You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
293 lines
11 KiB
293 lines
11 KiB
//========= Copyright Valve Corporation, All rights reserved. ============// |
|
// |
|
// Purpose: |
|
// Information about algorithmic stuff that can occur on both client + server |
|
// |
|
// In order to reduce network traffic, it's possible to create a algorithms |
|
// that will work on both the client and the server and be totally repeatable. |
|
// All we need do is to send down initial conditions and let the algorithm |
|
// compute the values at various times. Note that this algorithm will be called |
|
// at different times with different frequencies on the client and server. |
|
// |
|
// The trick here is that in order for it to be repeatable, the algorithm either |
|
// cannot depend on random numbers, or, if it does, we need to make sure that |
|
// the random numbers generated are effectively done at the beginning of time, |
|
// so that differences in frame rate on client and server won't matter. It also |
|
// is important that the initial state sent across the network is identical |
|
// bitwise so that we produce the exact same results. Therefore no compression |
|
// should be used in the datatables. |
|
// |
|
// Note also that each algorithm must have its own random number stream so that |
|
// it cannot possibly interact with other code using random numbers that will |
|
// be called at various different intervals on the client + server. Use the |
|
// CUniformRandomStream class for this. |
|
// |
|
// There are two types of client-server neutral code: Code that doesn't interact |
|
// with player prediction, and code that does. The code that doesn't interact |
|
// with player prediction simply has to be able to produce the result f(time) |
|
// where time is monotonically increasing. For prediction, we have to produce |
|
// the result f(time) where time does *not* monotonically increase (time can be |
|
// anywhere between the "current" time and the prior 10 seconds). |
|
// |
|
// Code that is not used by player prediction can maintain state because later |
|
// calls will always compute the value at some future time. This computation can |
|
// use random number generation, but with the following restriction: Your code |
|
// must generate exactly the same number of random numbers regardless of how |
|
// frequently the code is called. |
|
// |
|
// In specific, this means that all random numbers used must either be computed |
|
// at init time, or must be used in an 'event-based form'. Namely, use random |
|
// numbers to compute the time at which events occur and the random inputs for |
|
// those events. When simulating forward, you must simulate all intervening |
|
// time and generate the same number of random numbers. |
|
// |
|
// For functions planned to be used by player prediction, one method is to use |
|
// some sort of stateless computation (where the only states are the initial |
|
// state and time). Note that random number generators have state implicit in |
|
// the number of calls made to that random number generator, and therefore you |
|
// cannot call a random number generator unless you are able to |
|
// |
|
// 1) Use a random number generator that can return the ith random number, namely: |
|
// |
|
// float r = random( i ); // i == the ith number in the random sequence |
|
// |
|
// 2) Be able to accurately know at any given time t how many random numbers |
|
// have already been generated (namely, compute the i in part 1 above). |
|
// |
|
// There is another alternative for code meant to be used by player prediction: |
|
// you could just store a history of 'events' from which you could completely |
|
// determine the value of f(time). That history would need to be at least 10 |
|
// seconds long, which is guaranteed to be longer than the amount of time that |
|
// prediction would need. I've written a class which I haven't tested yet (but |
|
// will be using soon) called CTimedEventQueue (currently located in |
|
// env_wind_shared.h) which I plan to use to solve my problem (getting wind to |
|
// blow players). |
|
// |
|
//=============================================================================// |
|
#include "cbase.h" |
|
#include "env_wind_shared.h" |
|
#include "soundenvelope.h" |
|
#include "IEffects.h" |
|
#include "engine/IEngineSound.h" |
|
#include "sharedInterface.h" |
|
|
|
// memdbgon must be the last include file in a .cpp file!!! |
|
#include "tier0/memdbgon.h" |
|
|
|
//----------------------------------------------------------------------------- |
|
// globals |
|
//----------------------------------------------------------------------------- |
|
static Vector s_vecWindVelocity( 0, 0, 0 ); |
|
|
|
|
|
CEnvWindShared::CEnvWindShared() : m_WindAveQueue(10), m_WindVariationQueue(10) |
|
{ |
|
m_pWindSound = NULL; |
|
} |
|
|
|
CEnvWindShared::~CEnvWindShared() |
|
{ |
|
if (m_pWindSound) |
|
{ |
|
CSoundEnvelopeController::GetController().Shutdown( m_pWindSound ); |
|
} |
|
} |
|
|
|
void CEnvWindShared::Init( int nEntIndex, int iRandomSeed, float flTime, |
|
int iInitialWindYaw, float flInitialWindSpeed ) |
|
{ |
|
m_iEntIndex = nEntIndex; |
|
m_flWindAngleVariation = m_flWindSpeedVariation = 1.0f; |
|
m_flStartTime = m_flSimTime = m_flSwitchTime = m_flVariationTime = flTime; |
|
m_iWindSeed = iRandomSeed; |
|
m_Stream.SetSeed( iRandomSeed ); |
|
m_WindVariationStream.SetSeed( iRandomSeed ); |
|
m_iWindDir = m_iInitialWindDir = iInitialWindYaw; |
|
|
|
m_flAveWindSpeed = m_flWindSpeed = m_flInitialWindSpeed = flInitialWindSpeed; |
|
|
|
/* |
|
// Cache in the wind sound... |
|
if (!g_pEffects->IsServer()) |
|
{ |
|
CSoundEnvelopeController &controller = CSoundEnvelopeController::GetController(); |
|
m_pWindSound = controller.SoundCreate( -1, CHAN_STATIC, |
|
"EnvWind.Loop", ATTN_NONE ); |
|
controller.Play( m_pWindSound, 0.0f, 100 ); |
|
} |
|
*/ |
|
|
|
// Next time a change happens (which will happen immediately), it'll stop gusting |
|
m_bGusting = true; |
|
} |
|
|
|
|
|
//----------------------------------------------------------------------------- |
|
// Computes wind variation |
|
//----------------------------------------------------------------------------- |
|
|
|
#define WIND_VARIATION_UPDATE_TIME 0.1f |
|
|
|
void CEnvWindShared::ComputeWindVariation( float flTime ) |
|
{ |
|
// The wind variation is updated every 10th of a second.. |
|
while( flTime >= m_flVariationTime ) |
|
{ |
|
m_flWindAngleVariation = m_WindVariationStream.RandomFloat( -10, 10 ); |
|
m_flWindSpeedVariation = 1.0 + m_WindVariationStream.RandomFloat( -0.2, 0.2 ); |
|
m_flVariationTime += WIND_VARIATION_UPDATE_TIME; |
|
} |
|
} |
|
|
|
|
|
|
|
//----------------------------------------------------------------------------- |
|
// Updates the wind sound |
|
//----------------------------------------------------------------------------- |
|
void CEnvWindShared::UpdateWindSound( float flTotalWindSpeed ) |
|
{ |
|
if (!g_pEffects->IsServer()) |
|
{ |
|
float flDuration = random->RandomFloat( 1.0f, 2.0f ); |
|
CSoundEnvelopeController &controller = CSoundEnvelopeController::GetController(); |
|
|
|
// FIXME: Tweak with these numbers |
|
float flNormalizedWindSpeed = flTotalWindSpeed / 150.0f; |
|
if (flNormalizedWindSpeed > 1.0f) |
|
flNormalizedWindSpeed = 1.0f; |
|
float flPitch = 120 * Bias( flNormalizedWindSpeed, 0.3f ) + 100; |
|
float flVolume = 0.3f * Bias( flNormalizedWindSpeed, 0.3f ) + 0.7f; |
|
controller.SoundChangePitch( m_pWindSound, flPitch, flDuration ); |
|
controller.SoundChangeVolume( m_pWindSound, flVolume, flDuration ); |
|
} |
|
} |
|
|
|
|
|
//----------------------------------------------------------------------------- |
|
// Updates the wind speed |
|
//----------------------------------------------------------------------------- |
|
|
|
#define WIND_ACCELERATION 150.0f // wind speed can accelerate this many units per second |
|
#define WIND_DECELERATION 15.0f // wind speed can decelerate this many units per second |
|
|
|
float CEnvWindShared::WindThink( float flTime ) |
|
{ |
|
// NOTE: This algorithm can be client-server neutal because we're using |
|
// the random number generator to generate *time* at which the wind changes. |
|
// We therefore need to structure the algorithm so that no matter the |
|
// frequency of calls to this function we produce the same wind speeds... |
|
|
|
ComputeWindVariation( flTime ); |
|
|
|
while (true) |
|
{ |
|
// First, simulate up to the next switch time... |
|
float flTimeToSwitch = m_flSwitchTime - m_flSimTime; |
|
float flMaxDeltaTime = flTime - m_flSimTime; |
|
|
|
bool bGotToSwitchTime = (flMaxDeltaTime > flTimeToSwitch); |
|
|
|
float flSimDeltaTime = bGotToSwitchTime ? flTimeToSwitch : flMaxDeltaTime; |
|
|
|
// Now that we've chosen |
|
// either ramp up, or sleep till change |
|
bool bReachedSteadyState = true; |
|
if ( m_flAveWindSpeed > m_flWindSpeed ) |
|
{ |
|
m_flWindSpeed += WIND_ACCELERATION * flSimDeltaTime; |
|
if (m_flWindSpeed > m_flAveWindSpeed) |
|
m_flWindSpeed = m_flAveWindSpeed; |
|
else |
|
bReachedSteadyState = false; |
|
} |
|
else if ( m_flAveWindSpeed < m_flWindSpeed ) |
|
{ |
|
m_flWindSpeed -= WIND_DECELERATION * flSimDeltaTime; |
|
if (m_flWindSpeed < m_flAveWindSpeed) |
|
m_flWindSpeed = m_flAveWindSpeed; |
|
else |
|
bReachedSteadyState = false; |
|
} |
|
|
|
// Update the sim time |
|
|
|
// If we didn't get to a switch point, then we're done simulating for now |
|
if (!bGotToSwitchTime) |
|
{ |
|
m_flSimTime = flTime; |
|
|
|
// We're about to exit, let's set the wind velocity... |
|
QAngle vecWindAngle( 0, m_iWindDir + m_flWindAngleVariation, 0 ); |
|
AngleVectors( vecWindAngle, &s_vecWindVelocity ); |
|
float flTotalWindSpeed = m_flWindSpeed * m_flWindSpeedVariation; |
|
s_vecWindVelocity *= flTotalWindSpeed; |
|
|
|
// If we reached a steady state, we don't need to be called until the switch time |
|
// Otherwise, we should be called immediately |
|
|
|
// FIXME: If we ever call this from prediction, we'll need |
|
// to only update the sound if it's a new time |
|
// Or, we'll need to update the sound elsewhere. |
|
// Update the sound.... |
|
// UpdateWindSound( flTotalWindSpeed ); |
|
|
|
// Always immediately call, the wind is forever varying |
|
return ( flTime + 0.01f ); |
|
} |
|
|
|
m_flSimTime = m_flSwitchTime; |
|
|
|
// Switch gusting state.. |
|
if( m_bGusting ) |
|
{ |
|
// wind is gusting, so return to normal wind |
|
m_flAveWindSpeed = m_Stream.RandomInt( m_iMinWind, m_iMaxWind ); |
|
|
|
// set up for another gust later |
|
m_bGusting = false; |
|
m_flSwitchTime += m_flMinGustDelay + m_Stream.RandomFloat( 0, m_flMaxGustDelay ); |
|
|
|
#ifndef CLIENT_DLL |
|
m_OnGustEnd.FireOutput( NULL, NULL ); |
|
#endif |
|
} |
|
else |
|
{ |
|
// time for a gust. |
|
m_flAveWindSpeed = m_Stream.RandomInt( m_iMinGust, m_iMaxGust ); |
|
|
|
// change wind direction, maybe a lot |
|
m_iWindDir = anglemod( m_iWindDir + m_Stream.RandomInt(-m_iGustDirChange, m_iGustDirChange) ); |
|
|
|
// set up to stop the gust in a short while |
|
m_bGusting = true; |
|
|
|
#ifndef CLIENT_DLL |
|
m_OnGustStart.FireOutput( NULL, NULL ); |
|
#endif |
|
|
|
// !!!HACKHACK - gust duration tied to the length of a particular wave file |
|
m_flSwitchTime += m_flGustDuration; |
|
} |
|
} |
|
} |
|
|
|
|
|
//----------------------------------------------------------------------------- |
|
// Method to reset windspeed.. |
|
//----------------------------------------------------------------------------- |
|
void ResetWindspeed() |
|
{ |
|
s_vecWindVelocity.Init( 0, 0, 0 ); |
|
} |
|
|
|
|
|
//----------------------------------------------------------------------------- |
|
// Method to sample the windspeed at a particular time |
|
//----------------------------------------------------------------------------- |
|
void GetWindspeedAtTime( float flTime, Vector &vecVelocity ) |
|
{ |
|
// For now, ignore history and time.. fix later when we use wind to affect |
|
// client-side prediction |
|
VectorCopy( s_vecWindVelocity, vecVelocity ); |
|
}
|
|
|