m_p;
this->m_p = rhs.m_p ? new T(*rhs.m_p) : NULL;
delete old_p;
return *this;
}
// ********************************************************
//! \class clonable_ptr
//! \brief A pointer which can be copied and cloned
//! \tparam T class or type
//! \details \p T should adhere to the \p Clonable interface
template<class T> class clonable_ptr : public member_ptr<T>
{
public:
clonable_ptr(const T &obj) : member_ptr<T>(obj.Clone()) {}
clonable_ptr(T *p = NULL) : member_ptr<T>(p) {}
clonable_ptr(const clonable_ptr<T>& rhs)
: member_ptr<T>(rhs.m_p ? rhs.m_p->Clone() : NULL) {}
clonable_ptr<T>& operator=(const clonable_ptr<T>& rhs);
};
template <class T> clonable_ptr<T>& clonable_ptr<T>::operator=(const clonable_ptr<T>& rhs)
{
T *old_p = this->m_p;
this->m_p = rhs.m_p ? rhs.m_p->Clone() : NULL;
delete old_p;
return *this;
}
// ********************************************************
//! \class counted_ptr
//! \brief Reference counted pointer
//! \tparam T class or type
//! \details users should declare \p m_referenceCount as <tt>std::atomic<unsigned></tt>
//! (or similar) under C++ 11
template<class T> class counted_ptr
{
public:
explicit counted_ptr(T *p = 0);
counted_ptr(const T &r) : m_p(0) {attach(r);}
counted_ptr(const counted_ptr<T>& rhs);
~counted_ptr();
const T& operator*() const { return *m_p; }
T& operator*() { return *m_p; }
const T* operator->() const { return m_p; }
T* operator->() { return get(); }
const T* get() const { return m_p; }
T* get();
void attach(const T &p);
counted_ptr<T> & operator=(const counted_ptr<T>& rhs);
private:
T *m_p;
};
template <class T> counted_ptr<T>::counted_ptr(T *p)
: m_p(p)
{
if (m_p)
m_p->m_referenceCount = 1;
}
template <class T> counted_ptr<T>::counted_ptr(const counted_ptr<T>& rhs)
: m_p(rhs.m_p)
{
if (m_p)
m_p->m_referenceCount++;
}
template <class T> counted_ptr<T>::~counted_ptr()
{
if (m_p && --m_p->m_referenceCount == 0)
delete m_p;
}
template <class T> void counted_ptr<T>::attach(const T &r)
{
if (m_p && --m_p->m_referenceCount == 0)
delete m_p;
if (r.m_referenceCount == 0)
{
m_p = r.clone();
m_p->m_referenceCount = 1;
}
else
{
m_p = const_cast<T *>(&r);
m_p->m_referenceCount++;
}
}
template <class T> T* counted_ptr<T>::get()
{
if (m_p && m_p->m_referenceCount > 1)
{
T *temp = m_p->clone();
m_p->m_referenceCount--;
m_p = temp;
m_p->m_referenceCount = 1;
}
return m_p;
}
template <class T> counted_ptr<T> & counted_ptr<T>::operator=(const counted_ptr<T>& rhs)
{
if (m_p != rhs.m_p)
{
if (m_p && --m_p->m_referenceCount == 0)
delete m_p;
m_p = rhs.m_p;
if (m_p)
m_p->m_referenceCount++;
}
return *this;
}
// ********************************************************
//! \class vector_ptr
//! \brief Manages resources for an array of objects
//! \tparam T class or type
//! \details \p vector_ptr is used frequently in the library to avoid large stack allocations,
//! and manage resources and ensure cleanup under the RAII pattern (Resource Acquisition
//! Is Initialization).
template <class T> class vector_ptr
{
public:
//! Construct an arry of \p T
//! \param size the size of the array, in elements
//! \details If \p T is a Plain Old Dataype (POD), then the array is uninitialized.
vector_ptr(size_t size=0)
: m_size(size), m_ptr(new T[m_size]) {}
~vector_ptr()
{delete [] m_ptr;}
T& operator[](size_t index)
{assert(m_size && index<this->m_size); return this->m_ptr[index];}
const T& operator[](size_t index) const
{assert(m_size && index<this->m_size); return this->m_ptr[index];}
size_t size() const {return this->m_size;}
void resize(size_t newSize)
{
T *newPtr = new T[newSize];
for (size_t i=0; i<this->m_size && i<newSize; i++)
newPtr[i] = m_ptr[i];
delete [] this->m_ptr;
this->m_size = newSize;
this->m_ptr = newPtr;
}
#ifdef __BORLANDC__
operator T *() const
{return (T*)m_ptr;}
#else
operator const void *() const
{return m_ptr;}
operator void *()
{return m_ptr;}
operator const T *() const
{return m_ptr;}
operator T *()
{return m_ptr;}
#endif
private:
vector_ptr(const vector_ptr<T> &c); // copy not allowed
void operator=(const vector_ptr<T> &x); // assignment not allowed
size_t m_size;
T *m_ptr;
};
// ********************************************************
//! \class vector_member_ptrs
//! \brief Manages resources for an array of objects
//! \tparam T class or type
template <class T> class vector_member_ptrs
{
public:
//! Construct an arry of \p T
//! \param size the size of the array, in elements
//! \details If \p T is a Plain Old Dataype (POD), then the array is uninitialized.
vector_member_ptrs(size_t size=0)
: m_size(size), m_ptr(new member_ptr<T>[size]) {}
~vector_member_ptrs()
{delete [] this->m_ptr;}
member_ptr<T>& operator[](size_t index)
{assert(index<this->m_size); return this->m_ptr[index];}
const member_ptr<T>& operator[](size_t index) const
{assert(index<this->m_size); return this->m_ptr[index];}
size_t size() const {return this->m_size;}
void resize(size_t newSize)
{
member_ptr<T> *newPtr = new member_ptr<T>[newSize];
for (size_t i=0; i<this->m_size && i<newSize; i++)
newPtr[i].reset(this->m_ptr[i].release());
delete [] this->m_ptr;
this->m_size = newSize;
this->m_ptr = newPtr;
}
private:
vector_member_ptrs(const vector_member_ptrs<T> &c); // copy not allowed
void operator=(const vector_member_ptrs<T> &x); // assignment not allowed
size_t m_size;
member_ptr<T> *m_ptr;
};
NAMESPACE_END
#endif