You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
667 lines
28 KiB
667 lines
28 KiB
// eccrypto.h - originally written and placed in the public domain by Wei Dai |
|
// deterministic signatures added by by Douglas Roark |
|
|
|
/// \file eccrypto.h |
|
/// \brief Classes and functions for Elliptic Curves over prime and binary fields |
|
|
|
#ifndef CRYPTOPP_ECCRYPTO_H |
|
#define CRYPTOPP_ECCRYPTO_H |
|
|
|
#include "config.h" |
|
#include "cryptlib.h" |
|
#include "pubkey.h" |
|
#include "integer.h" |
|
#include "asn.h" |
|
#include "hmac.h" |
|
#include "sha.h" |
|
#include "gfpcrypt.h" |
|
#include "dh.h" |
|
#include "mqv.h" |
|
#include "hmqv.h" |
|
#include "fhmqv.h" |
|
#include "ecp.h" |
|
#include "ec2n.h" |
|
|
|
#include <iosfwd> |
|
|
|
#if CRYPTOPP_MSC_VERSION |
|
# pragma warning(push) |
|
# pragma warning(disable: 4231 4275) |
|
#endif |
|
|
|
NAMESPACE_BEGIN(CryptoPP) |
|
|
|
/// \brief Elliptic Curve Parameters |
|
/// \tparam EC elliptic curve field |
|
/// \details This class corresponds to the ASN.1 sequence of the same name |
|
/// in ANSI X9.62 and SEC 1. EC is currently defined for ECP and EC2N. |
|
template <class EC> |
|
class DL_GroupParameters_EC : public DL_GroupParametersImpl<EcPrecomputation<EC> > |
|
{ |
|
typedef DL_GroupParameters_EC<EC> ThisClass; |
|
|
|
public: |
|
typedef EC EllipticCurve; |
|
typedef typename EllipticCurve::Point Point; |
|
typedef Point Element; |
|
typedef IncompatibleCofactorMultiplication DefaultCofactorOption; |
|
|
|
virtual ~DL_GroupParameters_EC() {} |
|
|
|
/// \brief Construct an EC GroupParameters |
|
DL_GroupParameters_EC() : m_compress(false), m_encodeAsOID(true) {} |
|
|
|
/// \brief Construct an EC GroupParameters |
|
/// \param oid the OID of a curve |
|
DL_GroupParameters_EC(const OID &oid) |
|
: m_compress(false), m_encodeAsOID(true) {Initialize(oid);} |
|
|
|
/// \brief Construct an EC GroupParameters |
|
/// \param ec the elliptic curve |
|
/// \param G the base point |
|
/// \param n the order of the base point |
|
/// \param k the cofactor |
|
DL_GroupParameters_EC(const EllipticCurve &ec, const Point &G, const Integer &n, const Integer &k = Integer::Zero()) |
|
: m_compress(false), m_encodeAsOID(true) {Initialize(ec, G, n, k);} |
|
|
|
/// \brief Construct an EC GroupParameters |
|
/// \param bt BufferedTransformation with group parameters |
|
DL_GroupParameters_EC(BufferedTransformation &bt) |
|
: m_compress(false), m_encodeAsOID(true) {BERDecode(bt);} |
|
|
|
/// \brief Initialize an EC GroupParameters using {EC,G,n,k} |
|
/// \param ec the elliptic curve |
|
/// \param G the base point |
|
/// \param n the order of the base point |
|
/// \param k the cofactor |
|
/// \details This Initialize() function overload initializes group parameters from existing parameters. |
|
void Initialize(const EllipticCurve &ec, const Point &G, const Integer &n, const Integer &k = Integer::Zero()) |
|
{ |
|
this->m_groupPrecomputation.SetCurve(ec); |
|
this->SetSubgroupGenerator(G); |
|
m_n = n; |
|
m_k = k; |
|
} |
|
|
|
/// \brief Initialize a DL_GroupParameters_EC {EC,G,n,k} |
|
/// \param oid the OID of a curve |
|
/// \details This Initialize() function overload initializes group parameters from existing parameters. |
|
void Initialize(const OID &oid); |
|
|
|
// NameValuePairs |
|
bool GetVoidValue(const char *name, const std::type_info &valueType, void *pValue) const; |
|
void AssignFrom(const NameValuePairs &source); |
|
|
|
// GeneratibleCryptoMaterial interface |
|
/// this implementation doesn't actually generate a curve, it just initializes the parameters with existing values |
|
/*! parameters: (Curve, SubgroupGenerator, SubgroupOrder, Cofactor (optional)), or (GroupOID) */ |
|
void GenerateRandom(RandomNumberGenerator &rng, const NameValuePairs &alg); |
|
|
|
// DL_GroupParameters |
|
const DL_FixedBasePrecomputation<Element> & GetBasePrecomputation() const {return this->m_gpc;} |
|
DL_FixedBasePrecomputation<Element> & AccessBasePrecomputation() {return this->m_gpc;} |
|
const Integer & GetSubgroupOrder() const {return m_n;} |
|
Integer GetCofactor() const; |
|
bool ValidateGroup(RandomNumberGenerator &rng, unsigned int level) const; |
|
bool ValidateElement(unsigned int level, const Element &element, const DL_FixedBasePrecomputation<Element> *precomp) const; |
|
bool FastSubgroupCheckAvailable() const {return false;} |
|
void EncodeElement(bool reversible, const Element &element, byte *encoded) const |
|
{ |
|
if (reversible) |
|
GetCurve().EncodePoint(encoded, element, m_compress); |
|
else |
|
element.x.Encode(encoded, GetEncodedElementSize(false)); |
|
} |
|
virtual unsigned int GetEncodedElementSize(bool reversible) const |
|
{ |
|
if (reversible) |
|
return GetCurve().EncodedPointSize(m_compress); |
|
else |
|
return GetCurve().GetField().MaxElementByteLength(); |
|
} |
|
Element DecodeElement(const byte *encoded, bool checkForGroupMembership) const |
|
{ |
|
Point result; |
|
if (!GetCurve().DecodePoint(result, encoded, GetEncodedElementSize(true))) |
|
throw DL_BadElement(); |
|
if (checkForGroupMembership && !ValidateElement(1, result, NULLPTR)) |
|
throw DL_BadElement(); |
|
return result; |
|
} |
|
Integer ConvertElementToInteger(const Element &element) const; |
|
Integer GetMaxExponent() const {return GetSubgroupOrder()-1;} |
|
bool IsIdentity(const Element &element) const {return element.identity;} |
|
void SimultaneousExponentiate(Element *results, const Element &base, const Integer *exponents, unsigned int exponentsCount) const; |
|
static std::string CRYPTOPP_API StaticAlgorithmNamePrefix() {return "EC";} |
|
|
|
// ASN1Key |
|
OID GetAlgorithmID() const; |
|
|
|
// used by MQV |
|
Element MultiplyElements(const Element &a, const Element &b) const; |
|
Element CascadeExponentiate(const Element &element1, const Integer &exponent1, const Element &element2, const Integer &exponent2) const; |
|
|
|
// non-inherited |
|
|
|
// enumerate OIDs for recommended parameters, use OID() to get first one |
|
static OID CRYPTOPP_API GetNextRecommendedParametersOID(const OID &oid); |
|
|
|
void BERDecode(BufferedTransformation &bt); |
|
void DEREncode(BufferedTransformation &bt) const; |
|
|
|
void SetPointCompression(bool compress) {m_compress = compress;} |
|
bool GetPointCompression() const {return m_compress;} |
|
|
|
void SetEncodeAsOID(bool encodeAsOID) {m_encodeAsOID = encodeAsOID;} |
|
bool GetEncodeAsOID() const {return m_encodeAsOID;} |
|
|
|
const EllipticCurve& GetCurve() const {return this->m_groupPrecomputation.GetCurve();} |
|
|
|
bool operator==(const ThisClass &rhs) const |
|
{return this->m_groupPrecomputation.GetCurve() == rhs.m_groupPrecomputation.GetCurve() && this->m_gpc.GetBase(this->m_groupPrecomputation) == rhs.m_gpc.GetBase(rhs.m_groupPrecomputation);} |
|
|
|
protected: |
|
unsigned int FieldElementLength() const {return GetCurve().GetField().MaxElementByteLength();} |
|
unsigned int ExponentLength() const {return m_n.ByteCount();} |
|
|
|
OID m_oid; // set if parameters loaded from a recommended curve |
|
Integer m_n; // order of base point |
|
mutable Integer m_k; // cofactor |
|
mutable bool m_compress, m_encodeAsOID; // presentation details |
|
}; |
|
|
|
inline std::ostream& operator<<(std::ostream& os, const DL_GroupParameters_EC<ECP>::Element& obj); |
|
|
|
/// \brief Elliptic Curve Discrete Log (DL) public key |
|
/// \tparam EC elliptic curve field |
|
template <class EC> |
|
class DL_PublicKey_EC : public DL_PublicKeyImpl<DL_GroupParameters_EC<EC> > |
|
{ |
|
public: |
|
typedef typename EC::Point Element; |
|
|
|
virtual ~DL_PublicKey_EC() {} |
|
|
|
/// \brief Initialize an EC Public Key using {GP,Q} |
|
/// \param params group parameters |
|
/// \param Q the public point |
|
/// \details This Initialize() function overload initializes a public key from existing parameters. |
|
void Initialize(const DL_GroupParameters_EC<EC> ¶ms, const Element &Q) |
|
{this->AccessGroupParameters() = params; this->SetPublicElement(Q);} |
|
|
|
/// \brief Initialize an EC Public Key using {EC,G,n,Q} |
|
/// \param ec the elliptic curve |
|
/// \param G the base point |
|
/// \param n the order of the base point |
|
/// \param Q the public point |
|
/// \details This Initialize() function overload initializes a public key from existing parameters. |
|
void Initialize(const EC &ec, const Element &G, const Integer &n, const Element &Q) |
|
{this->AccessGroupParameters().Initialize(ec, G, n); this->SetPublicElement(Q);} |
|
|
|
// X509PublicKey |
|
void BERDecodePublicKey(BufferedTransformation &bt, bool parametersPresent, size_t size); |
|
void DEREncodePublicKey(BufferedTransformation &bt) const; |
|
}; |
|
|
|
/// \brief Elliptic Curve Discrete Log (DL) private key |
|
/// \tparam EC elliptic curve field |
|
template <class EC> |
|
class DL_PrivateKey_EC : public DL_PrivateKeyImpl<DL_GroupParameters_EC<EC> > |
|
{ |
|
public: |
|
typedef typename EC::Point Element; |
|
|
|
virtual ~DL_PrivateKey_EC(); |
|
|
|
/// \brief Initialize an EC Private Key using {GP,x} |
|
/// \param params group parameters |
|
/// \param x the private exponent |
|
/// \details This Initialize() function overload initializes a private key from existing parameters. |
|
void Initialize(const DL_GroupParameters_EC<EC> ¶ms, const Integer &x) |
|
{this->AccessGroupParameters() = params; this->SetPrivateExponent(x);} |
|
|
|
/// \brief Initialize an EC Private Key using {EC,G,n,x} |
|
/// \param ec the elliptic curve |
|
/// \param G the base point |
|
/// \param n the order of the base point |
|
/// \param x the private exponent |
|
/// \details This Initialize() function overload initializes a private key from existing parameters. |
|
void Initialize(const EC &ec, const Element &G, const Integer &n, const Integer &x) |
|
{this->AccessGroupParameters().Initialize(ec, G, n); this->SetPrivateExponent(x);} |
|
|
|
/// \brief Create an EC private key |
|
/// \param rng a RandomNumberGenerator derived class |
|
/// \param params the EC group parameters |
|
/// \details This function overload of Initialize() creates a new private key because it |
|
/// takes a RandomNumberGenerator() as a parameter. If you have an existing keypair, |
|
/// then use one of the other Initialize() overloads. |
|
void Initialize(RandomNumberGenerator &rng, const DL_GroupParameters_EC<EC> ¶ms) |
|
{this->GenerateRandom(rng, params);} |
|
|
|
/// \brief Create an EC private key |
|
/// \param rng a RandomNumberGenerator derived class |
|
/// \param ec the elliptic curve |
|
/// \param G the base point |
|
/// \param n the order of the base point |
|
/// \details This function overload of Initialize() creates a new private key because it |
|
/// takes a RandomNumberGenerator() as a parameter. If you have an existing keypair, |
|
/// then use one of the other Initialize() overloads. |
|
void Initialize(RandomNumberGenerator &rng, const EC &ec, const Element &G, const Integer &n) |
|
{this->GenerateRandom(rng, DL_GroupParameters_EC<EC>(ec, G, n));} |
|
|
|
// PKCS8PrivateKey |
|
void BERDecodePrivateKey(BufferedTransformation &bt, bool parametersPresent, size_t size); |
|
void DEREncodePrivateKey(BufferedTransformation &bt) const; |
|
}; |
|
|
|
// Out-of-line dtor due to AIX and GCC, http://github.com/weidai11/cryptopp/issues/499 |
|
template<class EC> |
|
DL_PrivateKey_EC<EC>::~DL_PrivateKey_EC() {} |
|
|
|
/// \brief Elliptic Curve Diffie-Hellman |
|
/// \tparam EC elliptic curve field |
|
/// \tparam COFACTOR_OPTION cofactor multiplication option |
|
/// \sa CofactorMultiplicationOption, <a href="http://www.weidai.com/scan-mirror/ka.html#ECDH">Elliptic Curve Diffie-Hellman, AKA ECDH</a> |
|
/// \since Crypto++ 3.0 |
|
template <class EC, class COFACTOR_OPTION = typename DL_GroupParameters_EC<EC>::DefaultCofactorOption> |
|
struct ECDH |
|
{ |
|
typedef DH_Domain<DL_GroupParameters_EC<EC>, COFACTOR_OPTION> Domain; |
|
}; |
|
|
|
/// \brief Elliptic Curve Menezes-Qu-Vanstone |
|
/// \tparam EC elliptic curve field |
|
/// \tparam COFACTOR_OPTION cofactor multiplication option |
|
/// \sa CofactorMultiplicationOption, <a href="http://www.weidai.com/scan-mirror/ka.html#ECMQV">Elliptic Curve Menezes-Qu-Vanstone, AKA ECMQV</a> |
|
template <class EC, class COFACTOR_OPTION = typename DL_GroupParameters_EC<EC>::DefaultCofactorOption> |
|
struct ECMQV |
|
{ |
|
typedef MQV_Domain<DL_GroupParameters_EC<EC>, COFACTOR_OPTION> Domain; |
|
}; |
|
|
|
/// \brief Hashed Elliptic Curve Menezes-Qu-Vanstone |
|
/// \tparam EC elliptic curve field |
|
/// \tparam COFACTOR_OPTION cofactor multiplication option |
|
/// \details This implementation follows Hugo Krawczyk's <a href="http://eprint.iacr.org/2005/176">HMQV: A High-Performance |
|
/// Secure Diffie-Hellman Protocol</a>. Note: this implements HMQV only. HMQV-C with Key Confirmation is not provided. |
|
/// \sa CofactorMultiplicationOption |
|
template <class EC, class COFACTOR_OPTION = typename DL_GroupParameters_EC<EC>::DefaultCofactorOption, class HASH = SHA256> |
|
struct ECHMQV |
|
{ |
|
typedef HMQV_Domain<DL_GroupParameters_EC<EC>, COFACTOR_OPTION, HASH> Domain; |
|
}; |
|
|
|
typedef ECHMQV< ECP, DL_GroupParameters_EC< ECP >::DefaultCofactorOption, SHA1 >::Domain ECHMQV160; |
|
typedef ECHMQV< ECP, DL_GroupParameters_EC< ECP >::DefaultCofactorOption, SHA256 >::Domain ECHMQV256; |
|
typedef ECHMQV< ECP, DL_GroupParameters_EC< ECP >::DefaultCofactorOption, SHA384 >::Domain ECHMQV384; |
|
typedef ECHMQV< ECP, DL_GroupParameters_EC< ECP >::DefaultCofactorOption, SHA512 >::Domain ECHMQV512; |
|
|
|
/// \brief Fully Hashed Elliptic Curve Menezes-Qu-Vanstone |
|
/// \tparam EC elliptic curve field |
|
/// \tparam COFACTOR_OPTION cofactor multiplication option |
|
/// \details This implementation follows Augustin P. Sarr and Philippe Elbaz–Vincent, and Jean–Claude Bajard's |
|
/// <a href="http://eprint.iacr.org/2009/408">A Secure and Efficient Authenticated Diffie-Hellman Protocol</a>. |
|
/// Note: this is FHMQV, Protocol 5, from page 11; and not FHMQV-C. |
|
/// \sa CofactorMultiplicationOption |
|
template <class EC, class COFACTOR_OPTION = typename DL_GroupParameters_EC<EC>::DefaultCofactorOption, class HASH = SHA256> |
|
struct ECFHMQV |
|
{ |
|
typedef FHMQV_Domain<DL_GroupParameters_EC<EC>, COFACTOR_OPTION, HASH> Domain; |
|
}; |
|
|
|
typedef ECFHMQV< ECP, DL_GroupParameters_EC< ECP >::DefaultCofactorOption, SHA1 >::Domain ECFHMQV160; |
|
typedef ECFHMQV< ECP, DL_GroupParameters_EC< ECP >::DefaultCofactorOption, SHA256 >::Domain ECFHMQV256; |
|
typedef ECFHMQV< ECP, DL_GroupParameters_EC< ECP >::DefaultCofactorOption, SHA384 >::Domain ECFHMQV384; |
|
typedef ECFHMQV< ECP, DL_GroupParameters_EC< ECP >::DefaultCofactorOption, SHA512 >::Domain ECFHMQV512; |
|
|
|
/// \brief Elliptic Curve Discrete Log (DL) keys |
|
/// \tparam EC elliptic curve field |
|
template <class EC> |
|
struct DL_Keys_EC |
|
{ |
|
typedef DL_PublicKey_EC<EC> PublicKey; |
|
typedef DL_PrivateKey_EC<EC> PrivateKey; |
|
}; |
|
|
|
// Forward declaration; documented below |
|
template <class EC, class H> |
|
struct ECDSA; |
|
|
|
/// \brief Elliptic Curve DSA keys |
|
/// \tparam EC elliptic curve field |
|
/// \since Crypto++ 3.2 |
|
template <class EC> |
|
struct DL_Keys_ECDSA |
|
{ |
|
typedef DL_PublicKey_EC<EC> PublicKey; |
|
typedef DL_PrivateKey_WithSignaturePairwiseConsistencyTest<DL_PrivateKey_EC<EC>, ECDSA<EC, SHA256> > PrivateKey; |
|
}; |
|
|
|
/// \brief Elliptic Curve DSA (ECDSA) signature algorithm |
|
/// \tparam EC elliptic curve field |
|
/// \since Crypto++ 3.2 |
|
template <class EC> |
|
class DL_Algorithm_ECDSA : public DL_Algorithm_GDSA<typename EC::Point> |
|
{ |
|
public: |
|
CRYPTOPP_STATIC_CONSTEXPR const char* CRYPTOPP_API StaticAlgorithmName() {return "ECDSA";} |
|
}; |
|
|
|
/// \brief Elliptic Curve DSA (ECDSA) signature algorithm based on RFC 6979 |
|
/// \tparam EC elliptic curve field |
|
/// \sa <a href="http://tools.ietf.org/rfc/rfc6979.txt">RFC 6979, Deterministic Usage of the |
|
/// Digital Signature Algorithm (DSA) and Elliptic Curve Digital Signature Algorithm (ECDSA)</a> |
|
/// \since Crypto++ 6.0 |
|
template <class EC, class H> |
|
class DL_Algorithm_ECDSA_RFC6979 : public DL_Algorithm_DSA_RFC6979<typename EC::Point, H> |
|
{ |
|
public: |
|
CRYPTOPP_STATIC_CONSTEXPR const char* CRYPTOPP_API StaticAlgorithmName() {return "ECDSA-RFC6979";} |
|
}; |
|
|
|
/// \brief Elliptic Curve NR (ECNR) signature algorithm |
|
/// \tparam EC elliptic curve field |
|
template <class EC> |
|
class DL_Algorithm_ECNR : public DL_Algorithm_NR<typename EC::Point> |
|
{ |
|
public: |
|
CRYPTOPP_STATIC_CONSTEXPR const char* CRYPTOPP_API StaticAlgorithmName() {return "ECNR";} |
|
}; |
|
|
|
/// \brief Elliptic Curve DSA (ECDSA) signature scheme |
|
/// \tparam EC elliptic curve field |
|
/// \tparam H HashTransformation derived class |
|
/// \sa <a href="http://www.weidai.com/scan-mirror/sig.html#ECDSA">ECDSA</a> |
|
/// \since Crypto++ 3.2 |
|
template <class EC, class H> |
|
struct ECDSA : public DL_SS<DL_Keys_ECDSA<EC>, DL_Algorithm_ECDSA<EC>, DL_SignatureMessageEncodingMethod_DSA, H> |
|
{ |
|
}; |
|
|
|
/// \brief Elliptic Curve DSA (ECDSA) deterministic signature scheme |
|
/// \tparam EC elliptic curve field |
|
/// \tparam H HashTransformation derived class |
|
/// \sa <a href="http://tools.ietf.org/rfc/rfc6979.txt">Deterministic Usage of the |
|
/// Digital Signature Algorithm (DSA) and Elliptic Curve Digital Signature Algorithm (ECDSA)</a> |
|
/// \since Crypto++ 6.0 |
|
template <class EC, class H> |
|
struct ECDSA_RFC6979 : public DL_SS< |
|
DL_Keys_ECDSA<EC>, |
|
DL_Algorithm_ECDSA_RFC6979<EC, H>, |
|
DL_SignatureMessageEncodingMethod_DSA, |
|
H, |
|
ECDSA_RFC6979<EC,H> > |
|
{ |
|
static std::string CRYPTOPP_API StaticAlgorithmName() {return std::string("ECDSA-RFC6979/") + H::StaticAlgorithmName();} |
|
}; |
|
|
|
/// \brief Elliptic Curve NR (ECNR) signature scheme |
|
/// \tparam EC elliptic curve field |
|
/// \tparam H HashTransformation derived class |
|
template <class EC, class H = SHA1> |
|
struct ECNR : public DL_SS<DL_Keys_EC<EC>, DL_Algorithm_ECNR<EC>, DL_SignatureMessageEncodingMethod_NR, H> |
|
{ |
|
}; |
|
|
|
// ****************************************** |
|
|
|
template <class EC> |
|
class DL_PublicKey_ECGDSA; |
|
template <class EC> |
|
class DL_PrivateKey_ECGDSA; |
|
|
|
/// \brief Elliptic Curve German DSA key for ISO/IEC 15946 |
|
/// \tparam EC elliptic curve field |
|
/// \sa ECGDSA |
|
/// \since Crypto++ 6.0 |
|
template <class EC> |
|
class DL_PrivateKey_ECGDSA : public DL_PrivateKeyImpl<DL_GroupParameters_EC<EC> > |
|
{ |
|
public: |
|
typedef typename EC::Point Element; |
|
|
|
virtual ~DL_PrivateKey_ECGDSA() {} |
|
|
|
/// \brief Initialize an EC Private Key using {GP,x} |
|
/// \param params group parameters |
|
/// \param x the private exponent |
|
/// \details This Initialize() function overload initializes a private key from existing parameters. |
|
void Initialize(const DL_GroupParameters_EC<EC> ¶ms, const Integer &x) |
|
{ |
|
this->AccessGroupParameters() = params; |
|
this->SetPrivateExponent(x); |
|
CRYPTOPP_ASSERT(x>=1 && x<=params.GetSubgroupOrder()-1); |
|
} |
|
|
|
/// \brief Initialize an EC Private Key using {EC,G,n,x} |
|
/// \param ec the elliptic curve |
|
/// \param G the base point |
|
/// \param n the order of the base point |
|
/// \param x the private exponent |
|
/// \details This Initialize() function overload initializes a private key from existing parameters. |
|
void Initialize(const EC &ec, const Element &G, const Integer &n, const Integer &x) |
|
{ |
|
this->AccessGroupParameters().Initialize(ec, G, n); |
|
this->SetPrivateExponent(x); |
|
CRYPTOPP_ASSERT(x>=1 && x<=this->AccessGroupParameters().GetSubgroupOrder()-1); |
|
} |
|
|
|
/// \brief Create an EC private key |
|
/// \param rng a RandomNumberGenerator derived class |
|
/// \param params the EC group parameters |
|
/// \details This function overload of Initialize() creates a new private key because it |
|
/// takes a RandomNumberGenerator() as a parameter. If you have an existing keypair, |
|
/// then use one of the other Initialize() overloads. |
|
void Initialize(RandomNumberGenerator &rng, const DL_GroupParameters_EC<EC> ¶ms) |
|
{this->GenerateRandom(rng, params);} |
|
|
|
/// \brief Create an EC private key |
|
/// \param rng a RandomNumberGenerator derived class |
|
/// \param ec the elliptic curve |
|
/// \param G the base point |
|
/// \param n the order of the base point |
|
/// \details This function overload of Initialize() creates a new private key because it |
|
/// takes a RandomNumberGenerator() as a parameter. If you have an existing keypair, |
|
/// then use one of the other Initialize() overloads. |
|
void Initialize(RandomNumberGenerator &rng, const EC &ec, const Element &G, const Integer &n) |
|
{this->GenerateRandom(rng, DL_GroupParameters_EC<EC>(ec, G, n));} |
|
|
|
virtual void MakePublicKey(DL_PublicKey_ECGDSA<EC> &pub) const |
|
{ |
|
const DL_GroupParameters<Element>& params = this->GetAbstractGroupParameters(); |
|
pub.AccessAbstractGroupParameters().AssignFrom(params); |
|
const Integer &xInv = this->GetPrivateExponent().InverseMod(params.GetSubgroupOrder()); |
|
pub.SetPublicElement(params.ExponentiateBase(xInv)); |
|
CRYPTOPP_ASSERT(xInv.NotZero()); |
|
} |
|
|
|
virtual bool GetVoidValue(const char *name, const std::type_info &valueType, void *pValue) const |
|
{ |
|
return GetValueHelper<DL_PrivateKey_ECGDSA<EC>, |
|
DL_PrivateKey_ECGDSA<EC> >(this, name, valueType, pValue).Assignable(); |
|
} |
|
|
|
virtual void AssignFrom(const NameValuePairs &source) |
|
{ |
|
AssignFromHelper<DL_PrivateKey_ECGDSA<EC>, |
|
DL_PrivateKey_ECGDSA<EC> >(this, source); |
|
} |
|
|
|
// PKCS8PrivateKey |
|
void BERDecodePrivateKey(BufferedTransformation &bt, bool parametersPresent, size_t size); |
|
void DEREncodePrivateKey(BufferedTransformation &bt) const; |
|
}; |
|
|
|
/// \brief Elliptic Curve German DSA key for ISO/IEC 15946 |
|
/// \tparam EC elliptic curve field |
|
/// \sa ECGDSA |
|
/// \since Crypto++ 6.0 |
|
template <class EC> |
|
class DL_PublicKey_ECGDSA : public DL_PublicKeyImpl<DL_GroupParameters_EC<EC> > |
|
{ |
|
typedef DL_PublicKey_ECGDSA<EC> ThisClass; |
|
|
|
public: |
|
typedef typename EC::Point Element; |
|
|
|
virtual ~DL_PublicKey_ECGDSA() {} |
|
|
|
/// \brief Initialize an EC Public Key using {GP,Q} |
|
/// \param params group parameters |
|
/// \param Q the public point |
|
/// \details This Initialize() function overload initializes a public key from existing parameters. |
|
void Initialize(const DL_GroupParameters_EC<EC> ¶ms, const Element &Q) |
|
{this->AccessGroupParameters() = params; this->SetPublicElement(Q);} |
|
|
|
/// \brief Initialize an EC Public Key using {EC,G,n,Q} |
|
/// \param ec the elliptic curve |
|
/// \param G the base point |
|
/// \param n the order of the base point |
|
/// \param Q the public point |
|
/// \details This Initialize() function overload initializes a public key from existing parameters. |
|
void Initialize(const EC &ec, const Element &G, const Integer &n, const Element &Q) |
|
{this->AccessGroupParameters().Initialize(ec, G, n); this->SetPublicElement(Q);} |
|
|
|
virtual void AssignFrom(const NameValuePairs &source) |
|
{ |
|
DL_PrivateKey_ECGDSA<EC> *pPrivateKey = NULLPTR; |
|
if (source.GetThisPointer(pPrivateKey)) |
|
pPrivateKey->MakePublicKey(*this); |
|
else |
|
{ |
|
this->AccessAbstractGroupParameters().AssignFrom(source); |
|
AssignFromHelper(this, source) |
|
CRYPTOPP_SET_FUNCTION_ENTRY(PublicElement); |
|
} |
|
} |
|
|
|
// DL_PublicKey<T> |
|
virtual void SetPublicElement(const Element &y) |
|
{this->AccessPublicPrecomputation().SetBase(this->GetAbstractGroupParameters().GetGroupPrecomputation(), y);} |
|
|
|
// X509PublicKey |
|
void BERDecodePublicKey(BufferedTransformation &bt, bool parametersPresent, size_t size); |
|
void DEREncodePublicKey(BufferedTransformation &bt) const; |
|
}; |
|
|
|
/// \brief Elliptic Curve German DSA keys for ISO/IEC 15946 |
|
/// \tparam EC elliptic curve field |
|
/// \sa ECGDSA |
|
/// \since Crypto++ 6.0 |
|
template <class EC> |
|
struct DL_Keys_ECGDSA |
|
{ |
|
typedef DL_PublicKey_ECGDSA<EC> PublicKey; |
|
typedef DL_PrivateKey_ECGDSA<EC> PrivateKey; |
|
}; |
|
|
|
/// \brief Elliptic Curve German DSA signature algorithm |
|
/// \tparam EC elliptic curve field |
|
/// \sa ECGDSA |
|
/// \since Crypto++ 6.0 |
|
template <class EC> |
|
class DL_Algorithm_ECGDSA : public DL_Algorithm_GDSA_ISO15946<typename EC::Point> |
|
{ |
|
public: |
|
CRYPTOPP_STATIC_CONSTEXPR const char* CRYPTOPP_API StaticAlgorithmName() {return "ECGDSA";} |
|
}; |
|
|
|
/// \brief Elliptic Curve German Digital Signature Algorithm signature scheme |
|
/// \tparam EC elliptic curve field |
|
/// \tparam H HashTransformation derived class |
|
/// \sa Erwin Hess, Marcus Schafheutle, and Pascale Serf <A |
|
/// HREF="http://www.teletrust.de/fileadmin/files/oid/ecgdsa_final.pdf">The Digital Signature Scheme |
|
/// ECGDSA (October 24, 2006)</A> |
|
/// \since Crypto++ 6.0 |
|
template <class EC, class H> |
|
struct ECGDSA : public DL_SS< |
|
DL_Keys_ECGDSA<EC>, |
|
DL_Algorithm_ECGDSA<EC>, |
|
DL_SignatureMessageEncodingMethod_DSA, |
|
H> |
|
{ |
|
static std::string CRYPTOPP_API StaticAlgorithmName() {return std::string("ECGDSA-ISO15946/") + H::StaticAlgorithmName();} |
|
}; |
|
|
|
// ****************************************** |
|
|
|
/// \brief Elliptic Curve Integrated Encryption Scheme |
|
/// \tparam COFACTOR_OPTION cofactor multiplication option |
|
/// \tparam HASH HashTransformation derived class used for key drivation and MAC computation |
|
/// \tparam DHAES_MODE flag indicating if the MAC includes additional context parameters such as <em>u·V</em>, <em>v·U</em> and label |
|
/// \tparam LABEL_OCTETS flag indicating if the label size is specified in octets or bits |
|
/// \details ECIES is an Elliptic Curve based Integrated Encryption Scheme (IES). The scheme combines a Key Encapsulation |
|
/// Method (KEM) with a Data Encapsulation Method (DEM) and a MAC tag. The scheme is |
|
/// <A HREF="http://en.wikipedia.org/wiki/ciphertext_indistinguishability">IND-CCA2</A>, which is a strong notion of security. |
|
/// You should prefer an Integrated Encryption Scheme over homegrown schemes. |
|
/// \details The library's original implementation is based on an early P1363 draft, which itself appears to be based on an early Certicom |
|
/// SEC-1 draft (or an early SEC-1 draft was based on a P1363 draft). Crypto++ 4.2 used the early draft in its Integrated Ecryption |
|
/// Schemes with <tt>NoCofactorMultiplication</tt>, <tt>DHAES_MODE=false</tt> and <tt>LABEL_OCTETS=true</tt>. |
|
/// \details If you desire an Integrated Encryption Scheme with Crypto++ 4.2 compatibility, then use the ECIES template class with |
|
/// <tt>NoCofactorMultiplication</tt>, <tt>DHAES_MODE=false</tt> and <tt>LABEL_OCTETS=true</tt>. |
|
/// \details If you desire an Integrated Encryption Scheme with Bouncy Castle 1.54 and Botan 1.11 compatibility, then use the ECIES |
|
/// template class with <tt>NoCofactorMultiplication</tt>, <tt>DHAES_MODE=true</tt> and <tt>LABEL_OCTETS=false</tt>. |
|
/// \details The default template parameters ensure compatibility with Bouncy Castle 1.54 and Botan 1.11. The combination of |
|
/// <tt>IncompatibleCofactorMultiplication</tt> and <tt>DHAES_MODE=true</tt> is recommended for best efficiency and security. |
|
/// SHA1 is used for compatibility reasons, but it can be changed if desired. SHA-256 or another hash will likely improve the |
|
/// security provided by the MAC. The hash is also used in the key derivation function as a PRF. |
|
/// \details Below is an example of constructing a Crypto++ 4.2 compatible ECIES encryptor and decryptor. |
|
/// <pre> |
|
/// AutoSeededRandomPool prng; |
|
/// DL_PrivateKey_EC<ECP> key; |
|
/// key.Initialize(prng, ASN1::secp160r1()); |
|
/// |
|
/// ECIES<ECP,SHA1,NoCofactorMultiplication,true,true>::Decryptor decryptor(key); |
|
/// ECIES<ECP,SHA1,NoCofactorMultiplication,true,true>::Encryptor encryptor(decryptor); |
|
/// </pre> |
|
/// \sa DLIES, <a href="http://www.weidai.com/scan-mirror/ca.html#ECIES">Elliptic Curve Integrated Encryption Scheme (ECIES)</a>, |
|
/// Martínez, Encinas, and Ávila's <A HREF="http://digital.csic.es/bitstream/10261/32671/1/V2-I2-P7-13.pdf">A Survey of the Elliptic |
|
/// Curve Integrated Encryption Schemes</A> |
|
/// \since Crypto++ 4.0, Crypto++ 5.7 for Bouncy Castle and Botan compatibility |
|
template <class EC, class HASH = SHA1, class COFACTOR_OPTION = NoCofactorMultiplication, bool DHAES_MODE = true, bool LABEL_OCTETS = false> |
|
struct ECIES |
|
: public DL_ES< |
|
DL_Keys_EC<EC>, |
|
DL_KeyAgreementAlgorithm_DH<typename EC::Point, COFACTOR_OPTION>, |
|
DL_KeyDerivationAlgorithm_P1363<typename EC::Point, DHAES_MODE, P1363_KDF2<HASH> >, |
|
DL_EncryptionAlgorithm_Xor<HMAC<HASH>, DHAES_MODE, LABEL_OCTETS>, |
|
ECIES<EC> > |
|
{ |
|
// TODO: fix this after name is standardized |
|
CRYPTOPP_STATIC_CONSTEXPR const char* CRYPTOPP_API StaticAlgorithmName() {return "ECIES";} |
|
}; |
|
|
|
NAMESPACE_END |
|
|
|
#ifdef CRYPTOPP_MANUALLY_INSTANTIATE_TEMPLATES |
|
#include "eccrypto.cpp" |
|
#endif |
|
|
|
NAMESPACE_BEGIN(CryptoPP) |
|
|
|
CRYPTOPP_DLL_TEMPLATE_CLASS DL_GroupParameters_EC<ECP>; |
|
CRYPTOPP_DLL_TEMPLATE_CLASS DL_GroupParameters_EC<EC2N>; |
|
CRYPTOPP_DLL_TEMPLATE_CLASS DL_PublicKeyImpl<DL_GroupParameters_EC<ECP> >; |
|
CRYPTOPP_DLL_TEMPLATE_CLASS DL_PublicKeyImpl<DL_GroupParameters_EC<EC2N> >; |
|
CRYPTOPP_DLL_TEMPLATE_CLASS DL_PublicKey_EC<ECP>; |
|
CRYPTOPP_DLL_TEMPLATE_CLASS DL_PublicKey_EC<EC2N>; |
|
CRYPTOPP_DLL_TEMPLATE_CLASS DL_PublicKey_ECGDSA<ECP>; |
|
CRYPTOPP_DLL_TEMPLATE_CLASS DL_PublicKey_ECGDSA<EC2N>; |
|
CRYPTOPP_DLL_TEMPLATE_CLASS DL_PrivateKeyImpl<DL_GroupParameters_EC<ECP> >; |
|
CRYPTOPP_DLL_TEMPLATE_CLASS DL_PrivateKeyImpl<DL_GroupParameters_EC<EC2N> >; |
|
CRYPTOPP_DLL_TEMPLATE_CLASS DL_PrivateKey_EC<ECP>; |
|
CRYPTOPP_DLL_TEMPLATE_CLASS DL_PrivateKey_EC<EC2N>; |
|
CRYPTOPP_DLL_TEMPLATE_CLASS DL_PrivateKey_ECGDSA<ECP>; |
|
CRYPTOPP_DLL_TEMPLATE_CLASS DL_PrivateKey_ECGDSA<EC2N>; |
|
CRYPTOPP_DLL_TEMPLATE_CLASS DL_Algorithm_GDSA<ECP::Point>; |
|
CRYPTOPP_DLL_TEMPLATE_CLASS DL_Algorithm_GDSA<EC2N::Point>; |
|
CRYPTOPP_DLL_TEMPLATE_CLASS DL_PrivateKey_WithSignaturePairwiseConsistencyTest<DL_PrivateKey_EC<ECP>, ECDSA<ECP, SHA256> >; |
|
CRYPTOPP_DLL_TEMPLATE_CLASS DL_PrivateKey_WithSignaturePairwiseConsistencyTest<DL_PrivateKey_EC<EC2N>, ECDSA<EC2N, SHA256> >; |
|
|
|
NAMESPACE_END |
|
|
|
#if CRYPTOPP_MSC_VERSION |
|
# pragma warning(pop) |
|
#endif |
|
|
|
#endif
|
|
|