You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
728 lines
23 KiB
728 lines
23 KiB
// stb_dxt.h - v1.08b - DXT1/DXT5 compressor - public domain |
|
// original by fabian "ryg" giesen - ported to C by stb |
|
// use '#define STB_DXT_IMPLEMENTATION' before including to create the implementation |
|
// |
|
// USAGE: |
|
// call stb_compress_dxt_block() for every block (you must pad) |
|
// source should be a 4x4 block of RGBA data in row-major order; |
|
// A is ignored if you specify alpha=0; you can turn on dithering |
|
// and "high quality" using mode. |
|
// |
|
// version history: |
|
// v1.08 - (sbt) fix bug in dxt-with-alpha block |
|
// v1.07 - (stb) bc4; allow not using libc; add STB_DXT_STATIC |
|
// v1.06 - (stb) fix to known-broken 1.05 |
|
// v1.05 - (stb) support bc5/3dc (Arvids Kokins), use extern "C" in C++ (Pavel Krajcevski) |
|
// v1.04 - (ryg) default to no rounding bias for lerped colors (as per S3TC/DX10 spec); |
|
// single color match fix (allow for inexact color interpolation); |
|
// optimal DXT5 index finder; "high quality" mode that runs multiple refinement steps. |
|
// v1.03 - (stb) endianness support |
|
// v1.02 - (stb) fix alpha encoding bug |
|
// v1.01 - (stb) fix bug converting to RGB that messed up quality, thanks ryg & cbloom |
|
// v1.00 - (stb) first release |
|
// |
|
// contributors: |
|
// Kevin Schmidt (#defines for "freestanding" compilation) |
|
// github:ppiastucki (BC4 support) |
|
// |
|
// LICENSE |
|
// |
|
// See end of file for license information. |
|
|
|
#ifndef STB_INCLUDE_STB_DXT_H |
|
#define STB_INCLUDE_STB_DXT_H |
|
|
|
#ifdef __cplusplus |
|
extern "C" { |
|
#endif |
|
|
|
#ifdef STB_DXT_STATIC |
|
#define STBDDEF static |
|
#else |
|
#define STBDDEF extern |
|
#endif |
|
|
|
// compression mode (bitflags) |
|
#define STB_DXT_NORMAL 0 |
|
#define STB_DXT_DITHER 1 // use dithering. dubious win. never use for normal maps and the like! |
|
#define STB_DXT_HIGHQUAL 2 // high quality mode, does two refinement steps instead of 1. ~30-40% slower. |
|
|
|
STBDDEF void stb_compress_dxt_block(unsigned char *dest, const unsigned char *src_rgba_four_bytes_per_pixel, int alpha, int mode); |
|
STBDDEF void stb_compress_bc4_block(unsigned char *dest, const unsigned char *src_r_one_byte_per_pixel); |
|
STBDDEF void stb_compress_bc5_block(unsigned char *dest, const unsigned char *src_rg_two_byte_per_pixel); |
|
|
|
#define STB_COMPRESS_DXT_BLOCK |
|
|
|
#ifdef __cplusplus |
|
} |
|
#endif |
|
#endif // STB_INCLUDE_STB_DXT_H |
|
|
|
#ifdef STB_DXT_IMPLEMENTATION |
|
|
|
// configuration options for DXT encoder. set them in the project/makefile or just define |
|
// them at the top. |
|
|
|
// STB_DXT_USE_ROUNDING_BIAS |
|
// use a rounding bias during color interpolation. this is closer to what "ideal" |
|
// interpolation would do but doesn't match the S3TC/DX10 spec. old versions (pre-1.03) |
|
// implicitly had this turned on. |
|
// |
|
// in case you're targeting a specific type of hardware (e.g. console programmers): |
|
// NVidia and Intel GPUs (as of 2010) as well as DX9 ref use DXT decoders that are closer |
|
// to STB_DXT_USE_ROUNDING_BIAS. AMD/ATI, S3 and DX10 ref are closer to rounding with no bias. |
|
// you also see "(a*5 + b*3) / 8" on some old GPU designs. |
|
// #define STB_DXT_USE_ROUNDING_BIAS |
|
|
|
#include <stdlib.h> |
|
|
|
#if !defined(STBD_ABS) || !defined(STBI_FABS) |
|
#include <math.h> |
|
#endif |
|
|
|
#ifndef STBD_ABS |
|
#define STBD_ABS(i) abs(i) |
|
#endif |
|
|
|
#ifndef STBD_FABS |
|
#define STBD_FABS(x) fabs(x) |
|
#endif |
|
|
|
#ifndef STBD_MEMSET |
|
#include <string.h> |
|
#define STBD_MEMSET memset |
|
#endif |
|
|
|
static unsigned char stb__Expand5[32]; |
|
static unsigned char stb__Expand6[64]; |
|
static unsigned char stb__OMatch5[256][2]; |
|
static unsigned char stb__OMatch6[256][2]; |
|
static unsigned char stb__QuantRBTab[256+16]; |
|
static unsigned char stb__QuantGTab[256+16]; |
|
|
|
static int stb__Mul8Bit(int a, int b) |
|
{ |
|
int t = a*b + 128; |
|
return (t + (t >> 8)) >> 8; |
|
} |
|
|
|
static void stb__From16Bit(unsigned char *out, unsigned short v) |
|
{ |
|
int rv = (v & 0xf800) >> 11; |
|
int gv = (v & 0x07e0) >> 5; |
|
int bv = (v & 0x001f) >> 0; |
|
|
|
out[0] = stb__Expand5[rv]; |
|
out[1] = stb__Expand6[gv]; |
|
out[2] = stb__Expand5[bv]; |
|
out[3] = 0; |
|
} |
|
|
|
static unsigned short stb__As16Bit(int r, int g, int b) |
|
{ |
|
return (stb__Mul8Bit(r,31) << 11) + (stb__Mul8Bit(g,63) << 5) + stb__Mul8Bit(b,31); |
|
} |
|
|
|
// linear interpolation at 1/3 point between a and b, using desired rounding type |
|
static int stb__Lerp13(int a, int b) |
|
{ |
|
#ifdef STB_DXT_USE_ROUNDING_BIAS |
|
// with rounding bias |
|
return a + stb__Mul8Bit(b-a, 0x55); |
|
#else |
|
// without rounding bias |
|
// replace "/ 3" by "* 0xaaab) >> 17" if your compiler sucks or you really need every ounce of speed. |
|
return (2*a + b) / 3; |
|
#endif |
|
} |
|
|
|
// lerp RGB color |
|
static void stb__Lerp13RGB(unsigned char *out, unsigned char *p1, unsigned char *p2) |
|
{ |
|
out[0] = stb__Lerp13(p1[0], p2[0]); |
|
out[1] = stb__Lerp13(p1[1], p2[1]); |
|
out[2] = stb__Lerp13(p1[2], p2[2]); |
|
} |
|
|
|
/****************************************************************************/ |
|
|
|
// compute table to reproduce constant colors as accurately as possible |
|
static void stb__PrepareOptTable(unsigned char *Table,const unsigned char *expand,int size) |
|
{ |
|
int i,mn,mx; |
|
for (i=0;i<256;i++) { |
|
int bestErr = 256; |
|
for (mn=0;mn<size;mn++) { |
|
for (mx=0;mx<size;mx++) { |
|
int mine = expand[mn]; |
|
int maxe = expand[mx]; |
|
int err = STBD_ABS(stb__Lerp13(maxe, mine) - i); |
|
|
|
// DX10 spec says that interpolation must be within 3% of "correct" result, |
|
// add this as error term. (normally we'd expect a random distribution of |
|
// +-1.5% error, but nowhere in the spec does it say that the error has to be |
|
// unbiased - better safe than sorry). |
|
err += STBD_ABS(maxe - mine) * 3 / 100; |
|
|
|
if(err < bestErr) |
|
{ |
|
Table[i*2+0] = mx; |
|
Table[i*2+1] = mn; |
|
bestErr = err; |
|
} |
|
} |
|
} |
|
} |
|
} |
|
|
|
static void stb__EvalColors(unsigned char *color,unsigned short c0,unsigned short c1) |
|
{ |
|
stb__From16Bit(color+ 0, c0); |
|
stb__From16Bit(color+ 4, c1); |
|
stb__Lerp13RGB(color+ 8, color+0, color+4); |
|
stb__Lerp13RGB(color+12, color+4, color+0); |
|
} |
|
|
|
// Block dithering function. Simply dithers a block to 565 RGB. |
|
// (Floyd-Steinberg) |
|
static void stb__DitherBlock(unsigned char *dest, unsigned char *block) |
|
{ |
|
int err[8],*ep1 = err,*ep2 = err+4, *et; |
|
int ch,y; |
|
|
|
// process channels seperately |
|
for (ch=0; ch<3; ++ch) { |
|
unsigned char *bp = block+ch, *dp = dest+ch; |
|
unsigned char *quant = (ch == 1) ? stb__QuantGTab+8 : stb__QuantRBTab+8; |
|
STBD_MEMSET(err, 0, sizeof(err)); |
|
for(y=0; y<4; ++y) { |
|
dp[ 0] = quant[bp[ 0] + ((3*ep2[1] + 5*ep2[0]) >> 4)]; |
|
ep1[0] = bp[ 0] - dp[ 0]; |
|
dp[ 4] = quant[bp[ 4] + ((7*ep1[0] + 3*ep2[2] + 5*ep2[1] + ep2[0]) >> 4)]; |
|
ep1[1] = bp[ 4] - dp[ 4]; |
|
dp[ 8] = quant[bp[ 8] + ((7*ep1[1] + 3*ep2[3] + 5*ep2[2] + ep2[1]) >> 4)]; |
|
ep1[2] = bp[ 8] - dp[ 8]; |
|
dp[12] = quant[bp[12] + ((7*ep1[2] + 5*ep2[3] + ep2[2]) >> 4)]; |
|
ep1[3] = bp[12] - dp[12]; |
|
bp += 16; |
|
dp += 16; |
|
et = ep1, ep1 = ep2, ep2 = et; // swap |
|
} |
|
} |
|
} |
|
|
|
// The color matching function |
|
static unsigned int stb__MatchColorsBlock(unsigned char *block, unsigned char *color,int dither) |
|
{ |
|
unsigned int mask = 0; |
|
int dirr = color[0*4+0] - color[1*4+0]; |
|
int dirg = color[0*4+1] - color[1*4+1]; |
|
int dirb = color[0*4+2] - color[1*4+2]; |
|
int dots[16]; |
|
int stops[4]; |
|
int i; |
|
int c0Point, halfPoint, c3Point; |
|
|
|
for(i=0;i<16;i++) |
|
dots[i] = block[i*4+0]*dirr + block[i*4+1]*dirg + block[i*4+2]*dirb; |
|
|
|
for(i=0;i<4;i++) |
|
stops[i] = color[i*4+0]*dirr + color[i*4+1]*dirg + color[i*4+2]*dirb; |
|
|
|
// think of the colors as arranged on a line; project point onto that line, then choose |
|
// next color out of available ones. we compute the crossover points for "best color in top |
|
// half"/"best in bottom half" and then the same inside that subinterval. |
|
// |
|
// relying on this 1d approximation isn't always optimal in terms of euclidean distance, |
|
// but it's very close and a lot faster. |
|
// http://cbloomrants.blogspot.com/2008/12/12-08-08-dxtc-summary.html |
|
|
|
c0Point = (stops[1] + stops[3]) >> 1; |
|
halfPoint = (stops[3] + stops[2]) >> 1; |
|
c3Point = (stops[2] + stops[0]) >> 1; |
|
|
|
if(!dither) { |
|
// the version without dithering is straightforward |
|
for (i=15;i>=0;i--) { |
|
int dot = dots[i]; |
|
mask <<= 2; |
|
|
|
if(dot < halfPoint) |
|
mask |= (dot < c0Point) ? 1 : 3; |
|
else |
|
mask |= (dot < c3Point) ? 2 : 0; |
|
} |
|
} else { |
|
// with floyd-steinberg dithering |
|
int err[8],*ep1 = err,*ep2 = err+4; |
|
int *dp = dots, y; |
|
|
|
c0Point <<= 4; |
|
halfPoint <<= 4; |
|
c3Point <<= 4; |
|
for(i=0;i<8;i++) |
|
err[i] = 0; |
|
|
|
for(y=0;y<4;y++) |
|
{ |
|
int dot,lmask,step; |
|
|
|
dot = (dp[0] << 4) + (3*ep2[1] + 5*ep2[0]); |
|
if(dot < halfPoint) |
|
step = (dot < c0Point) ? 1 : 3; |
|
else |
|
step = (dot < c3Point) ? 2 : 0; |
|
ep1[0] = dp[0] - stops[step]; |
|
lmask = step; |
|
|
|
dot = (dp[1] << 4) + (7*ep1[0] + 3*ep2[2] + 5*ep2[1] + ep2[0]); |
|
if(dot < halfPoint) |
|
step = (dot < c0Point) ? 1 : 3; |
|
else |
|
step = (dot < c3Point) ? 2 : 0; |
|
ep1[1] = dp[1] - stops[step]; |
|
lmask |= step<<2; |
|
|
|
dot = (dp[2] << 4) + (7*ep1[1] + 3*ep2[3] + 5*ep2[2] + ep2[1]); |
|
if(dot < halfPoint) |
|
step = (dot < c0Point) ? 1 : 3; |
|
else |
|
step = (dot < c3Point) ? 2 : 0; |
|
ep1[2] = dp[2] - stops[step]; |
|
lmask |= step<<4; |
|
|
|
dot = (dp[3] << 4) + (7*ep1[2] + 5*ep2[3] + ep2[2]); |
|
if(dot < halfPoint) |
|
step = (dot < c0Point) ? 1 : 3; |
|
else |
|
step = (dot < c3Point) ? 2 : 0; |
|
ep1[3] = dp[3] - stops[step]; |
|
lmask |= step<<6; |
|
|
|
dp += 4; |
|
mask |= lmask << (y*8); |
|
{ int *et = ep1; ep1 = ep2; ep2 = et; } // swap |
|
} |
|
} |
|
|
|
return mask; |
|
} |
|
|
|
// The color optimization function. (Clever code, part 1) |
|
static void stb__OptimizeColorsBlock(unsigned char *block, unsigned short *pmax16, unsigned short *pmin16) |
|
{ |
|
int mind = 0x7fffffff,maxd = -0x7fffffff; |
|
unsigned char *minp, *maxp; |
|
double magn; |
|
int v_r,v_g,v_b; |
|
static const int nIterPower = 4; |
|
float covf[6],vfr,vfg,vfb; |
|
|
|
// determine color distribution |
|
int cov[6]; |
|
int mu[3],min[3],max[3]; |
|
int ch,i,iter; |
|
|
|
for(ch=0;ch<3;ch++) |
|
{ |
|
const unsigned char *bp = ((const unsigned char *) block) + ch; |
|
int muv,minv,maxv; |
|
|
|
muv = minv = maxv = bp[0]; |
|
for(i=4;i<64;i+=4) |
|
{ |
|
muv += bp[i]; |
|
if (bp[i] < minv) minv = bp[i]; |
|
else if (bp[i] > maxv) maxv = bp[i]; |
|
} |
|
|
|
mu[ch] = (muv + 8) >> 4; |
|
min[ch] = minv; |
|
max[ch] = maxv; |
|
} |
|
|
|
// determine covariance matrix |
|
for (i=0;i<6;i++) |
|
cov[i] = 0; |
|
|
|
for (i=0;i<16;i++) |
|
{ |
|
int r = block[i*4+0] - mu[0]; |
|
int g = block[i*4+1] - mu[1]; |
|
int b = block[i*4+2] - mu[2]; |
|
|
|
cov[0] += r*r; |
|
cov[1] += r*g; |
|
cov[2] += r*b; |
|
cov[3] += g*g; |
|
cov[4] += g*b; |
|
cov[5] += b*b; |
|
} |
|
|
|
// convert covariance matrix to float, find principal axis via power iter |
|
for(i=0;i<6;i++) |
|
covf[i] = cov[i] / 255.0f; |
|
|
|
vfr = (float) (max[0] - min[0]); |
|
vfg = (float) (max[1] - min[1]); |
|
vfb = (float) (max[2] - min[2]); |
|
|
|
for(iter=0;iter<nIterPower;iter++) |
|
{ |
|
float r = vfr*covf[0] + vfg*covf[1] + vfb*covf[2]; |
|
float g = vfr*covf[1] + vfg*covf[3] + vfb*covf[4]; |
|
float b = vfr*covf[2] + vfg*covf[4] + vfb*covf[5]; |
|
|
|
vfr = r; |
|
vfg = g; |
|
vfb = b; |
|
} |
|
|
|
magn = STBD_FABS(vfr); |
|
if (STBD_FABS(vfg) > magn) magn = STBD_FABS(vfg); |
|
if (STBD_FABS(vfb) > magn) magn = STBD_FABS(vfb); |
|
|
|
if(magn < 4.0f) { // too small, default to luminance |
|
v_r = 299; // JPEG YCbCr luma coefs, scaled by 1000. |
|
v_g = 587; |
|
v_b = 114; |
|
} else { |
|
magn = 512.0 / magn; |
|
v_r = (int) (vfr * magn); |
|
v_g = (int) (vfg * magn); |
|
v_b = (int) (vfb * magn); |
|
} |
|
|
|
// Pick colors at extreme points |
|
for(i=0;i<16;i++) |
|
{ |
|
int dot = block[i*4+0]*v_r + block[i*4+1]*v_g + block[i*4+2]*v_b; |
|
|
|
if (dot < mind) { |
|
mind = dot; |
|
minp = block+i*4; |
|
} |
|
|
|
if (dot > maxd) { |
|
maxd = dot; |
|
maxp = block+i*4; |
|
} |
|
} |
|
|
|
*pmax16 = stb__As16Bit(maxp[0],maxp[1],maxp[2]); |
|
*pmin16 = stb__As16Bit(minp[0],minp[1],minp[2]); |
|
} |
|
|
|
static int stb__sclamp(float y, int p0, int p1) |
|
{ |
|
int x = (int) y; |
|
if (x < p0) return p0; |
|
if (x > p1) return p1; |
|
return x; |
|
} |
|
|
|
// The refinement function. (Clever code, part 2) |
|
// Tries to optimize colors to suit block contents better. |
|
// (By solving a least squares system via normal equations+Cramer's rule) |
|
static int stb__RefineBlock(unsigned char *block, unsigned short *pmax16, unsigned short *pmin16, unsigned int mask) |
|
{ |
|
static const int w1Tab[4] = { 3,0,2,1 }; |
|
static const int prods[4] = { 0x090000,0x000900,0x040102,0x010402 }; |
|
// ^some magic to save a lot of multiplies in the accumulating loop... |
|
// (precomputed products of weights for least squares system, accumulated inside one 32-bit register) |
|
|
|
float frb,fg; |
|
unsigned short oldMin, oldMax, min16, max16; |
|
int i, akku = 0, xx,xy,yy; |
|
int At1_r,At1_g,At1_b; |
|
int At2_r,At2_g,At2_b; |
|
unsigned int cm = mask; |
|
|
|
oldMin = *pmin16; |
|
oldMax = *pmax16; |
|
|
|
if((mask ^ (mask<<2)) < 4) // all pixels have the same index? |
|
{ |
|
// yes, linear system would be singular; solve using optimal |
|
// single-color match on average color |
|
int r = 8, g = 8, b = 8; |
|
for (i=0;i<16;++i) { |
|
r += block[i*4+0]; |
|
g += block[i*4+1]; |
|
b += block[i*4+2]; |
|
} |
|
|
|
r >>= 4; g >>= 4; b >>= 4; |
|
|
|
max16 = (stb__OMatch5[r][0]<<11) | (stb__OMatch6[g][0]<<5) | stb__OMatch5[b][0]; |
|
min16 = (stb__OMatch5[r][1]<<11) | (stb__OMatch6[g][1]<<5) | stb__OMatch5[b][1]; |
|
} else { |
|
At1_r = At1_g = At1_b = 0; |
|
At2_r = At2_g = At2_b = 0; |
|
for (i=0;i<16;++i,cm>>=2) { |
|
int step = cm&3; |
|
int w1 = w1Tab[step]; |
|
int r = block[i*4+0]; |
|
int g = block[i*4+1]; |
|
int b = block[i*4+2]; |
|
|
|
akku += prods[step]; |
|
At1_r += w1*r; |
|
At1_g += w1*g; |
|
At1_b += w1*b; |
|
At2_r += r; |
|
At2_g += g; |
|
At2_b += b; |
|
} |
|
|
|
At2_r = 3*At2_r - At1_r; |
|
At2_g = 3*At2_g - At1_g; |
|
At2_b = 3*At2_b - At1_b; |
|
|
|
// extract solutions and decide solvability |
|
xx = akku >> 16; |
|
yy = (akku >> 8) & 0xff; |
|
xy = (akku >> 0) & 0xff; |
|
|
|
frb = 3.0f * 31.0f / 255.0f / (xx*yy - xy*xy); |
|
fg = frb * 63.0f / 31.0f; |
|
|
|
// solve. |
|
max16 = stb__sclamp((At1_r*yy - At2_r*xy)*frb+0.5f,0,31) << 11; |
|
max16 |= stb__sclamp((At1_g*yy - At2_g*xy)*fg +0.5f,0,63) << 5; |
|
max16 |= stb__sclamp((At1_b*yy - At2_b*xy)*frb+0.5f,0,31) << 0; |
|
|
|
min16 = stb__sclamp((At2_r*xx - At1_r*xy)*frb+0.5f,0,31) << 11; |
|
min16 |= stb__sclamp((At2_g*xx - At1_g*xy)*fg +0.5f,0,63) << 5; |
|
min16 |= stb__sclamp((At2_b*xx - At1_b*xy)*frb+0.5f,0,31) << 0; |
|
} |
|
|
|
*pmin16 = min16; |
|
*pmax16 = max16; |
|
return oldMin != min16 || oldMax != max16; |
|
} |
|
|
|
// Color block compression |
|
static void stb__CompressColorBlock(unsigned char *dest, unsigned char *block, int mode) |
|
{ |
|
unsigned int mask; |
|
int i; |
|
int dither; |
|
int refinecount; |
|
unsigned short max16, min16; |
|
unsigned char dblock[16*4],color[4*4]; |
|
|
|
dither = mode & STB_DXT_DITHER; |
|
refinecount = (mode & STB_DXT_HIGHQUAL) ? 2 : 1; |
|
|
|
// check if block is constant |
|
for (i=1;i<16;i++) |
|
if (((unsigned int *) block)[i] != ((unsigned int *) block)[0]) |
|
break; |
|
|
|
if(i == 16) { // constant color |
|
int r = block[0], g = block[1], b = block[2]; |
|
mask = 0xaaaaaaaa; |
|
max16 = (stb__OMatch5[r][0]<<11) | (stb__OMatch6[g][0]<<5) | stb__OMatch5[b][0]; |
|
min16 = (stb__OMatch5[r][1]<<11) | (stb__OMatch6[g][1]<<5) | stb__OMatch5[b][1]; |
|
} else { |
|
// first step: compute dithered version for PCA if desired |
|
if(dither) |
|
stb__DitherBlock(dblock,block); |
|
|
|
// second step: pca+map along principal axis |
|
stb__OptimizeColorsBlock(dither ? dblock : block,&max16,&min16); |
|
if (max16 != min16) { |
|
stb__EvalColors(color,max16,min16); |
|
mask = stb__MatchColorsBlock(block,color,dither); |
|
} else |
|
mask = 0; |
|
|
|
// third step: refine (multiple times if requested) |
|
for (i=0;i<refinecount;i++) { |
|
unsigned int lastmask = mask; |
|
|
|
if (stb__RefineBlock(dither ? dblock : block,&max16,&min16,mask)) { |
|
if (max16 != min16) { |
|
stb__EvalColors(color,max16,min16); |
|
mask = stb__MatchColorsBlock(block,color,dither); |
|
} else { |
|
mask = 0; |
|
break; |
|
} |
|
} |
|
|
|
if(mask == lastmask) |
|
break; |
|
} |
|
} |
|
|
|
// write the color block |
|
if(max16 < min16) |
|
{ |
|
unsigned short t = min16; |
|
min16 = max16; |
|
max16 = t; |
|
mask ^= 0x55555555; |
|
} |
|
|
|
dest[0] = (unsigned char) (max16); |
|
dest[1] = (unsigned char) (max16 >> 8); |
|
dest[2] = (unsigned char) (min16); |
|
dest[3] = (unsigned char) (min16 >> 8); |
|
dest[4] = (unsigned char) (mask); |
|
dest[5] = (unsigned char) (mask >> 8); |
|
dest[6] = (unsigned char) (mask >> 16); |
|
dest[7] = (unsigned char) (mask >> 24); |
|
} |
|
|
|
// Alpha block compression (this is easy for a change) |
|
static void stb__CompressAlphaBlock(unsigned char *dest,unsigned char *src, int stride) |
|
{ |
|
int i,dist,bias,dist4,dist2,bits,mask; |
|
|
|
// find min/max color |
|
int mn,mx; |
|
mn = mx = src[0]; |
|
|
|
for (i=1;i<16;i++) |
|
{ |
|
if (src[i*stride] < mn) mn = src[i*stride]; |
|
else if (src[i*stride] > mx) mx = src[i*stride]; |
|
} |
|
|
|
// encode them |
|
((unsigned char *)dest)[0] = mx; |
|
((unsigned char *)dest)[1] = mn; |
|
dest += 2; |
|
|
|
// determine bias and emit color indices |
|
// given the choice of mx/mn, these indices are optimal: |
|
// http://fgiesen.wordpress.com/2009/12/15/dxt5-alpha-block-index-determination/ |
|
dist = mx-mn; |
|
dist4 = dist*4; |
|
dist2 = dist*2; |
|
bias = (dist < 8) ? (dist - 1) : (dist/2 + 2); |
|
bias -= mn * 7; |
|
bits = 0,mask=0; |
|
|
|
for (i=0;i<16;i++) { |
|
int a = src[i*stride]*7 + bias; |
|
int ind,t; |
|
|
|
// select index. this is a "linear scale" lerp factor between 0 (val=min) and 7 (val=max). |
|
t = (a >= dist4) ? -1 : 0; ind = t & 4; a -= dist4 & t; |
|
t = (a >= dist2) ? -1 : 0; ind += t & 2; a -= dist2 & t; |
|
ind += (a >= dist); |
|
|
|
// turn linear scale into DXT index (0/1 are extremal pts) |
|
ind = -ind & 7; |
|
ind ^= (2 > ind); |
|
|
|
// write index |
|
mask |= ind << bits; |
|
if((bits += 3) >= 8) { |
|
*dest++ = mask; |
|
mask >>= 8; |
|
bits -= 8; |
|
} |
|
} |
|
} |
|
|
|
static void stb__InitDXT() |
|
{ |
|
int i; |
|
for(i=0;i<32;i++) |
|
stb__Expand5[i] = (i<<3)|(i>>2); |
|
|
|
for(i=0;i<64;i++) |
|
stb__Expand6[i] = (i<<2)|(i>>4); |
|
|
|
for(i=0;i<256+16;i++) |
|
{ |
|
int v = i-8 < 0 ? 0 : i-8 > 255 ? 255 : i-8; |
|
stb__QuantRBTab[i] = stb__Expand5[stb__Mul8Bit(v,31)]; |
|
stb__QuantGTab[i] = stb__Expand6[stb__Mul8Bit(v,63)]; |
|
} |
|
|
|
stb__PrepareOptTable(&stb__OMatch5[0][0],stb__Expand5,32); |
|
stb__PrepareOptTable(&stb__OMatch6[0][0],stb__Expand6,64); |
|
} |
|
|
|
void stb_compress_dxt_block(unsigned char *dest, const unsigned char *src, int alpha, int mode) |
|
{ |
|
unsigned char data[16][4]; |
|
static int init=1; |
|
if (init) { |
|
stb__InitDXT(); |
|
init=0; |
|
} |
|
|
|
if (alpha) { |
|
int i; |
|
stb__CompressAlphaBlock(dest,(unsigned char*) src+3, 4); |
|
dest += 8; |
|
// make a new copy of the data in which alpha is opaque, |
|
// because code uses a fast test for color constancy |
|
memcpy(data, src, 4*16); |
|
for (i=0; i < 16; ++i) |
|
data[i][3] = 255; |
|
src = &data[0][0]; |
|
} |
|
|
|
stb__CompressColorBlock(dest,(unsigned char*) src,mode); |
|
} |
|
|
|
void stb_compress_bc4_block(unsigned char *dest, const unsigned char *src) |
|
{ |
|
stb__CompressAlphaBlock(dest,(unsigned char*) src, 1); |
|
} |
|
|
|
void stb_compress_bc5_block(unsigned char *dest, const unsigned char *src) |
|
{ |
|
stb__CompressAlphaBlock(dest,(unsigned char*) src,2); |
|
stb__CompressAlphaBlock(dest + 8,(unsigned char*) src+1,2); |
|
} |
|
#endif // STB_DXT_IMPLEMENTATION |
|
|
|
/* |
|
------------------------------------------------------------------------------ |
|
This software is available under 2 licenses -- choose whichever you prefer. |
|
------------------------------------------------------------------------------ |
|
ALTERNATIVE A - MIT License |
|
Copyright (c) 2017 Sean Barrett |
|
Permission is hereby granted, free of charge, to any person obtaining a copy of |
|
this software and associated documentation files (the "Software"), to deal in |
|
the Software without restriction, including without limitation the rights to |
|
use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies |
|
of the Software, and to permit persons to whom the Software is furnished to do |
|
so, subject to the following conditions: |
|
The above copyright notice and this permission notice shall be included in all |
|
copies or substantial portions of the Software. |
|
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
|
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
|
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE |
|
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER |
|
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, |
|
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE |
|
SOFTWARE. |
|
------------------------------------------------------------------------------ |
|
ALTERNATIVE B - Public Domain (www.unlicense.org) |
|
This is free and unencumbered software released into the public domain. |
|
Anyone is free to copy, modify, publish, use, compile, sell, or distribute this |
|
software, either in source code form or as a compiled binary, for any purpose, |
|
commercial or non-commercial, and by any means. |
|
In jurisdictions that recognize copyright laws, the author or authors of this |
|
software dedicate any and all copyright interest in the software to the public |
|
domain. We make this dedication for the benefit of the public at large and to |
|
the detriment of our heirs and successors. We intend this dedication to be an |
|
overt act of relinquishment in perpetuity of all present and future rights to |
|
this software under copyright law. |
|
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
|
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
|
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE |
|
AUTHORS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN |
|
ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION |
|
WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. |
|
------------------------------------------------------------------------------ |
|
*/
|
|
|