You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
1045 lines
36 KiB
1045 lines
36 KiB
// stb_connected_components - v0.95 - public domain connected components on grids |
|
// http://github.com/nothings/stb |
|
// |
|
// Finds connected components on 2D grids for testing reachability between |
|
// two points, with fast updates when changing reachability (e.g. on one machine |
|
// it was typically 0.2ms w/ 1024x1024 grid). Each grid square must be "open" or |
|
// "closed" (traversable or untraversable), and grid squares are only connected |
|
// to their orthogonal neighbors, not diagonally. |
|
// |
|
// In one source file, create the implementation by doing something like this: |
|
// |
|
// #define STBCC_GRID_COUNT_X_LOG2 10 |
|
// #define STBCC_GRID_COUNT_Y_LOG2 10 |
|
// #define STB_CONNECTED_COMPONENTS_IMPLEMENTATION |
|
// #include "stb_connected_components.h" |
|
// |
|
// The above creates an implementation that can run on maps up to 1024x1024. |
|
// Map sizes must be a multiple of (1<<(LOG2/2)) on each axis (e.g. 32 if LOG2=10, |
|
// 16 if LOG2=8, etc.) (You can just pad your map with untraversable space.) |
|
// |
|
// MEMORY USAGE |
|
// |
|
// Uses about 6-7 bytes per grid square (e.g. 7MB for a 1024x1024 grid). |
|
// Uses a single worst-case allocation which you pass in. |
|
// |
|
// PERFORMANCE |
|
// |
|
// On a core i7-2700K at 3.5 Ghz, for a particular 1024x1024 map (map_03.png): |
|
// |
|
// Creating map : 44.85 ms |
|
// Making one square traversable: 0.27 ms (average over 29,448 calls) |
|
// Making one square untraversable: 0.23 ms (average over 30,123 calls) |
|
// Reachability query: 0.00001 ms (average over 4,000,000 calls) |
|
// |
|
// On non-degenerate maps update time is O(N^0.5), but on degenerate maps like |
|
// checkerboards or 50% random, update time is O(N^0.75) (~2ms on above machine). |
|
// |
|
// CHANGELOG |
|
// |
|
// 0.95 (2016-10-16) Bugfix if multiple clumps in one cluster connect to same clump in another |
|
// 0.94 (2016-04-17) Bugfix & optimize worst case (checkerboard & random) |
|
// 0.93 (2016-04-16) Reduce memory by 10x for 1Kx1K map; small speedup |
|
// 0.92 (2016-04-16) Compute sqrt(N) cluster size by default |
|
// 0.91 (2016-04-15) Initial release |
|
// |
|
// TODO: |
|
// - better API documentation |
|
// - more comments |
|
// - try re-integrating naive algorithm & compare performance |
|
// - more optimized batching (current approach still recomputes local clumps many times) |
|
// - function for setting a grid of squares at once (just use batching) |
|
// |
|
// LICENSE |
|
// |
|
// See end of file for license information. |
|
// |
|
// ALGORITHM |
|
// |
|
// The NxN grid map is split into sqrt(N) x sqrt(N) blocks called |
|
// "clusters". Each cluster independently computes a set of connected |
|
// components within that cluster (ignoring all connectivity out of |
|
// that cluster) using a union-find disjoint set forest. This produces a bunch |
|
// of locally connected components called "clumps". Each clump is (a) connected |
|
// within its cluster, (b) does not directly connect to any other clumps in the |
|
// cluster (though it may connect to them by paths that lead outside the cluster, |
|
// but those are ignored at this step), and (c) maintains an adjacency list of |
|
// all clumps in adjacent clusters that it _is_ connected to. Then a second |
|
// union-find disjoint set forest is used to compute connected clumps |
|
// globally, across the whole map. Reachability is then computed by |
|
// finding which clump each input point belongs to, and checking whether |
|
// those clumps are in the same "global" connected component. |
|
// |
|
// The above data structure can be updated efficiently; on a change |
|
// of a single grid square on the map, only one cluster changes its |
|
// purely-local state, so only one cluster needs its clumps fully |
|
// recomputed. Clumps in adjacent clusters need their adjacency lists |
|
// updated: first to remove all references to the old clumps in the |
|
// rebuilt cluster, then to add new references to the new clumps. Both |
|
// of these operations can use the existing "find which clump each input |
|
// point belongs to" query to compute that adjacency information rapidly. |
|
|
|
#ifndef INCLUDE_STB_CONNECTED_COMPONENTS_H |
|
#define INCLUDE_STB_CONNECTED_COMPONENTS_H |
|
|
|
#include <stdlib.h> |
|
|
|
typedef struct st_stbcc_grid stbcc_grid; |
|
|
|
#ifdef __cplusplus |
|
extern "C" { |
|
#endif |
|
|
|
////////////////////////////////////////////////////////////////////////////////////////// |
|
// |
|
// initialization |
|
// |
|
|
|
// you allocate the grid data structure to this size (note that it will be very big!!!) |
|
extern size_t stbcc_grid_sizeof(void); |
|
|
|
// initialize the grid, value of map[] is 0 = traversable, non-0 is solid |
|
extern void stbcc_init_grid(stbcc_grid *g, unsigned char *map, int w, int h); |
|
|
|
|
|
////////////////////////////////////////////////////////////////////////////////////////// |
|
// |
|
// main functionality |
|
// |
|
|
|
// update a grid square state, 0 = traversable, non-0 is solid |
|
// i can add a batch-update if it's needed |
|
extern void stbcc_update_grid(stbcc_grid *g, int x, int y, int solid); |
|
|
|
// query if two grid squares are reachable from each other |
|
extern int stbcc_query_grid_node_connection(stbcc_grid *g, int x1, int y1, int x2, int y2); |
|
|
|
|
|
////////////////////////////////////////////////////////////////////////////////////////// |
|
// |
|
// bonus functions |
|
// |
|
|
|
// wrap multiple stbcc_update_grid calls in these function to compute |
|
// multiple updates more efficiently; cannot make queries inside batch |
|
extern void stbcc_update_batch_begin(stbcc_grid *g); |
|
extern void stbcc_update_batch_end(stbcc_grid *g); |
|
|
|
// query the grid data structure for whether a given square is open or not |
|
extern int stbcc_query_grid_open(stbcc_grid *g, int x, int y); |
|
|
|
// get a unique id for the connected component this is in; it's not necessarily |
|
// small, you'll need a hash table or something to remap it (or just use |
|
extern unsigned int stbcc_get_unique_id(stbcc_grid *g, int x, int y); |
|
#define STBCC_NULL_UNIQUE_ID 0xffffffff // returned for closed map squares |
|
|
|
#ifdef __cplusplus |
|
} |
|
#endif |
|
|
|
#endif // INCLUDE_STB_CONNECTED_COMPONENTS_H |
|
|
|
#ifdef STB_CONNECTED_COMPONENTS_IMPLEMENTATION |
|
|
|
#include <assert.h> |
|
#include <string.h> // memset |
|
|
|
#if !defined(STBCC_GRID_COUNT_X_LOG2) || !defined(STBCC_GRID_COUNT_Y_LOG2) |
|
#error "You must define STBCC_GRID_COUNT_X_LOG2 and STBCC_GRID_COUNT_Y_LOG2 to define the max grid supported." |
|
#endif |
|
|
|
#define STBCC__GRID_COUNT_X (1 << STBCC_GRID_COUNT_X_LOG2) |
|
#define STBCC__GRID_COUNT_Y (1 << STBCC_GRID_COUNT_Y_LOG2) |
|
|
|
#define STBCC__MAP_STRIDE (1 << (STBCC_GRID_COUNT_X_LOG2-3)) |
|
|
|
#ifndef STBCC_CLUSTER_SIZE_X_LOG2 |
|
#define STBCC_CLUSTER_SIZE_X_LOG2 (STBCC_GRID_COUNT_X_LOG2/2) // log2(sqrt(2^N)) = 1/2 * log2(2^N)) = 1/2 * N |
|
#if STBCC_CLUSTER_SIZE_X_LOG2 > 6 |
|
#undef STBCC_CLUSTER_SIZE_X_LOG2 |
|
#define STBCC_CLUSTER_SIZE_X_LOG2 6 |
|
#endif |
|
#endif |
|
|
|
#ifndef STBCC_CLUSTER_SIZE_Y_LOG2 |
|
#define STBCC_CLUSTER_SIZE_Y_LOG2 (STBCC_GRID_COUNT_Y_LOG2/2) |
|
#if STBCC_CLUSTER_SIZE_Y_LOG2 > 6 |
|
#undef STBCC_CLUSTER_SIZE_Y_LOG2 |
|
#define STBCC_CLUSTER_SIZE_Y_LOG2 6 |
|
#endif |
|
#endif |
|
|
|
#define STBCC__CLUSTER_SIZE_X (1 << STBCC_CLUSTER_SIZE_X_LOG2) |
|
#define STBCC__CLUSTER_SIZE_Y (1 << STBCC_CLUSTER_SIZE_Y_LOG2) |
|
|
|
#define STBCC__CLUSTER_COUNT_X_LOG2 (STBCC_GRID_COUNT_X_LOG2 - STBCC_CLUSTER_SIZE_X_LOG2) |
|
#define STBCC__CLUSTER_COUNT_Y_LOG2 (STBCC_GRID_COUNT_Y_LOG2 - STBCC_CLUSTER_SIZE_Y_LOG2) |
|
|
|
#define STBCC__CLUSTER_COUNT_X (1 << STBCC__CLUSTER_COUNT_X_LOG2) |
|
#define STBCC__CLUSTER_COUNT_Y (1 << STBCC__CLUSTER_COUNT_Y_LOG2) |
|
|
|
#if STBCC__CLUSTER_SIZE_X >= STBCC__GRID_COUNT_X || STBCC__CLUSTER_SIZE_Y >= STBCC__GRID_COUNT_Y |
|
#error "STBCC_CLUSTER_SIZE_X/Y_LOG2 must be smaller than STBCC_GRID_COUNT_X/Y_LOG2" |
|
#endif |
|
|
|
// worst case # of clumps per cluster |
|
#define STBCC__MAX_CLUMPS_PER_CLUSTER_LOG2 (STBCC_CLUSTER_SIZE_X_LOG2 + STBCC_CLUSTER_SIZE_Y_LOG2-1) |
|
#define STBCC__MAX_CLUMPS_PER_CLUSTER (1 << STBCC__MAX_CLUMPS_PER_CLUSTER_LOG2) |
|
#define STBCC__MAX_CLUMPS (STBCC__MAX_CLUMPS_PER_CLUSTER * STBCC__CLUSTER_COUNT_X * STBCC__CLUSTER_COUNT_Y) |
|
#define STBCC__NULL_CLUMPID STBCC__MAX_CLUMPS_PER_CLUSTER |
|
|
|
#define STBCC__CLUSTER_X_FOR_COORD_X(x) ((x) >> STBCC_CLUSTER_SIZE_X_LOG2) |
|
#define STBCC__CLUSTER_Y_FOR_COORD_Y(y) ((y) >> STBCC_CLUSTER_SIZE_Y_LOG2) |
|
|
|
#define STBCC__MAP_BYTE_MASK(x,y) (1 << ((x) & 7)) |
|
#define STBCC__MAP_BYTE(g,x,y) ((g)->map[y][(x) >> 3]) |
|
#define STBCC__MAP_OPEN(g,x,y) (STBCC__MAP_BYTE(g,x,y) & STBCC__MAP_BYTE_MASK(x,y)) |
|
|
|
typedef unsigned short stbcc__clumpid; |
|
typedef unsigned char stbcc__verify_max_clumps[STBCC__MAX_CLUMPS_PER_CLUSTER < (1 << (8*sizeof(stbcc__clumpid))) ? 1 : -1]; |
|
|
|
#define STBCC__MAX_EXITS_PER_CLUSTER (STBCC__CLUSTER_SIZE_X + STBCC__CLUSTER_SIZE_Y) // 64 for 32x32 |
|
#define STBCC__MAX_EXITS_PER_CLUMP (STBCC__CLUSTER_SIZE_X + STBCC__CLUSTER_SIZE_Y) // 64 for 32x32 |
|
#define STBCC__MAX_EDGE_CLUMPS_PER_CLUSTER (STBCC__MAX_EXITS_PER_CLUMP) |
|
|
|
// 2^19 * 2^6 => 2^25 exits => 2^26 => 64MB for 1024x1024 |
|
|
|
// Logic for above on 4x4 grid: |
|
// |
|
// Many clumps: One clump: |
|
// + + + + |
|
// +X.X. +XX.X+ |
|
// .X.X+ .XXX |
|
// +X.X. XXX. |
|
// .X.X+ +X.XX+ |
|
// + + + + |
|
// |
|
// 8 exits either way |
|
|
|
typedef unsigned char stbcc__verify_max_exits[STBCC__MAX_EXITS_PER_CLUMP <= 256]; |
|
|
|
typedef struct |
|
{ |
|
unsigned short clump_index:12; |
|
signed short cluster_dx:2; |
|
signed short cluster_dy:2; |
|
} stbcc__relative_clumpid; |
|
|
|
typedef union |
|
{ |
|
struct { |
|
unsigned int clump_index:12; |
|
unsigned int cluster_x:10; |
|
unsigned int cluster_y:10; |
|
} f; |
|
unsigned int c; |
|
} stbcc__global_clumpid; |
|
|
|
// rebuilt cluster 3,4 |
|
|
|
// what changes in cluster 2,4 |
|
|
|
typedef struct |
|
{ |
|
stbcc__global_clumpid global_label; // 4 |
|
unsigned char num_adjacent; // 1 |
|
unsigned char max_adjacent; // 1 |
|
unsigned char adjacent_clump_list_index; // 1 |
|
unsigned char reserved; |
|
} stbcc__clump; // 8 |
|
|
|
#define STBCC__CLUSTER_ADJACENCY_COUNT (STBCC__MAX_EXITS_PER_CLUSTER*2) |
|
typedef struct |
|
{ |
|
short num_clumps; |
|
unsigned char num_edge_clumps; |
|
unsigned char rebuild_adjacency; |
|
stbcc__clump clump[STBCC__MAX_CLUMPS_PER_CLUSTER]; // 8 * 2^9 = 4KB |
|
stbcc__relative_clumpid adjacency_storage[STBCC__CLUSTER_ADJACENCY_COUNT]; // 256 bytes |
|
} stbcc__cluster; |
|
|
|
struct st_stbcc_grid |
|
{ |
|
int w,h,cw,ch; |
|
int in_batched_update; |
|
//unsigned char cluster_dirty[STBCC__CLUSTER_COUNT_Y][STBCC__CLUSTER_COUNT_X]; // could bitpack, but: 1K x 1K => 1KB |
|
unsigned char map[STBCC__GRID_COUNT_Y][STBCC__MAP_STRIDE]; // 1K x 1K => 1K x 128 => 128KB |
|
stbcc__clumpid clump_for_node[STBCC__GRID_COUNT_Y][STBCC__GRID_COUNT_X]; // 1K x 1K x 2 = 2MB |
|
stbcc__cluster cluster[STBCC__CLUSTER_COUNT_Y][STBCC__CLUSTER_COUNT_X]; // 1K x 4.5KB = 4.5MB |
|
}; |
|
|
|
int stbcc_query_grid_node_connection(stbcc_grid *g, int x1, int y1, int x2, int y2) |
|
{ |
|
stbcc__global_clumpid label1, label2; |
|
stbcc__clumpid c1 = g->clump_for_node[y1][x1]; |
|
stbcc__clumpid c2 = g->clump_for_node[y2][x2]; |
|
int cx1 = STBCC__CLUSTER_X_FOR_COORD_X(x1); |
|
int cy1 = STBCC__CLUSTER_Y_FOR_COORD_Y(y1); |
|
int cx2 = STBCC__CLUSTER_X_FOR_COORD_X(x2); |
|
int cy2 = STBCC__CLUSTER_Y_FOR_COORD_Y(y2); |
|
assert(!g->in_batched_update); |
|
if (c1 == STBCC__NULL_CLUMPID || c2 == STBCC__NULL_CLUMPID) |
|
return 0; |
|
label1 = g->cluster[cy1][cx1].clump[c1].global_label; |
|
label2 = g->cluster[cy2][cx2].clump[c2].global_label; |
|
if (label1.c == label2.c) |
|
return 1; |
|
return 0; |
|
} |
|
|
|
int stbcc_query_grid_open(stbcc_grid *g, int x, int y) |
|
{ |
|
return STBCC__MAP_OPEN(g, x, y) != 0; |
|
} |
|
|
|
unsigned int stbcc_get_unique_id(stbcc_grid *g, int x, int y) |
|
{ |
|
stbcc__clumpid c = g->clump_for_node[y][x]; |
|
int cx = STBCC__CLUSTER_X_FOR_COORD_X(x); |
|
int cy = STBCC__CLUSTER_Y_FOR_COORD_Y(y); |
|
assert(!g->in_batched_update); |
|
if (c == STBCC__NULL_CLUMPID) return STBCC_NULL_UNIQUE_ID; |
|
return g->cluster[cy][cx].clump[c].global_label.c; |
|
} |
|
|
|
typedef struct |
|
{ |
|
unsigned char x,y; |
|
} stbcc__tinypoint; |
|
|
|
typedef struct |
|
{ |
|
stbcc__tinypoint parent[STBCC__CLUSTER_SIZE_Y][STBCC__CLUSTER_SIZE_X]; // 32x32 => 2KB |
|
stbcc__clumpid label[STBCC__CLUSTER_SIZE_Y][STBCC__CLUSTER_SIZE_X]; |
|
} stbcc__cluster_build_info; |
|
|
|
static void stbcc__build_clumps_for_cluster(stbcc_grid *g, int cx, int cy); |
|
static void stbcc__remove_connections_to_adjacent_cluster(stbcc_grid *g, int cx, int cy, int dx, int dy); |
|
static void stbcc__add_connections_to_adjacent_cluster(stbcc_grid *g, int cx, int cy, int dx, int dy); |
|
|
|
static stbcc__global_clumpid stbcc__clump_find(stbcc_grid *g, stbcc__global_clumpid n) |
|
{ |
|
stbcc__global_clumpid q; |
|
stbcc__clump *c = &g->cluster[n.f.cluster_y][n.f.cluster_x].clump[n.f.clump_index]; |
|
|
|
if (c->global_label.c == n.c) |
|
return n; |
|
|
|
q = stbcc__clump_find(g, c->global_label); |
|
c->global_label = q; |
|
return q; |
|
} |
|
|
|
typedef struct |
|
{ |
|
unsigned int cluster_x; |
|
unsigned int cluster_y; |
|
unsigned int clump_index; |
|
} stbcc__unpacked_clumpid; |
|
|
|
static void stbcc__clump_union(stbcc_grid *g, stbcc__unpacked_clumpid m, int x, int y, int idx) |
|
{ |
|
stbcc__clump *mc = &g->cluster[m.cluster_y][m.cluster_x].clump[m.clump_index]; |
|
stbcc__clump *nc = &g->cluster[y][x].clump[idx]; |
|
stbcc__global_clumpid mp = stbcc__clump_find(g, mc->global_label); |
|
stbcc__global_clumpid np = stbcc__clump_find(g, nc->global_label); |
|
|
|
if (mp.c == np.c) |
|
return; |
|
|
|
g->cluster[mp.f.cluster_y][mp.f.cluster_x].clump[mp.f.clump_index].global_label = np; |
|
} |
|
|
|
static void stbcc__build_connected_components_for_clumps(stbcc_grid *g) |
|
{ |
|
int i,j,k,h; |
|
|
|
for (j=0; j < STBCC__CLUSTER_COUNT_Y; ++j) { |
|
for (i=0; i < STBCC__CLUSTER_COUNT_X; ++i) { |
|
stbcc__cluster *cluster = &g->cluster[j][i]; |
|
for (k=0; k < (int) cluster->num_edge_clumps; ++k) { |
|
stbcc__global_clumpid m; |
|
m.f.clump_index = k; |
|
m.f.cluster_x = i; |
|
m.f.cluster_y = j; |
|
assert((int) m.f.clump_index == k && (int) m.f.cluster_x == i && (int) m.f.cluster_y == j); |
|
cluster->clump[k].global_label = m; |
|
} |
|
} |
|
} |
|
|
|
for (j=0; j < STBCC__CLUSTER_COUNT_Y; ++j) { |
|
for (i=0; i < STBCC__CLUSTER_COUNT_X; ++i) { |
|
stbcc__cluster *cluster = &g->cluster[j][i]; |
|
for (k=0; k < (int) cluster->num_edge_clumps; ++k) { |
|
stbcc__clump *clump = &cluster->clump[k]; |
|
stbcc__unpacked_clumpid m; |
|
stbcc__relative_clumpid *adj; |
|
m.clump_index = k; |
|
m.cluster_x = i; |
|
m.cluster_y = j; |
|
adj = &cluster->adjacency_storage[clump->adjacent_clump_list_index]; |
|
for (h=0; h < clump->num_adjacent; ++h) { |
|
unsigned int clump_index = adj[h].clump_index; |
|
unsigned int x = adj[h].cluster_dx + i; |
|
unsigned int y = adj[h].cluster_dy + j; |
|
stbcc__clump_union(g, m, x, y, clump_index); |
|
} |
|
} |
|
} |
|
} |
|
|
|
for (j=0; j < STBCC__CLUSTER_COUNT_Y; ++j) { |
|
for (i=0; i < STBCC__CLUSTER_COUNT_X; ++i) { |
|
stbcc__cluster *cluster = &g->cluster[j][i]; |
|
for (k=0; k < (int) cluster->num_edge_clumps; ++k) { |
|
stbcc__global_clumpid m; |
|
m.f.clump_index = k; |
|
m.f.cluster_x = i; |
|
m.f.cluster_y = j; |
|
stbcc__clump_find(g, m); |
|
} |
|
} |
|
} |
|
} |
|
|
|
static void stbcc__build_all_connections_for_cluster(stbcc_grid *g, int cx, int cy) |
|
{ |
|
// in this particular case, we are fully non-incremental. that means we |
|
// can discover the correct sizes for the arrays, but requires we build |
|
// the data into temporary data structures, or just count the sizes, so |
|
// for simplicity we do the latter |
|
stbcc__cluster *cluster = &g->cluster[cy][cx]; |
|
unsigned char connected[STBCC__MAX_EDGE_CLUMPS_PER_CLUSTER][STBCC__MAX_EDGE_CLUMPS_PER_CLUSTER/8]; // 64 x 8 => 1KB |
|
unsigned char num_adj[STBCC__MAX_CLUMPS_PER_CLUSTER] = { 0 }; |
|
int x = cx * STBCC__CLUSTER_SIZE_X; |
|
int y = cy * STBCC__CLUSTER_SIZE_Y; |
|
int step_x, step_y=0, i, j, k, n, m, dx, dy, total; |
|
int extra; |
|
|
|
g->cluster[cy][cx].rebuild_adjacency = 0; |
|
|
|
total = 0; |
|
for (m=0; m < 4; ++m) { |
|
switch (m) { |
|
case 0: |
|
dx = 1, dy = 0; |
|
step_x = 0, step_y = 1; |
|
i = STBCC__CLUSTER_SIZE_X-1; |
|
j = 0; |
|
n = STBCC__CLUSTER_SIZE_Y; |
|
break; |
|
case 1: |
|
dx = -1, dy = 0; |
|
i = 0; |
|
j = 0; |
|
step_x = 0; |
|
step_y = 1; |
|
n = STBCC__CLUSTER_SIZE_Y; |
|
break; |
|
case 2: |
|
dy = -1, dx = 0; |
|
i = 0; |
|
j = 0; |
|
step_x = 1; |
|
step_y = 0; |
|
n = STBCC__CLUSTER_SIZE_X; |
|
break; |
|
case 3: |
|
dy = 1, dx = 0; |
|
i = 0; |
|
j = STBCC__CLUSTER_SIZE_Y-1; |
|
step_x = 1; |
|
step_y = 0; |
|
n = STBCC__CLUSTER_SIZE_X; |
|
break; |
|
} |
|
|
|
if (cx+dx < 0 || cx+dx >= g->cw || cy+dy < 0 || cy+dy >= g->ch) |
|
continue; |
|
|
|
memset(connected, 0, sizeof(connected)); |
|
for (k=0; k < n; ++k) { |
|
if (STBCC__MAP_OPEN(g, x+i, y+j) && STBCC__MAP_OPEN(g, x+i+dx, y+j+dy)) { |
|
stbcc__clumpid src = g->clump_for_node[y+j][x+i]; |
|
stbcc__clumpid dest = g->clump_for_node[y+j+dy][x+i+dx]; |
|
if (0 == (connected[src][dest>>3] & (1 << (dest & 7)))) { |
|
connected[src][dest>>3] |= 1 << (dest & 7); |
|
++num_adj[src]; |
|
++total; |
|
} |
|
} |
|
i += step_x; |
|
j += step_y; |
|
} |
|
} |
|
|
|
assert(total <= STBCC__CLUSTER_ADJACENCY_COUNT); |
|
|
|
// decide how to apportion unused adjacency slots; only clumps that lie |
|
// on the edges of the cluster need adjacency slots, so divide them up |
|
// evenly between those clumps |
|
|
|
// we want: |
|
// extra = (STBCC__CLUSTER_ADJACENCY_COUNT - total) / cluster->num_edge_clumps; |
|
// but we efficiently approximate this without a divide, because |
|
// ignoring edge-vs-non-edge with 'num_adj[i]*2' was faster than |
|
// 'num_adj[i]+extra' with the divide |
|
if (total + (cluster->num_edge_clumps<<2) <= STBCC__CLUSTER_ADJACENCY_COUNT) |
|
extra = 4; |
|
else if (total + (cluster->num_edge_clumps<<1) <= STBCC__CLUSTER_ADJACENCY_COUNT) |
|
extra = 2; |
|
else if (total + (cluster->num_edge_clumps<<0) <= STBCC__CLUSTER_ADJACENCY_COUNT) |
|
extra = 1; |
|
else |
|
extra = 0; |
|
|
|
total = 0; |
|
for (i=0; i < (int) cluster->num_edge_clumps; ++i) { |
|
int alloc = num_adj[i]+extra; |
|
if (alloc > STBCC__MAX_EXITS_PER_CLUSTER) |
|
alloc = STBCC__MAX_EXITS_PER_CLUSTER; |
|
assert(total < 256); // must fit in byte |
|
cluster->clump[i].adjacent_clump_list_index = (unsigned char) total; |
|
cluster->clump[i].max_adjacent = alloc; |
|
cluster->clump[i].num_adjacent = 0; |
|
total += alloc; |
|
} |
|
assert(total <= STBCC__CLUSTER_ADJACENCY_COUNT); |
|
|
|
stbcc__add_connections_to_adjacent_cluster(g, cx, cy, -1, 0); |
|
stbcc__add_connections_to_adjacent_cluster(g, cx, cy, 1, 0); |
|
stbcc__add_connections_to_adjacent_cluster(g, cx, cy, 0,-1); |
|
stbcc__add_connections_to_adjacent_cluster(g, cx, cy, 0, 1); |
|
// make sure all of the above succeeded. |
|
assert(g->cluster[cy][cx].rebuild_adjacency == 0); |
|
} |
|
|
|
static void stbcc__add_connections_to_adjacent_cluster_with_rebuild(stbcc_grid *g, int cx, int cy, int dx, int dy) |
|
{ |
|
if (cx >= 0 && cx < g->cw && cy >= 0 && cy < g->ch) { |
|
stbcc__add_connections_to_adjacent_cluster(g, cx, cy, dx, dy); |
|
if (g->cluster[cy][cx].rebuild_adjacency) |
|
stbcc__build_all_connections_for_cluster(g, cx, cy); |
|
} |
|
} |
|
|
|
void stbcc_update_grid(stbcc_grid *g, int x, int y, int solid) |
|
{ |
|
int cx,cy; |
|
|
|
if (!solid) { |
|
if (STBCC__MAP_OPEN(g,x,y)) |
|
return; |
|
} else { |
|
if (!STBCC__MAP_OPEN(g,x,y)) |
|
return; |
|
} |
|
|
|
cx = STBCC__CLUSTER_X_FOR_COORD_X(x); |
|
cy = STBCC__CLUSTER_Y_FOR_COORD_Y(y); |
|
|
|
stbcc__remove_connections_to_adjacent_cluster(g, cx-1, cy, 1, 0); |
|
stbcc__remove_connections_to_adjacent_cluster(g, cx+1, cy, -1, 0); |
|
stbcc__remove_connections_to_adjacent_cluster(g, cx, cy-1, 0, 1); |
|
stbcc__remove_connections_to_adjacent_cluster(g, cx, cy+1, 0,-1); |
|
|
|
if (!solid) |
|
STBCC__MAP_BYTE(g,x,y) |= STBCC__MAP_BYTE_MASK(x,y); |
|
else |
|
STBCC__MAP_BYTE(g,x,y) &= ~STBCC__MAP_BYTE_MASK(x,y); |
|
|
|
stbcc__build_clumps_for_cluster(g, cx, cy); |
|
stbcc__build_all_connections_for_cluster(g, cx, cy); |
|
|
|
stbcc__add_connections_to_adjacent_cluster_with_rebuild(g, cx-1, cy, 1, 0); |
|
stbcc__add_connections_to_adjacent_cluster_with_rebuild(g, cx+1, cy, -1, 0); |
|
stbcc__add_connections_to_adjacent_cluster_with_rebuild(g, cx, cy-1, 0, 1); |
|
stbcc__add_connections_to_adjacent_cluster_with_rebuild(g, cx, cy+1, 0,-1); |
|
|
|
if (!g->in_batched_update) |
|
stbcc__build_connected_components_for_clumps(g); |
|
#if 0 |
|
else |
|
g->cluster_dirty[cy][cx] = 1; |
|
#endif |
|
} |
|
|
|
void stbcc_update_batch_begin(stbcc_grid *g) |
|
{ |
|
assert(!g->in_batched_update); |
|
g->in_batched_update = 1; |
|
} |
|
|
|
void stbcc_update_batch_end(stbcc_grid *g) |
|
{ |
|
assert(g->in_batched_update); |
|
g->in_batched_update = 0; |
|
stbcc__build_connected_components_for_clumps(g); // @OPTIMIZE: only do this if update was non-empty |
|
} |
|
|
|
size_t stbcc_grid_sizeof(void) |
|
{ |
|
return sizeof(stbcc_grid); |
|
} |
|
|
|
void stbcc_init_grid(stbcc_grid *g, unsigned char *map, int w, int h) |
|
{ |
|
int i,j,k; |
|
assert(w % STBCC__CLUSTER_SIZE_X == 0); |
|
assert(h % STBCC__CLUSTER_SIZE_Y == 0); |
|
assert(w % 8 == 0); |
|
|
|
g->w = w; |
|
g->h = h; |
|
g->cw = w >> STBCC_CLUSTER_SIZE_X_LOG2; |
|
g->ch = h >> STBCC_CLUSTER_SIZE_Y_LOG2; |
|
g->in_batched_update = 0; |
|
|
|
#if 0 |
|
for (j=0; j < STBCC__CLUSTER_COUNT_Y; ++j) |
|
for (i=0; i < STBCC__CLUSTER_COUNT_X; ++i) |
|
g->cluster_dirty[j][i] = 0; |
|
#endif |
|
|
|
for (j=0; j < h; ++j) { |
|
for (i=0; i < w; i += 8) { |
|
unsigned char c = 0; |
|
for (k=0; k < 8; ++k) |
|
if (map[j*w + (i+k)] == 0) |
|
c |= (1 << k); |
|
g->map[j][i>>3] = c; |
|
} |
|
} |
|
|
|
for (j=0; j < g->ch; ++j) |
|
for (i=0; i < g->cw; ++i) |
|
stbcc__build_clumps_for_cluster(g, i, j); |
|
|
|
for (j=0; j < g->ch; ++j) |
|
for (i=0; i < g->cw; ++i) |
|
stbcc__build_all_connections_for_cluster(g, i, j); |
|
|
|
stbcc__build_connected_components_for_clumps(g); |
|
|
|
for (j=0; j < g->h; ++j) |
|
for (i=0; i < g->w; ++i) |
|
assert(g->clump_for_node[j][i] <= STBCC__NULL_CLUMPID); |
|
} |
|
|
|
|
|
static void stbcc__add_clump_connection(stbcc_grid *g, int x1, int y1, int x2, int y2) |
|
{ |
|
stbcc__cluster *cluster; |
|
stbcc__clump *clump; |
|
|
|
int cx1 = STBCC__CLUSTER_X_FOR_COORD_X(x1); |
|
int cy1 = STBCC__CLUSTER_Y_FOR_COORD_Y(y1); |
|
int cx2 = STBCC__CLUSTER_X_FOR_COORD_X(x2); |
|
int cy2 = STBCC__CLUSTER_Y_FOR_COORD_Y(y2); |
|
|
|
stbcc__clumpid c1 = g->clump_for_node[y1][x1]; |
|
stbcc__clumpid c2 = g->clump_for_node[y2][x2]; |
|
|
|
stbcc__relative_clumpid rc; |
|
|
|
assert(cx1 != cx2 || cy1 != cy2); |
|
assert(abs(cx1-cx2) + abs(cy1-cy2) == 1); |
|
|
|
// add connection to c2 in c1 |
|
|
|
rc.clump_index = c2; |
|
rc.cluster_dx = x2-x1; |
|
rc.cluster_dy = y2-y1; |
|
|
|
cluster = &g->cluster[cy1][cx1]; |
|
clump = &cluster->clump[c1]; |
|
assert(clump->num_adjacent <= clump->max_adjacent); |
|
if (clump->num_adjacent == clump->max_adjacent) |
|
g->cluster[cy1][cx1].rebuild_adjacency = 1; |
|
else { |
|
stbcc__relative_clumpid *adj = &cluster->adjacency_storage[clump->adjacent_clump_list_index]; |
|
assert(clump->num_adjacent < STBCC__MAX_EXITS_PER_CLUMP); |
|
assert(clump->adjacent_clump_list_index + clump->num_adjacent <= STBCC__CLUSTER_ADJACENCY_COUNT); |
|
adj[clump->num_adjacent++] = rc; |
|
} |
|
} |
|
|
|
static void stbcc__remove_clump_connection(stbcc_grid *g, int x1, int y1, int x2, int y2) |
|
{ |
|
stbcc__cluster *cluster; |
|
stbcc__clump *clump; |
|
stbcc__relative_clumpid *adj; |
|
int i; |
|
|
|
int cx1 = STBCC__CLUSTER_X_FOR_COORD_X(x1); |
|
int cy1 = STBCC__CLUSTER_Y_FOR_COORD_Y(y1); |
|
int cx2 = STBCC__CLUSTER_X_FOR_COORD_X(x2); |
|
int cy2 = STBCC__CLUSTER_Y_FOR_COORD_Y(y2); |
|
|
|
stbcc__clumpid c1 = g->clump_for_node[y1][x1]; |
|
stbcc__clumpid c2 = g->clump_for_node[y2][x2]; |
|
|
|
stbcc__relative_clumpid rc; |
|
|
|
assert(cx1 != cx2 || cy1 != cy2); |
|
assert(abs(cx1-cx2) + abs(cy1-cy2) == 1); |
|
|
|
// add connection to c2 in c1 |
|
|
|
rc.clump_index = c2; |
|
rc.cluster_dx = x2-x1; |
|
rc.cluster_dy = y2-y1; |
|
|
|
cluster = &g->cluster[cy1][cx1]; |
|
clump = &cluster->clump[c1]; |
|
adj = &cluster->adjacency_storage[clump->adjacent_clump_list_index]; |
|
|
|
for (i=0; i < clump->num_adjacent; ++i) |
|
if (rc.clump_index == adj[i].clump_index && |
|
rc.cluster_dx == adj[i].cluster_dx && |
|
rc.cluster_dy == adj[i].cluster_dy) |
|
break; |
|
|
|
if (i < clump->num_adjacent) |
|
adj[i] = adj[--clump->num_adjacent]; |
|
else |
|
assert(0); |
|
} |
|
|
|
static void stbcc__add_connections_to_adjacent_cluster(stbcc_grid *g, int cx, int cy, int dx, int dy) |
|
{ |
|
unsigned char connected[STBCC__MAX_EDGE_CLUMPS_PER_CLUSTER][STBCC__MAX_EDGE_CLUMPS_PER_CLUSTER/8] = { 0 }; |
|
int x = cx * STBCC__CLUSTER_SIZE_X; |
|
int y = cy * STBCC__CLUSTER_SIZE_Y; |
|
int step_x, step_y=0, i, j, k, n; |
|
|
|
if (cx < 0 || cx >= g->cw || cy < 0 || cy >= g->ch) |
|
return; |
|
|
|
if (cx+dx < 0 || cx+dx >= g->cw || cy+dy < 0 || cy+dy >= g->ch) |
|
return; |
|
|
|
if (g->cluster[cy][cx].rebuild_adjacency) |
|
return; |
|
|
|
assert(abs(dx) + abs(dy) == 1); |
|
|
|
if (dx == 1) { |
|
i = STBCC__CLUSTER_SIZE_X-1; |
|
j = 0; |
|
step_x = 0; |
|
step_y = 1; |
|
n = STBCC__CLUSTER_SIZE_Y; |
|
} else if (dx == -1) { |
|
i = 0; |
|
j = 0; |
|
step_x = 0; |
|
step_y = 1; |
|
n = STBCC__CLUSTER_SIZE_Y; |
|
} else if (dy == -1) { |
|
i = 0; |
|
j = 0; |
|
step_x = 1; |
|
step_y = 0; |
|
n = STBCC__CLUSTER_SIZE_X; |
|
} else if (dy == 1) { |
|
i = 0; |
|
j = STBCC__CLUSTER_SIZE_Y-1; |
|
step_x = 1; |
|
step_y = 0; |
|
n = STBCC__CLUSTER_SIZE_X; |
|
} else { |
|
assert(0); |
|
} |
|
|
|
for (k=0; k < n; ++k) { |
|
if (STBCC__MAP_OPEN(g, x+i, y+j) && STBCC__MAP_OPEN(g, x+i+dx, y+j+dy)) { |
|
stbcc__clumpid src = g->clump_for_node[y+j][x+i]; |
|
stbcc__clumpid dest = g->clump_for_node[y+j+dy][x+i+dx]; |
|
if (0 == (connected[src][dest>>3] & (1 << (dest & 7)))) { |
|
assert((dest>>3) < sizeof(connected)); |
|
connected[src][dest>>3] |= 1 << (dest & 7); |
|
stbcc__add_clump_connection(g, x+i, y+j, x+i+dx, y+j+dy); |
|
if (g->cluster[cy][cx].rebuild_adjacency) |
|
break; |
|
} |
|
} |
|
i += step_x; |
|
j += step_y; |
|
} |
|
} |
|
|
|
static void stbcc__remove_connections_to_adjacent_cluster(stbcc_grid *g, int cx, int cy, int dx, int dy) |
|
{ |
|
unsigned char disconnected[STBCC__MAX_EDGE_CLUMPS_PER_CLUSTER][STBCC__MAX_EDGE_CLUMPS_PER_CLUSTER/8] = { 0 }; |
|
int x = cx * STBCC__CLUSTER_SIZE_X; |
|
int y = cy * STBCC__CLUSTER_SIZE_Y; |
|
int step_x, step_y=0, i, j, k, n; |
|
|
|
if (cx < 0 || cx >= g->cw || cy < 0 || cy >= g->ch) |
|
return; |
|
|
|
if (cx+dx < 0 || cx+dx >= g->cw || cy+dy < 0 || cy+dy >= g->ch) |
|
return; |
|
|
|
assert(abs(dx) + abs(dy) == 1); |
|
|
|
if (dx == 1) { |
|
i = STBCC__CLUSTER_SIZE_X-1; |
|
j = 0; |
|
step_x = 0; |
|
step_y = 1; |
|
n = STBCC__CLUSTER_SIZE_Y; |
|
} else if (dx == -1) { |
|
i = 0; |
|
j = 0; |
|
step_x = 0; |
|
step_y = 1; |
|
n = STBCC__CLUSTER_SIZE_Y; |
|
} else if (dy == -1) { |
|
i = 0; |
|
j = 0; |
|
step_x = 1; |
|
step_y = 0; |
|
n = STBCC__CLUSTER_SIZE_X; |
|
} else if (dy == 1) { |
|
i = 0; |
|
j = STBCC__CLUSTER_SIZE_Y-1; |
|
step_x = 1; |
|
step_y = 0; |
|
n = STBCC__CLUSTER_SIZE_X; |
|
} else { |
|
assert(0); |
|
} |
|
|
|
for (k=0; k < n; ++k) { |
|
if (STBCC__MAP_OPEN(g, x+i, y+j) && STBCC__MAP_OPEN(g, x+i+dx, y+j+dy)) { |
|
stbcc__clumpid src = g->clump_for_node[y+j][x+i]; |
|
stbcc__clumpid dest = g->clump_for_node[y+j+dy][x+i+dx]; |
|
if (0 == (disconnected[src][dest>>3] & (1 << (dest & 7)))) { |
|
disconnected[src][dest>>3] |= 1 << (dest & 7); |
|
stbcc__remove_clump_connection(g, x+i, y+j, x+i+dx, y+j+dy); |
|
} |
|
} |
|
i += step_x; |
|
j += step_y; |
|
} |
|
} |
|
|
|
static stbcc__tinypoint stbcc__incluster_find(stbcc__cluster_build_info *cbi, int x, int y) |
|
{ |
|
stbcc__tinypoint p,q; |
|
p = cbi->parent[y][x]; |
|
if (p.x == x && p.y == y) |
|
return p; |
|
q = stbcc__incluster_find(cbi, p.x, p.y); |
|
cbi->parent[y][x] = q; |
|
return q; |
|
} |
|
|
|
static void stbcc__incluster_union(stbcc__cluster_build_info *cbi, int x1, int y1, int x2, int y2) |
|
{ |
|
stbcc__tinypoint p = stbcc__incluster_find(cbi, x1,y1); |
|
stbcc__tinypoint q = stbcc__incluster_find(cbi, x2,y2); |
|
|
|
if (p.x == q.x && p.y == q.y) |
|
return; |
|
|
|
cbi->parent[p.y][p.x] = q; |
|
} |
|
|
|
static void stbcc__switch_root(stbcc__cluster_build_info *cbi, int x, int y, stbcc__tinypoint p) |
|
{ |
|
cbi->parent[p.y][p.x].x = x; |
|
cbi->parent[p.y][p.x].y = y; |
|
cbi->parent[y][x].x = x; |
|
cbi->parent[y][x].y = y; |
|
} |
|
|
|
static void stbcc__build_clumps_for_cluster(stbcc_grid *g, int cx, int cy) |
|
{ |
|
stbcc__cluster *c; |
|
stbcc__cluster_build_info cbi; |
|
int label=0; |
|
int i,j; |
|
int x = cx * STBCC__CLUSTER_SIZE_X; |
|
int y = cy * STBCC__CLUSTER_SIZE_Y; |
|
|
|
// set initial disjoint set forest state |
|
for (j=0; j < STBCC__CLUSTER_SIZE_Y; ++j) { |
|
for (i=0; i < STBCC__CLUSTER_SIZE_X; ++i) { |
|
cbi.parent[j][i].x = i; |
|
cbi.parent[j][i].y = j; |
|
} |
|
} |
|
|
|
// join all sets that are connected |
|
for (j=0; j < STBCC__CLUSTER_SIZE_Y; ++j) { |
|
// check down only if not on bottom row |
|
if (j < STBCC__CLUSTER_SIZE_Y-1) |
|
for (i=0; i < STBCC__CLUSTER_SIZE_X; ++i) |
|
if (STBCC__MAP_OPEN(g,x+i,y+j) && STBCC__MAP_OPEN(g,x+i ,y+j+1)) |
|
stbcc__incluster_union(&cbi, i,j, i,j+1); |
|
// check right for everything but rightmost column |
|
for (i=0; i < STBCC__CLUSTER_SIZE_X-1; ++i) |
|
if (STBCC__MAP_OPEN(g,x+i,y+j) && STBCC__MAP_OPEN(g,x+i+1,y+j )) |
|
stbcc__incluster_union(&cbi, i,j, i+1,j); |
|
} |
|
|
|
// label all non-empty clumps along edges so that all edge clumps are first |
|
// in list; this means in degenerate case we can skip traversing non-edge clumps. |
|
// because in the first pass we only label leaders, we swap the leader to the |
|
// edge first |
|
|
|
// first put solid labels on all the edges; these will get overwritten if they're open |
|
for (j=0; j < STBCC__CLUSTER_SIZE_Y; ++j) |
|
cbi.label[j][0] = cbi.label[j][STBCC__CLUSTER_SIZE_X-1] = STBCC__NULL_CLUMPID; |
|
for (i=0; i < STBCC__CLUSTER_SIZE_X; ++i) |
|
cbi.label[0][i] = cbi.label[STBCC__CLUSTER_SIZE_Y-1][i] = STBCC__NULL_CLUMPID; |
|
|
|
for (j=0; j < STBCC__CLUSTER_SIZE_Y; ++j) { |
|
i = 0; |
|
if (STBCC__MAP_OPEN(g, x+i, y+j)) { |
|
stbcc__tinypoint p = stbcc__incluster_find(&cbi, i,j); |
|
if (p.x == i && p.y == j) |
|
// if this is the leader, give it a label |
|
cbi.label[j][i] = label++; |
|
else if (!(p.x == 0 || p.x == STBCC__CLUSTER_SIZE_X-1 || p.y == 0 || p.y == STBCC__CLUSTER_SIZE_Y-1)) { |
|
// if leader is in interior, promote this edge node to leader and label |
|
stbcc__switch_root(&cbi, i, j, p); |
|
cbi.label[j][i] = label++; |
|
} |
|
// else if leader is on edge, do nothing (it'll get labelled when we reach it) |
|
} |
|
i = STBCC__CLUSTER_SIZE_X-1; |
|
if (STBCC__MAP_OPEN(g, x+i, y+j)) { |
|
stbcc__tinypoint p = stbcc__incluster_find(&cbi, i,j); |
|
if (p.x == i && p.y == j) |
|
cbi.label[j][i] = label++; |
|
else if (!(p.x == 0 || p.x == STBCC__CLUSTER_SIZE_X-1 || p.y == 0 || p.y == STBCC__CLUSTER_SIZE_Y-1)) { |
|
stbcc__switch_root(&cbi, i, j, p); |
|
cbi.label[j][i] = label++; |
|
} |
|
} |
|
} |
|
|
|
for (i=1; i < STBCC__CLUSTER_SIZE_Y-1; ++i) { |
|
j = 0; |
|
if (STBCC__MAP_OPEN(g, x+i, y+j)) { |
|
stbcc__tinypoint p = stbcc__incluster_find(&cbi, i,j); |
|
if (p.x == i && p.y == j) |
|
cbi.label[j][i] = label++; |
|
else if (!(p.x == 0 || p.x == STBCC__CLUSTER_SIZE_X-1 || p.y == 0 || p.y == STBCC__CLUSTER_SIZE_Y-1)) { |
|
stbcc__switch_root(&cbi, i, j, p); |
|
cbi.label[j][i] = label++; |
|
} |
|
} |
|
j = STBCC__CLUSTER_SIZE_Y-1; |
|
if (STBCC__MAP_OPEN(g, x+i, y+j)) { |
|
stbcc__tinypoint p = stbcc__incluster_find(&cbi, i,j); |
|
if (p.x == i && p.y == j) |
|
cbi.label[j][i] = label++; |
|
else if (!(p.x == 0 || p.x == STBCC__CLUSTER_SIZE_X-1 || p.y == 0 || p.y == STBCC__CLUSTER_SIZE_Y-1)) { |
|
stbcc__switch_root(&cbi, i, j, p); |
|
cbi.label[j][i] = label++; |
|
} |
|
} |
|
} |
|
|
|
c = &g->cluster[cy][cx]; |
|
c->num_edge_clumps = label; |
|
|
|
// label any internal clusters |
|
for (j=1; j < STBCC__CLUSTER_SIZE_Y-1; ++j) { |
|
for (i=1; i < STBCC__CLUSTER_SIZE_X-1; ++i) { |
|
stbcc__tinypoint p = cbi.parent[j][i]; |
|
if (p.x == i && p.y == j) |
|
if (STBCC__MAP_OPEN(g,x+i,y+j)) |
|
cbi.label[j][i] = label++; |
|
else |
|
cbi.label[j][i] = STBCC__NULL_CLUMPID; |
|
} |
|
} |
|
|
|
// label all other nodes |
|
for (j=0; j < STBCC__CLUSTER_SIZE_Y; ++j) { |
|
for (i=0; i < STBCC__CLUSTER_SIZE_X; ++i) { |
|
stbcc__tinypoint p = stbcc__incluster_find(&cbi, i,j); |
|
if (p.x != i || p.y != j) { |
|
if (STBCC__MAP_OPEN(g,x+i,y+j)) |
|
cbi.label[j][i] = cbi.label[p.y][p.x]; |
|
} |
|
if (STBCC__MAP_OPEN(g,x+i,y+j)) |
|
assert(cbi.label[j][i] != STBCC__NULL_CLUMPID); |
|
} |
|
} |
|
|
|
c->num_clumps = label; |
|
|
|
for (i=0; i < label; ++i) { |
|
c->clump[i].num_adjacent = 0; |
|
c->clump[i].max_adjacent = 0; |
|
} |
|
|
|
for (j=0; j < STBCC__CLUSTER_SIZE_Y; ++j) |
|
for (i=0; i < STBCC__CLUSTER_SIZE_X; ++i) { |
|
g->clump_for_node[y+j][x+i] = cbi.label[j][i]; // @OPTIMIZE: remove cbi.label entirely |
|
assert(g->clump_for_node[y+j][x+i] <= STBCC__NULL_CLUMPID); |
|
} |
|
|
|
// set the global label for all interior clumps since they can't have connections, |
|
// so we don't have to do this on the global pass (brings from O(N) to O(N^0.75)) |
|
for (i=(int) c->num_edge_clumps; i < (int) c->num_clumps; ++i) { |
|
stbcc__global_clumpid gc; |
|
gc.f.cluster_x = cx; |
|
gc.f.cluster_y = cy; |
|
gc.f.clump_index = i; |
|
c->clump[i].global_label = gc; |
|
} |
|
|
|
c->rebuild_adjacency = 1; // flag that it has no valid adjacency data |
|
} |
|
|
|
#endif // STB_CONNECTED_COMPONENTS_IMPLEMENTATION |
|
/* |
|
------------------------------------------------------------------------------ |
|
This software is available under 2 licenses -- choose whichever you prefer. |
|
------------------------------------------------------------------------------ |
|
ALTERNATIVE A - MIT License |
|
Copyright (c) 2017 Sean Barrett |
|
Permission is hereby granted, free of charge, to any person obtaining a copy of |
|
this software and associated documentation files (the "Software"), to deal in |
|
the Software without restriction, including without limitation the rights to |
|
use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies |
|
of the Software, and to permit persons to whom the Software is furnished to do |
|
so, subject to the following conditions: |
|
The above copyright notice and this permission notice shall be included in all |
|
copies or substantial portions of the Software. |
|
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
|
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
|
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE |
|
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER |
|
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, |
|
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE |
|
SOFTWARE. |
|
------------------------------------------------------------------------------ |
|
ALTERNATIVE B - Public Domain (www.unlicense.org) |
|
This is free and unencumbered software released into the public domain. |
|
Anyone is free to copy, modify, publish, use, compile, sell, or distribute this |
|
software, either in source code form or as a compiled binary, for any purpose, |
|
commercial or non-commercial, and by any means. |
|
In jurisdictions that recognize copyright laws, the author or authors of this |
|
software dedicate any and all copyright interest in the software to the public |
|
domain. We make this dedication for the benefit of the public at large and to |
|
the detriment of our heirs and successors. We intend this dedication to be an |
|
overt act of relinquishment in perpetuity of all present and future rights to |
|
this software under copyright law. |
|
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
|
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
|
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE |
|
AUTHORS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN |
|
ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION |
|
WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. |
|
------------------------------------------------------------------------------ |
|
*/
|
|
|