You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
2743 lines
86 KiB
2743 lines
86 KiB
/* apps/speed.c */ |
|
/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com) |
|
* All rights reserved. |
|
* |
|
* This package is an SSL implementation written |
|
* by Eric Young (eay@cryptsoft.com). |
|
* The implementation was written so as to conform with Netscapes SSL. |
|
* |
|
* This library is free for commercial and non-commercial use as long as |
|
* the following conditions are aheared to. The following conditions |
|
* apply to all code found in this distribution, be it the RC4, RSA, |
|
* lhash, DES, etc., code; not just the SSL code. The SSL documentation |
|
* included with this distribution is covered by the same copyright terms |
|
* except that the holder is Tim Hudson (tjh@cryptsoft.com). |
|
* |
|
* Copyright remains Eric Young's, and as such any Copyright notices in |
|
* the code are not to be removed. |
|
* If this package is used in a product, Eric Young should be given attribution |
|
* as the author of the parts of the library used. |
|
* This can be in the form of a textual message at program startup or |
|
* in documentation (online or textual) provided with the package. |
|
* |
|
* Redistribution and use in source and binary forms, with or without |
|
* modification, are permitted provided that the following conditions |
|
* are met: |
|
* 1. Redistributions of source code must retain the copyright |
|
* notice, this list of conditions and the following disclaimer. |
|
* 2. Redistributions in binary form must reproduce the above copyright |
|
* notice, this list of conditions and the following disclaimer in the |
|
* documentation and/or other materials provided with the distribution. |
|
* 3. All advertising materials mentioning features or use of this software |
|
* must display the following acknowledgement: |
|
* "This product includes cryptographic software written by |
|
* Eric Young (eay@cryptsoft.com)" |
|
* The word 'cryptographic' can be left out if the rouines from the library |
|
* being used are not cryptographic related :-). |
|
* 4. If you include any Windows specific code (or a derivative thereof) from |
|
* the apps directory (application code) you must include an acknowledgement: |
|
* "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" |
|
* |
|
* THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND |
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE |
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL |
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS |
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY |
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF |
|
* SUCH DAMAGE. |
|
* |
|
* The licence and distribution terms for any publically available version or |
|
* derivative of this code cannot be changed. i.e. this code cannot simply be |
|
* copied and put under another distribution licence |
|
* [including the GNU Public Licence.] |
|
*/ |
|
/* ==================================================================== |
|
* Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED. |
|
* |
|
* Portions of the attached software ("Contribution") are developed by |
|
* SUN MICROSYSTEMS, INC., and are contributed to the OpenSSL project. |
|
* |
|
* The Contribution is licensed pursuant to the OpenSSL open source |
|
* license provided above. |
|
* |
|
* The ECDH and ECDSA speed test software is originally written by |
|
* Sumit Gupta of Sun Microsystems Laboratories. |
|
* |
|
*/ |
|
|
|
/* most of this code has been pilfered from my libdes speed.c program */ |
|
|
|
#ifndef OPENSSL_NO_SPEED |
|
|
|
# undef SECONDS |
|
# define SECONDS 3 |
|
# define RSA_SECONDS 10 |
|
# define DSA_SECONDS 10 |
|
# define ECDSA_SECONDS 10 |
|
# define ECDH_SECONDS 10 |
|
|
|
/* 11-Sep-92 Andrew Daviel Support for Silicon Graphics IRIX added */ |
|
/* 06-Apr-92 Luke Brennan Support for VMS and add extra signal calls */ |
|
|
|
# undef PROG |
|
# define PROG speed_main |
|
|
|
# include <stdio.h> |
|
# include <stdlib.h> |
|
|
|
# include <string.h> |
|
# include <math.h> |
|
# include "apps.h" |
|
# ifdef OPENSSL_NO_STDIO |
|
# define APPS_WIN16 |
|
# endif |
|
# include <openssl/crypto.h> |
|
# include <openssl/rand.h> |
|
# include <openssl/err.h> |
|
# include <openssl/evp.h> |
|
# include <openssl/objects.h> |
|
# if !defined(OPENSSL_SYS_MSDOS) |
|
# include OPENSSL_UNISTD |
|
# endif |
|
|
|
# ifndef OPENSSL_SYS_NETWARE |
|
# include <signal.h> |
|
# endif |
|
|
|
# if defined(_WIN32) || defined(__CYGWIN__) |
|
# include <windows.h> |
|
# if defined(__CYGWIN__) && !defined(_WIN32) |
|
/* |
|
* <windows.h> should define _WIN32, which normally is mutually exclusive |
|
* with __CYGWIN__, but if it didn't... |
|
*/ |
|
# define _WIN32 |
|
/* this is done because Cygwin alarm() fails sometimes. */ |
|
# endif |
|
# endif |
|
|
|
# include <openssl/bn.h> |
|
# ifndef OPENSSL_NO_DES |
|
# include <openssl/des.h> |
|
# endif |
|
# ifndef OPENSSL_NO_AES |
|
# include <openssl/aes.h> |
|
# endif |
|
# ifndef OPENSSL_NO_CAMELLIA |
|
# include <openssl/camellia.h> |
|
# endif |
|
# ifndef OPENSSL_NO_MD2 |
|
# include <openssl/md2.h> |
|
# endif |
|
# ifndef OPENSSL_NO_MDC2 |
|
# include <openssl/mdc2.h> |
|
# endif |
|
# ifndef OPENSSL_NO_MD4 |
|
# include <openssl/md4.h> |
|
# endif |
|
# ifndef OPENSSL_NO_MD5 |
|
# include <openssl/md5.h> |
|
# endif |
|
# ifndef OPENSSL_NO_HMAC |
|
# include <openssl/hmac.h> |
|
# endif |
|
# include <openssl/evp.h> |
|
# ifndef OPENSSL_NO_SHA |
|
# include <openssl/sha.h> |
|
# endif |
|
# ifndef OPENSSL_NO_RIPEMD |
|
# include <openssl/ripemd.h> |
|
# endif |
|
# ifndef OPENSSL_NO_WHIRLPOOL |
|
# include <openssl/whrlpool.h> |
|
# endif |
|
# ifndef OPENSSL_NO_RC4 |
|
# include <openssl/rc4.h> |
|
# endif |
|
# ifndef OPENSSL_NO_RC5 |
|
# include <openssl/rc5.h> |
|
# endif |
|
# ifndef OPENSSL_NO_RC2 |
|
# include <openssl/rc2.h> |
|
# endif |
|
# ifndef OPENSSL_NO_IDEA |
|
# include <openssl/idea.h> |
|
# endif |
|
# ifndef OPENSSL_NO_SEED |
|
# include <openssl/seed.h> |
|
# endif |
|
# ifndef OPENSSL_NO_BF |
|
# include <openssl/blowfish.h> |
|
# endif |
|
# ifndef OPENSSL_NO_CAST |
|
# include <openssl/cast.h> |
|
# endif |
|
# ifndef OPENSSL_NO_RSA |
|
# include <openssl/rsa.h> |
|
# include "./testrsa.h" |
|
# endif |
|
# include <openssl/x509.h> |
|
# ifndef OPENSSL_NO_DSA |
|
# include <openssl/dsa.h> |
|
# include "./testdsa.h" |
|
# endif |
|
# ifndef OPENSSL_NO_ECDSA |
|
# include <openssl/ecdsa.h> |
|
# endif |
|
# ifndef OPENSSL_NO_ECDH |
|
# include <openssl/ecdh.h> |
|
# endif |
|
# include <openssl/modes.h> |
|
|
|
# ifdef OPENSSL_FIPS |
|
# ifdef OPENSSL_DOING_MAKEDEPEND |
|
# undef AES_set_encrypt_key |
|
# undef AES_set_decrypt_key |
|
# undef DES_set_key_unchecked |
|
# endif |
|
# define BF_set_key private_BF_set_key |
|
# define CAST_set_key private_CAST_set_key |
|
# define idea_set_encrypt_key private_idea_set_encrypt_key |
|
# define SEED_set_key private_SEED_set_key |
|
# define RC2_set_key private_RC2_set_key |
|
# define RC4_set_key private_RC4_set_key |
|
# define DES_set_key_unchecked private_DES_set_key_unchecked |
|
# define AES_set_encrypt_key private_AES_set_encrypt_key |
|
# define AES_set_decrypt_key private_AES_set_decrypt_key |
|
# define Camellia_set_key private_Camellia_set_key |
|
# endif |
|
|
|
# ifndef HAVE_FORK |
|
# if defined(OPENSSL_SYS_VMS) || defined(OPENSSL_SYS_WINDOWS) || defined(OPENSSL_SYS_MACINTOSH_CLASSIC) || defined(OPENSSL_SYS_OS2) || defined(OPENSSL_SYS_NETWARE) |
|
# define HAVE_FORK 0 |
|
# else |
|
# define HAVE_FORK 1 |
|
# endif |
|
# endif |
|
|
|
# if HAVE_FORK |
|
# undef NO_FORK |
|
# else |
|
# define NO_FORK |
|
# endif |
|
|
|
# undef BUFSIZE |
|
# define BUFSIZE ((long)1024*8+1) |
|
static volatile int run = 0; |
|
|
|
static int mr = 0; |
|
static int usertime = 1; |
|
|
|
static double Time_F(int s); |
|
static void print_message(const char *s, long num, int length); |
|
static void pkey_print_message(const char *str, const char *str2, |
|
long num, int bits, int sec); |
|
static void print_result(int alg, int run_no, int count, double time_used); |
|
# ifndef NO_FORK |
|
static int do_multi(int multi); |
|
# endif |
|
|
|
# define ALGOR_NUM 30 |
|
# define SIZE_NUM 5 |
|
# define RSA_NUM 4 |
|
# define DSA_NUM 3 |
|
|
|
# define EC_NUM 16 |
|
# define MAX_ECDH_SIZE 256 |
|
|
|
static const char *names[ALGOR_NUM] = { |
|
"md2", "mdc2", "md4", "md5", "hmac(md5)", "sha1", "rmd160", "rc4", |
|
"des cbc", "des ede3", "idea cbc", "seed cbc", |
|
"rc2 cbc", "rc5-32/12 cbc", "blowfish cbc", "cast cbc", |
|
"aes-128 cbc", "aes-192 cbc", "aes-256 cbc", |
|
"camellia-128 cbc", "camellia-192 cbc", "camellia-256 cbc", |
|
"evp", "sha256", "sha512", "whirlpool", |
|
"aes-128 ige", "aes-192 ige", "aes-256 ige", "ghash" |
|
}; |
|
|
|
static double results[ALGOR_NUM][SIZE_NUM]; |
|
static int lengths[SIZE_NUM] = { 16, 64, 256, 1024, 8 * 1024 }; |
|
|
|
# ifndef OPENSSL_NO_RSA |
|
static double rsa_results[RSA_NUM][2]; |
|
# endif |
|
# ifndef OPENSSL_NO_DSA |
|
static double dsa_results[DSA_NUM][2]; |
|
# endif |
|
# ifndef OPENSSL_NO_ECDSA |
|
static double ecdsa_results[EC_NUM][2]; |
|
# endif |
|
# ifndef OPENSSL_NO_ECDH |
|
static double ecdh_results[EC_NUM][1]; |
|
# endif |
|
|
|
# if defined(OPENSSL_NO_DSA) && !(defined(OPENSSL_NO_ECDSA) && defined(OPENSSL_NO_ECDH)) |
|
static const char rnd_seed[] = |
|
"string to make the random number generator think it has entropy"; |
|
static int rnd_fake = 0; |
|
# endif |
|
|
|
# ifdef SIGALRM |
|
# if defined(__STDC__) || defined(sgi) || defined(_AIX) |
|
# define SIGRETTYPE void |
|
# else |
|
# define SIGRETTYPE int |
|
# endif |
|
|
|
static SIGRETTYPE sig_done(int sig); |
|
static SIGRETTYPE sig_done(int sig) |
|
{ |
|
signal(SIGALRM, sig_done); |
|
run = 0; |
|
# ifdef LINT |
|
sig = sig; |
|
# endif |
|
} |
|
# endif |
|
|
|
# define START 0 |
|
# define STOP 1 |
|
|
|
# if defined(_WIN32) |
|
|
|
# if !defined(SIGALRM) |
|
# define SIGALRM |
|
# endif |
|
static unsigned int lapse, schlock; |
|
static void alarm_win32(unsigned int secs) |
|
{ |
|
lapse = secs * 1000; |
|
} |
|
|
|
# define alarm alarm_win32 |
|
|
|
static DWORD WINAPI sleepy(VOID * arg) |
|
{ |
|
schlock = 1; |
|
Sleep(lapse); |
|
run = 0; |
|
return 0; |
|
} |
|
|
|
static double Time_F(int s) |
|
{ |
|
if (s == START) { |
|
HANDLE thr; |
|
schlock = 0; |
|
thr = CreateThread(NULL, 4096, sleepy, NULL, 0, NULL); |
|
if (thr == NULL) { |
|
DWORD ret = GetLastError(); |
|
BIO_printf(bio_err, "unable to CreateThread (%d)", ret); |
|
ExitProcess(ret); |
|
} |
|
CloseHandle(thr); /* detach the thread */ |
|
while (!schlock) |
|
Sleep(0); /* scheduler spinlock */ |
|
} |
|
|
|
return app_tminterval(s, usertime); |
|
} |
|
# else |
|
|
|
static double Time_F(int s) |
|
{ |
|
return app_tminterval(s, usertime); |
|
} |
|
# endif |
|
|
|
# ifndef OPENSSL_NO_ECDH |
|
static const int KDF1_SHA1_len = 20; |
|
static void *KDF1_SHA1(const void *in, size_t inlen, void *out, |
|
size_t *outlen) |
|
{ |
|
# ifndef OPENSSL_NO_SHA |
|
if (*outlen < SHA_DIGEST_LENGTH) |
|
return NULL; |
|
else |
|
*outlen = SHA_DIGEST_LENGTH; |
|
return SHA1(in, inlen, out); |
|
# else |
|
return NULL; |
|
# endif /* OPENSSL_NO_SHA */ |
|
} |
|
# endif /* OPENSSL_NO_ECDH */ |
|
|
|
int MAIN(int, char **); |
|
|
|
int MAIN(int argc, char **argv) |
|
{ |
|
unsigned char *buf = NULL, *buf2 = NULL; |
|
int mret = 1; |
|
long count = 0, save_count = 0; |
|
int i, j, k; |
|
# if !defined(OPENSSL_NO_RSA) || !defined(OPENSSL_NO_DSA) |
|
long rsa_count; |
|
# endif |
|
# ifndef OPENSSL_NO_RSA |
|
unsigned rsa_num; |
|
# endif |
|
unsigned char md[EVP_MAX_MD_SIZE]; |
|
# ifndef OPENSSL_NO_MD2 |
|
unsigned char md2[MD2_DIGEST_LENGTH]; |
|
# endif |
|
# ifndef OPENSSL_NO_MDC2 |
|
unsigned char mdc2[MDC2_DIGEST_LENGTH]; |
|
# endif |
|
# ifndef OPENSSL_NO_MD4 |
|
unsigned char md4[MD4_DIGEST_LENGTH]; |
|
# endif |
|
# ifndef OPENSSL_NO_MD5 |
|
unsigned char md5[MD5_DIGEST_LENGTH]; |
|
unsigned char hmac[MD5_DIGEST_LENGTH]; |
|
# endif |
|
# ifndef OPENSSL_NO_SHA |
|
unsigned char sha[SHA_DIGEST_LENGTH]; |
|
# ifndef OPENSSL_NO_SHA256 |
|
unsigned char sha256[SHA256_DIGEST_LENGTH]; |
|
# endif |
|
# ifndef OPENSSL_NO_SHA512 |
|
unsigned char sha512[SHA512_DIGEST_LENGTH]; |
|
# endif |
|
# endif |
|
# ifndef OPENSSL_NO_WHIRLPOOL |
|
unsigned char whirlpool[WHIRLPOOL_DIGEST_LENGTH]; |
|
# endif |
|
# ifndef OPENSSL_NO_RIPEMD |
|
unsigned char rmd160[RIPEMD160_DIGEST_LENGTH]; |
|
# endif |
|
# ifndef OPENSSL_NO_RC4 |
|
RC4_KEY rc4_ks; |
|
# endif |
|
# ifndef OPENSSL_NO_RC5 |
|
RC5_32_KEY rc5_ks; |
|
# endif |
|
# ifndef OPENSSL_NO_RC2 |
|
RC2_KEY rc2_ks; |
|
# endif |
|
# ifndef OPENSSL_NO_IDEA |
|
IDEA_KEY_SCHEDULE idea_ks; |
|
# endif |
|
# ifndef OPENSSL_NO_SEED |
|
SEED_KEY_SCHEDULE seed_ks; |
|
# endif |
|
# ifndef OPENSSL_NO_BF |
|
BF_KEY bf_ks; |
|
# endif |
|
# ifndef OPENSSL_NO_CAST |
|
CAST_KEY cast_ks; |
|
# endif |
|
static const unsigned char key16[16] = { |
|
0x12, 0x34, 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0, |
|
0x34, 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0, 0x12 |
|
}; |
|
# ifndef OPENSSL_NO_AES |
|
static const unsigned char key24[24] = { |
|
0x12, 0x34, 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0, |
|
0x34, 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0, 0x12, |
|
0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0, 0x12, 0x34 |
|
}; |
|
static const unsigned char key32[32] = { |
|
0x12, 0x34, 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0, |
|
0x34, 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0, 0x12, |
|
0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0, 0x12, 0x34, |
|
0x78, 0x9a, 0xbc, 0xde, 0xf0, 0x12, 0x34, 0x56 |
|
}; |
|
# endif |
|
# ifndef OPENSSL_NO_CAMELLIA |
|
static const unsigned char ckey24[24] = { |
|
0x12, 0x34, 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0, |
|
0x34, 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0, 0x12, |
|
0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0, 0x12, 0x34 |
|
}; |
|
static const unsigned char ckey32[32] = { |
|
0x12, 0x34, 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0, |
|
0x34, 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0, 0x12, |
|
0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0, 0x12, 0x34, |
|
0x78, 0x9a, 0xbc, 0xde, 0xf0, 0x12, 0x34, 0x56 |
|
}; |
|
# endif |
|
# ifndef OPENSSL_NO_AES |
|
# define MAX_BLOCK_SIZE 128 |
|
# else |
|
# define MAX_BLOCK_SIZE 64 |
|
# endif |
|
unsigned char DES_iv[8]; |
|
unsigned char iv[2 * MAX_BLOCK_SIZE / 8]; |
|
# ifndef OPENSSL_NO_DES |
|
static DES_cblock key = |
|
{ 0x12, 0x34, 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0 }; |
|
static DES_cblock key2 = |
|
{ 0x34, 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0, 0x12 }; |
|
static DES_cblock key3 = |
|
{ 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0, 0x12, 0x34 }; |
|
DES_key_schedule sch; |
|
DES_key_schedule sch2; |
|
DES_key_schedule sch3; |
|
# endif |
|
# ifndef OPENSSL_NO_AES |
|
AES_KEY aes_ks1, aes_ks2, aes_ks3; |
|
# endif |
|
# ifndef OPENSSL_NO_CAMELLIA |
|
CAMELLIA_KEY camellia_ks1, camellia_ks2, camellia_ks3; |
|
# endif |
|
# define D_MD2 0 |
|
# define D_MDC2 1 |
|
# define D_MD4 2 |
|
# define D_MD5 3 |
|
# define D_HMAC 4 |
|
# define D_SHA1 5 |
|
# define D_RMD160 6 |
|
# define D_RC4 7 |
|
# define D_CBC_DES 8 |
|
# define D_EDE3_DES 9 |
|
# define D_CBC_IDEA 10 |
|
# define D_CBC_SEED 11 |
|
# define D_CBC_RC2 12 |
|
# define D_CBC_RC5 13 |
|
# define D_CBC_BF 14 |
|
# define D_CBC_CAST 15 |
|
# define D_CBC_128_AES 16 |
|
# define D_CBC_192_AES 17 |
|
# define D_CBC_256_AES 18 |
|
# define D_CBC_128_CML 19 |
|
# define D_CBC_192_CML 20 |
|
# define D_CBC_256_CML 21 |
|
# define D_EVP 22 |
|
# define D_SHA256 23 |
|
# define D_SHA512 24 |
|
# define D_WHIRLPOOL 25 |
|
# define D_IGE_128_AES 26 |
|
# define D_IGE_192_AES 27 |
|
# define D_IGE_256_AES 28 |
|
# define D_GHASH 29 |
|
double d = 0.0; |
|
long c[ALGOR_NUM][SIZE_NUM]; |
|
# define R_DSA_512 0 |
|
# define R_DSA_1024 1 |
|
# define R_DSA_2048 2 |
|
# define R_RSA_512 0 |
|
# define R_RSA_1024 1 |
|
# define R_RSA_2048 2 |
|
# define R_RSA_4096 3 |
|
|
|
# define R_EC_P160 0 |
|
# define R_EC_P192 1 |
|
# define R_EC_P224 2 |
|
# define R_EC_P256 3 |
|
# define R_EC_P384 4 |
|
# define R_EC_P521 5 |
|
# define R_EC_K163 6 |
|
# define R_EC_K233 7 |
|
# define R_EC_K283 8 |
|
# define R_EC_K409 9 |
|
# define R_EC_K571 10 |
|
# define R_EC_B163 11 |
|
# define R_EC_B233 12 |
|
# define R_EC_B283 13 |
|
# define R_EC_B409 14 |
|
# define R_EC_B571 15 |
|
|
|
# ifndef OPENSSL_NO_RSA |
|
RSA *rsa_key[RSA_NUM]; |
|
long rsa_c[RSA_NUM][2]; |
|
static unsigned int rsa_bits[RSA_NUM] = { |
|
512, 1024, 2048, 4096 |
|
}; |
|
static unsigned char *rsa_data[RSA_NUM] = { |
|
test512, test1024, test2048, test4096 |
|
}; |
|
static int rsa_data_length[RSA_NUM] = { |
|
sizeof(test512), sizeof(test1024), |
|
sizeof(test2048), sizeof(test4096) |
|
}; |
|
# endif |
|
# ifndef OPENSSL_NO_DSA |
|
DSA *dsa_key[DSA_NUM]; |
|
long dsa_c[DSA_NUM][2]; |
|
static unsigned int dsa_bits[DSA_NUM] = { 512, 1024, 2048 }; |
|
# endif |
|
# ifndef OPENSSL_NO_EC |
|
/* |
|
* We only test over the following curves as they are representative, To |
|
* add tests over more curves, simply add the curve NID and curve name to |
|
* the following arrays and increase the EC_NUM value accordingly. |
|
*/ |
|
static unsigned int test_curves[EC_NUM] = { |
|
/* Prime Curves */ |
|
NID_secp160r1, |
|
NID_X9_62_prime192v1, |
|
NID_secp224r1, |
|
NID_X9_62_prime256v1, |
|
NID_secp384r1, |
|
NID_secp521r1, |
|
/* Binary Curves */ |
|
NID_sect163k1, |
|
NID_sect233k1, |
|
NID_sect283k1, |
|
NID_sect409k1, |
|
NID_sect571k1, |
|
NID_sect163r2, |
|
NID_sect233r1, |
|
NID_sect283r1, |
|
NID_sect409r1, |
|
NID_sect571r1 |
|
}; |
|
static const char *test_curves_names[EC_NUM] = { |
|
/* Prime Curves */ |
|
"secp160r1", |
|
"nistp192", |
|
"nistp224", |
|
"nistp256", |
|
"nistp384", |
|
"nistp521", |
|
/* Binary Curves */ |
|
"nistk163", |
|
"nistk233", |
|
"nistk283", |
|
"nistk409", |
|
"nistk571", |
|
"nistb163", |
|
"nistb233", |
|
"nistb283", |
|
"nistb409", |
|
"nistb571" |
|
}; |
|
static int test_curves_bits[EC_NUM] = { |
|
160, 192, 224, 256, 384, 521, |
|
163, 233, 283, 409, 571, |
|
163, 233, 283, 409, 571 |
|
}; |
|
|
|
# endif |
|
|
|
# ifndef OPENSSL_NO_ECDSA |
|
unsigned char ecdsasig[256]; |
|
unsigned int ecdsasiglen; |
|
EC_KEY *ecdsa[EC_NUM]; |
|
long ecdsa_c[EC_NUM][2]; |
|
# endif |
|
|
|
# ifndef OPENSSL_NO_ECDH |
|
EC_KEY *ecdh_a[EC_NUM], *ecdh_b[EC_NUM]; |
|
unsigned char secret_a[MAX_ECDH_SIZE], secret_b[MAX_ECDH_SIZE]; |
|
int secret_size_a, secret_size_b; |
|
int ecdh_checks = 0; |
|
int secret_idx = 0; |
|
long ecdh_c[EC_NUM][2]; |
|
# endif |
|
|
|
int rsa_doit[RSA_NUM]; |
|
int dsa_doit[DSA_NUM]; |
|
# ifndef OPENSSL_NO_ECDSA |
|
int ecdsa_doit[EC_NUM]; |
|
# endif |
|
# ifndef OPENSSL_NO_ECDH |
|
int ecdh_doit[EC_NUM]; |
|
# endif |
|
int doit[ALGOR_NUM]; |
|
int pr_header = 0; |
|
const EVP_CIPHER *evp_cipher = NULL; |
|
const EVP_MD *evp_md = NULL; |
|
int decrypt = 0; |
|
# ifndef NO_FORK |
|
int multi = 0; |
|
# endif |
|
|
|
# ifndef TIMES |
|
usertime = -1; |
|
# endif |
|
|
|
apps_startup(); |
|
memset(results, 0, sizeof(results)); |
|
# ifndef OPENSSL_NO_DSA |
|
memset(dsa_key, 0, sizeof(dsa_key)); |
|
# endif |
|
# ifndef OPENSSL_NO_ECDSA |
|
for (i = 0; i < EC_NUM; i++) |
|
ecdsa[i] = NULL; |
|
# endif |
|
# ifndef OPENSSL_NO_ECDH |
|
for (i = 0; i < EC_NUM; i++) { |
|
ecdh_a[i] = NULL; |
|
ecdh_b[i] = NULL; |
|
} |
|
# endif |
|
# ifndef OPENSSL_NO_RSA |
|
for (i = 0; i < RSA_NUM; i++) |
|
rsa_key[i] = NULL; |
|
# endif |
|
|
|
if (bio_err == NULL) |
|
if ((bio_err = BIO_new(BIO_s_file())) != NULL) |
|
BIO_set_fp(bio_err, stderr, BIO_NOCLOSE | BIO_FP_TEXT); |
|
|
|
if (!load_config(bio_err, NULL)) |
|
goto end; |
|
|
|
if ((buf = (unsigned char *)OPENSSL_malloc((int)BUFSIZE)) == NULL) { |
|
BIO_printf(bio_err, "out of memory\n"); |
|
goto end; |
|
} |
|
if ((buf2 = (unsigned char *)OPENSSL_malloc((int)BUFSIZE)) == NULL) { |
|
BIO_printf(bio_err, "out of memory\n"); |
|
goto end; |
|
} |
|
|
|
memset(c, 0, sizeof(c)); |
|
memset(DES_iv, 0, sizeof(DES_iv)); |
|
memset(iv, 0, sizeof(iv)); |
|
|
|
for (i = 0; i < ALGOR_NUM; i++) |
|
doit[i] = 0; |
|
for (i = 0; i < RSA_NUM; i++) |
|
rsa_doit[i] = 0; |
|
for (i = 0; i < DSA_NUM; i++) |
|
dsa_doit[i] = 0; |
|
# ifndef OPENSSL_NO_ECDSA |
|
for (i = 0; i < EC_NUM; i++) |
|
ecdsa_doit[i] = 0; |
|
# endif |
|
# ifndef OPENSSL_NO_ECDH |
|
for (i = 0; i < EC_NUM; i++) |
|
ecdh_doit[i] = 0; |
|
# endif |
|
|
|
j = 0; |
|
argc--; |
|
argv++; |
|
while (argc) { |
|
if ((argc > 0) && (strcmp(*argv, "-elapsed") == 0)) { |
|
usertime = 0; |
|
j--; /* Otherwise, -elapsed gets confused with an |
|
* algorithm. */ |
|
} else if ((argc > 0) && (strcmp(*argv, "-evp") == 0)) { |
|
argc--; |
|
argv++; |
|
if (argc == 0) { |
|
BIO_printf(bio_err, "no EVP given\n"); |
|
goto end; |
|
} |
|
evp_cipher = EVP_get_cipherbyname(*argv); |
|
if (!evp_cipher) { |
|
evp_md = EVP_get_digestbyname(*argv); |
|
} |
|
if (!evp_cipher && !evp_md) { |
|
BIO_printf(bio_err, "%s is an unknown cipher or digest\n", |
|
*argv); |
|
goto end; |
|
} |
|
doit[D_EVP] = 1; |
|
} else if (argc > 0 && !strcmp(*argv, "-decrypt")) { |
|
decrypt = 1; |
|
j--; /* Otherwise, -elapsed gets confused with an |
|
* algorithm. */ |
|
} |
|
# ifndef OPENSSL_NO_ENGINE |
|
else if ((argc > 0) && (strcmp(*argv, "-engine") == 0)) { |
|
argc--; |
|
argv++; |
|
if (argc == 0) { |
|
BIO_printf(bio_err, "no engine given\n"); |
|
goto end; |
|
} |
|
setup_engine(bio_err, *argv, 0); |
|
/* |
|
* j will be increased again further down. We just don't want |
|
* speed to confuse an engine with an algorithm, especially when |
|
* none is given (which means all of them should be run) |
|
*/ |
|
j--; |
|
} |
|
# endif |
|
# ifndef NO_FORK |
|
else if ((argc > 0) && (strcmp(*argv, "-multi") == 0)) { |
|
argc--; |
|
argv++; |
|
if (argc == 0) { |
|
BIO_printf(bio_err, "no multi count given\n"); |
|
goto end; |
|
} |
|
multi = atoi(argv[0]); |
|
if (multi <= 0) { |
|
BIO_printf(bio_err, "bad multi count\n"); |
|
goto end; |
|
} |
|
j--; /* Otherwise, -mr gets confused with an |
|
* algorithm. */ |
|
} |
|
# endif |
|
else if (argc > 0 && !strcmp(*argv, "-mr")) { |
|
mr = 1; |
|
j--; /* Otherwise, -mr gets confused with an |
|
* algorithm. */ |
|
} else |
|
# ifndef OPENSSL_NO_MD2 |
|
if (strcmp(*argv, "md2") == 0) |
|
doit[D_MD2] = 1; |
|
else |
|
# endif |
|
# ifndef OPENSSL_NO_MDC2 |
|
if (strcmp(*argv, "mdc2") == 0) |
|
doit[D_MDC2] = 1; |
|
else |
|
# endif |
|
# ifndef OPENSSL_NO_MD4 |
|
if (strcmp(*argv, "md4") == 0) |
|
doit[D_MD4] = 1; |
|
else |
|
# endif |
|
# ifndef OPENSSL_NO_MD5 |
|
if (strcmp(*argv, "md5") == 0) |
|
doit[D_MD5] = 1; |
|
else |
|
# endif |
|
# ifndef OPENSSL_NO_MD5 |
|
if (strcmp(*argv, "hmac") == 0) |
|
doit[D_HMAC] = 1; |
|
else |
|
# endif |
|
# ifndef OPENSSL_NO_SHA |
|
if (strcmp(*argv, "sha1") == 0) |
|
doit[D_SHA1] = 1; |
|
else if (strcmp(*argv, "sha") == 0) |
|
doit[D_SHA1] = 1, doit[D_SHA256] = 1, doit[D_SHA512] = 1; |
|
else |
|
# ifndef OPENSSL_NO_SHA256 |
|
if (strcmp(*argv, "sha256") == 0) |
|
doit[D_SHA256] = 1; |
|
else |
|
# endif |
|
# ifndef OPENSSL_NO_SHA512 |
|
if (strcmp(*argv, "sha512") == 0) |
|
doit[D_SHA512] = 1; |
|
else |
|
# endif |
|
# endif |
|
# ifndef OPENSSL_NO_WHIRLPOOL |
|
if (strcmp(*argv, "whirlpool") == 0) |
|
doit[D_WHIRLPOOL] = 1; |
|
else |
|
# endif |
|
# ifndef OPENSSL_NO_RIPEMD |
|
if (strcmp(*argv, "ripemd") == 0) |
|
doit[D_RMD160] = 1; |
|
else if (strcmp(*argv, "rmd160") == 0) |
|
doit[D_RMD160] = 1; |
|
else if (strcmp(*argv, "ripemd160") == 0) |
|
doit[D_RMD160] = 1; |
|
else |
|
# endif |
|
# ifndef OPENSSL_NO_RC4 |
|
if (strcmp(*argv, "rc4") == 0) |
|
doit[D_RC4] = 1; |
|
else |
|
# endif |
|
# ifndef OPENSSL_NO_DES |
|
if (strcmp(*argv, "des-cbc") == 0) |
|
doit[D_CBC_DES] = 1; |
|
else if (strcmp(*argv, "des-ede3") == 0) |
|
doit[D_EDE3_DES] = 1; |
|
else |
|
# endif |
|
# ifndef OPENSSL_NO_AES |
|
if (strcmp(*argv, "aes-128-cbc") == 0) |
|
doit[D_CBC_128_AES] = 1; |
|
else if (strcmp(*argv, "aes-192-cbc") == 0) |
|
doit[D_CBC_192_AES] = 1; |
|
else if (strcmp(*argv, "aes-256-cbc") == 0) |
|
doit[D_CBC_256_AES] = 1; |
|
else if (strcmp(*argv, "aes-128-ige") == 0) |
|
doit[D_IGE_128_AES] = 1; |
|
else if (strcmp(*argv, "aes-192-ige") == 0) |
|
doit[D_IGE_192_AES] = 1; |
|
else if (strcmp(*argv, "aes-256-ige") == 0) |
|
doit[D_IGE_256_AES] = 1; |
|
else |
|
# endif |
|
# ifndef OPENSSL_NO_CAMELLIA |
|
if (strcmp(*argv, "camellia-128-cbc") == 0) |
|
doit[D_CBC_128_CML] = 1; |
|
else if (strcmp(*argv, "camellia-192-cbc") == 0) |
|
doit[D_CBC_192_CML] = 1; |
|
else if (strcmp(*argv, "camellia-256-cbc") == 0) |
|
doit[D_CBC_256_CML] = 1; |
|
else |
|
# endif |
|
# ifndef OPENSSL_NO_RSA |
|
# if 0 /* was: #ifdef RSAref */ |
|
if (strcmp(*argv, "rsaref") == 0) { |
|
RSA_set_default_openssl_method(RSA_PKCS1_RSAref()); |
|
j--; |
|
} else |
|
# endif |
|
# ifndef RSA_NULL |
|
if (strcmp(*argv, "openssl") == 0) { |
|
RSA_set_default_method(RSA_PKCS1_SSLeay()); |
|
j--; |
|
} else |
|
# endif |
|
# endif /* !OPENSSL_NO_RSA */ |
|
if (strcmp(*argv, "dsa512") == 0) |
|
dsa_doit[R_DSA_512] = 2; |
|
else if (strcmp(*argv, "dsa1024") == 0) |
|
dsa_doit[R_DSA_1024] = 2; |
|
else if (strcmp(*argv, "dsa2048") == 0) |
|
dsa_doit[R_DSA_2048] = 2; |
|
else if (strcmp(*argv, "rsa512") == 0) |
|
rsa_doit[R_RSA_512] = 2; |
|
else if (strcmp(*argv, "rsa1024") == 0) |
|
rsa_doit[R_RSA_1024] = 2; |
|
else if (strcmp(*argv, "rsa2048") == 0) |
|
rsa_doit[R_RSA_2048] = 2; |
|
else if (strcmp(*argv, "rsa4096") == 0) |
|
rsa_doit[R_RSA_4096] = 2; |
|
else |
|
# ifndef OPENSSL_NO_RC2 |
|
if (strcmp(*argv, "rc2-cbc") == 0) |
|
doit[D_CBC_RC2] = 1; |
|
else if (strcmp(*argv, "rc2") == 0) |
|
doit[D_CBC_RC2] = 1; |
|
else |
|
# endif |
|
# ifndef OPENSSL_NO_RC5 |
|
if (strcmp(*argv, "rc5-cbc") == 0) |
|
doit[D_CBC_RC5] = 1; |
|
else if (strcmp(*argv, "rc5") == 0) |
|
doit[D_CBC_RC5] = 1; |
|
else |
|
# endif |
|
# ifndef OPENSSL_NO_IDEA |
|
if (strcmp(*argv, "idea-cbc") == 0) |
|
doit[D_CBC_IDEA] = 1; |
|
else if (strcmp(*argv, "idea") == 0) |
|
doit[D_CBC_IDEA] = 1; |
|
else |
|
# endif |
|
# ifndef OPENSSL_NO_SEED |
|
if (strcmp(*argv, "seed-cbc") == 0) |
|
doit[D_CBC_SEED] = 1; |
|
else if (strcmp(*argv, "seed") == 0) |
|
doit[D_CBC_SEED] = 1; |
|
else |
|
# endif |
|
# ifndef OPENSSL_NO_BF |
|
if (strcmp(*argv, "bf-cbc") == 0) |
|
doit[D_CBC_BF] = 1; |
|
else if (strcmp(*argv, "blowfish") == 0) |
|
doit[D_CBC_BF] = 1; |
|
else if (strcmp(*argv, "bf") == 0) |
|
doit[D_CBC_BF] = 1; |
|
else |
|
# endif |
|
# ifndef OPENSSL_NO_CAST |
|
if (strcmp(*argv, "cast-cbc") == 0) |
|
doit[D_CBC_CAST] = 1; |
|
else if (strcmp(*argv, "cast") == 0) |
|
doit[D_CBC_CAST] = 1; |
|
else if (strcmp(*argv, "cast5") == 0) |
|
doit[D_CBC_CAST] = 1; |
|
else |
|
# endif |
|
# ifndef OPENSSL_NO_DES |
|
if (strcmp(*argv, "des") == 0) { |
|
doit[D_CBC_DES] = 1; |
|
doit[D_EDE3_DES] = 1; |
|
} else |
|
# endif |
|
# ifndef OPENSSL_NO_AES |
|
if (strcmp(*argv, "aes") == 0) { |
|
doit[D_CBC_128_AES] = 1; |
|
doit[D_CBC_192_AES] = 1; |
|
doit[D_CBC_256_AES] = 1; |
|
} else if (strcmp(*argv, "ghash") == 0) { |
|
doit[D_GHASH] = 1; |
|
} else |
|
# endif |
|
# ifndef OPENSSL_NO_CAMELLIA |
|
if (strcmp(*argv, "camellia") == 0) { |
|
doit[D_CBC_128_CML] = 1; |
|
doit[D_CBC_192_CML] = 1; |
|
doit[D_CBC_256_CML] = 1; |
|
} else |
|
# endif |
|
# ifndef OPENSSL_NO_RSA |
|
if (strcmp(*argv, "rsa") == 0) { |
|
rsa_doit[R_RSA_512] = 1; |
|
rsa_doit[R_RSA_1024] = 1; |
|
rsa_doit[R_RSA_2048] = 1; |
|
rsa_doit[R_RSA_4096] = 1; |
|
} else |
|
# endif |
|
# ifndef OPENSSL_NO_DSA |
|
if (strcmp(*argv, "dsa") == 0) { |
|
dsa_doit[R_DSA_512] = 1; |
|
dsa_doit[R_DSA_1024] = 1; |
|
dsa_doit[R_DSA_2048] = 1; |
|
} else |
|
# endif |
|
# ifndef OPENSSL_NO_ECDSA |
|
if (strcmp(*argv, "ecdsap160") == 0) |
|
ecdsa_doit[R_EC_P160] = 2; |
|
else if (strcmp(*argv, "ecdsap192") == 0) |
|
ecdsa_doit[R_EC_P192] = 2; |
|
else if (strcmp(*argv, "ecdsap224") == 0) |
|
ecdsa_doit[R_EC_P224] = 2; |
|
else if (strcmp(*argv, "ecdsap256") == 0) |
|
ecdsa_doit[R_EC_P256] = 2; |
|
else if (strcmp(*argv, "ecdsap384") == 0) |
|
ecdsa_doit[R_EC_P384] = 2; |
|
else if (strcmp(*argv, "ecdsap521") == 0) |
|
ecdsa_doit[R_EC_P521] = 2; |
|
else if (strcmp(*argv, "ecdsak163") == 0) |
|
ecdsa_doit[R_EC_K163] = 2; |
|
else if (strcmp(*argv, "ecdsak233") == 0) |
|
ecdsa_doit[R_EC_K233] = 2; |
|
else if (strcmp(*argv, "ecdsak283") == 0) |
|
ecdsa_doit[R_EC_K283] = 2; |
|
else if (strcmp(*argv, "ecdsak409") == 0) |
|
ecdsa_doit[R_EC_K409] = 2; |
|
else if (strcmp(*argv, "ecdsak571") == 0) |
|
ecdsa_doit[R_EC_K571] = 2; |
|
else if (strcmp(*argv, "ecdsab163") == 0) |
|
ecdsa_doit[R_EC_B163] = 2; |
|
else if (strcmp(*argv, "ecdsab233") == 0) |
|
ecdsa_doit[R_EC_B233] = 2; |
|
else if (strcmp(*argv, "ecdsab283") == 0) |
|
ecdsa_doit[R_EC_B283] = 2; |
|
else if (strcmp(*argv, "ecdsab409") == 0) |
|
ecdsa_doit[R_EC_B409] = 2; |
|
else if (strcmp(*argv, "ecdsab571") == 0) |
|
ecdsa_doit[R_EC_B571] = 2; |
|
else if (strcmp(*argv, "ecdsa") == 0) { |
|
for (i = 0; i < EC_NUM; i++) |
|
ecdsa_doit[i] = 1; |
|
} else |
|
# endif |
|
# ifndef OPENSSL_NO_ECDH |
|
if (strcmp(*argv, "ecdhp160") == 0) |
|
ecdh_doit[R_EC_P160] = 2; |
|
else if (strcmp(*argv, "ecdhp192") == 0) |
|
ecdh_doit[R_EC_P192] = 2; |
|
else if (strcmp(*argv, "ecdhp224") == 0) |
|
ecdh_doit[R_EC_P224] = 2; |
|
else if (strcmp(*argv, "ecdhp256") == 0) |
|
ecdh_doit[R_EC_P256] = 2; |
|
else if (strcmp(*argv, "ecdhp384") == 0) |
|
ecdh_doit[R_EC_P384] = 2; |
|
else if (strcmp(*argv, "ecdhp521") == 0) |
|
ecdh_doit[R_EC_P521] = 2; |
|
else if (strcmp(*argv, "ecdhk163") == 0) |
|
ecdh_doit[R_EC_K163] = 2; |
|
else if (strcmp(*argv, "ecdhk233") == 0) |
|
ecdh_doit[R_EC_K233] = 2; |
|
else if (strcmp(*argv, "ecdhk283") == 0) |
|
ecdh_doit[R_EC_K283] = 2; |
|
else if (strcmp(*argv, "ecdhk409") == 0) |
|
ecdh_doit[R_EC_K409] = 2; |
|
else if (strcmp(*argv, "ecdhk571") == 0) |
|
ecdh_doit[R_EC_K571] = 2; |
|
else if (strcmp(*argv, "ecdhb163") == 0) |
|
ecdh_doit[R_EC_B163] = 2; |
|
else if (strcmp(*argv, "ecdhb233") == 0) |
|
ecdh_doit[R_EC_B233] = 2; |
|
else if (strcmp(*argv, "ecdhb283") == 0) |
|
ecdh_doit[R_EC_B283] = 2; |
|
else if (strcmp(*argv, "ecdhb409") == 0) |
|
ecdh_doit[R_EC_B409] = 2; |
|
else if (strcmp(*argv, "ecdhb571") == 0) |
|
ecdh_doit[R_EC_B571] = 2; |
|
else if (strcmp(*argv, "ecdh") == 0) { |
|
for (i = 0; i < EC_NUM; i++) |
|
ecdh_doit[i] = 1; |
|
} else |
|
# endif |
|
{ |
|
BIO_printf(bio_err, "Error: bad option or value\n"); |
|
BIO_printf(bio_err, "\n"); |
|
BIO_printf(bio_err, "Available values:\n"); |
|
# ifndef OPENSSL_NO_MD2 |
|
BIO_printf(bio_err, "md2 "); |
|
# endif |
|
# ifndef OPENSSL_NO_MDC2 |
|
BIO_printf(bio_err, "mdc2 "); |
|
# endif |
|
# ifndef OPENSSL_NO_MD4 |
|
BIO_printf(bio_err, "md4 "); |
|
# endif |
|
# ifndef OPENSSL_NO_MD5 |
|
BIO_printf(bio_err, "md5 "); |
|
# ifndef OPENSSL_NO_HMAC |
|
BIO_printf(bio_err, "hmac "); |
|
# endif |
|
# endif |
|
# ifndef OPENSSL_NO_SHA1 |
|
BIO_printf(bio_err, "sha1 "); |
|
# endif |
|
# ifndef OPENSSL_NO_SHA256 |
|
BIO_printf(bio_err, "sha256 "); |
|
# endif |
|
# ifndef OPENSSL_NO_SHA512 |
|
BIO_printf(bio_err, "sha512 "); |
|
# endif |
|
# ifndef OPENSSL_NO_WHIRLPOOL |
|
BIO_printf(bio_err, "whirlpool"); |
|
# endif |
|
# ifndef OPENSSL_NO_RIPEMD160 |
|
BIO_printf(bio_err, "rmd160"); |
|
# endif |
|
# if !defined(OPENSSL_NO_MD2) || !defined(OPENSSL_NO_MDC2) || \ |
|
!defined(OPENSSL_NO_MD4) || !defined(OPENSSL_NO_MD5) || \ |
|
!defined(OPENSSL_NO_SHA1) || !defined(OPENSSL_NO_RIPEMD160) || \ |
|
!defined(OPENSSL_NO_WHIRLPOOL) |
|
BIO_printf(bio_err, "\n"); |
|
# endif |
|
|
|
# ifndef OPENSSL_NO_IDEA |
|
BIO_printf(bio_err, "idea-cbc "); |
|
# endif |
|
# ifndef OPENSSL_NO_SEED |
|
BIO_printf(bio_err, "seed-cbc "); |
|
# endif |
|
# ifndef OPENSSL_NO_RC2 |
|
BIO_printf(bio_err, "rc2-cbc "); |
|
# endif |
|
# ifndef OPENSSL_NO_RC5 |
|
BIO_printf(bio_err, "rc5-cbc "); |
|
# endif |
|
# ifndef OPENSSL_NO_BF |
|
BIO_printf(bio_err, "bf-cbc"); |
|
# endif |
|
# if !defined(OPENSSL_NO_IDEA) || !defined(OPENSSL_NO_SEED) || !defined(OPENSSL_NO_RC2) || \ |
|
!defined(OPENSSL_NO_BF) || !defined(OPENSSL_NO_RC5) |
|
BIO_printf(bio_err, "\n"); |
|
# endif |
|
# ifndef OPENSSL_NO_DES |
|
BIO_printf(bio_err, "des-cbc des-ede3 "); |
|
# endif |
|
# ifndef OPENSSL_NO_AES |
|
BIO_printf(bio_err, "aes-128-cbc aes-192-cbc aes-256-cbc "); |
|
BIO_printf(bio_err, "aes-128-ige aes-192-ige aes-256-ige "); |
|
# endif |
|
# ifndef OPENSSL_NO_CAMELLIA |
|
BIO_printf(bio_err, "\n"); |
|
BIO_printf(bio_err, |
|
"camellia-128-cbc camellia-192-cbc camellia-256-cbc "); |
|
# endif |
|
# ifndef OPENSSL_NO_RC4 |
|
BIO_printf(bio_err, "rc4"); |
|
# endif |
|
BIO_printf(bio_err, "\n"); |
|
|
|
# ifndef OPENSSL_NO_RSA |
|
BIO_printf(bio_err, "rsa512 rsa1024 rsa2048 rsa4096\n"); |
|
# endif |
|
|
|
# ifndef OPENSSL_NO_DSA |
|
BIO_printf(bio_err, "dsa512 dsa1024 dsa2048\n"); |
|
# endif |
|
# ifndef OPENSSL_NO_ECDSA |
|
BIO_printf(bio_err, "ecdsap160 ecdsap192 ecdsap224 " |
|
"ecdsap256 ecdsap384 ecdsap521\n"); |
|
BIO_printf(bio_err, |
|
"ecdsak163 ecdsak233 ecdsak283 ecdsak409 ecdsak571\n"); |
|
BIO_printf(bio_err, |
|
"ecdsab163 ecdsab233 ecdsab283 ecdsab409 ecdsab571\n"); |
|
BIO_printf(bio_err, "ecdsa\n"); |
|
# endif |
|
# ifndef OPENSSL_NO_ECDH |
|
BIO_printf(bio_err, "ecdhp160 ecdhp192 ecdhp224 " |
|
"ecdhp256 ecdhp384 ecdhp521\n"); |
|
BIO_printf(bio_err, |
|
"ecdhk163 ecdhk233 ecdhk283 ecdhk409 ecdhk571\n"); |
|
BIO_printf(bio_err, |
|
"ecdhb163 ecdhb233 ecdhb283 ecdhb409 ecdhb571\n"); |
|
BIO_printf(bio_err, "ecdh\n"); |
|
# endif |
|
|
|
# ifndef OPENSSL_NO_IDEA |
|
BIO_printf(bio_err, "idea "); |
|
# endif |
|
# ifndef OPENSSL_NO_SEED |
|
BIO_printf(bio_err, "seed "); |
|
# endif |
|
# ifndef OPENSSL_NO_RC2 |
|
BIO_printf(bio_err, "rc2 "); |
|
# endif |
|
# ifndef OPENSSL_NO_DES |
|
BIO_printf(bio_err, "des "); |
|
# endif |
|
# ifndef OPENSSL_NO_AES |
|
BIO_printf(bio_err, "aes "); |
|
# endif |
|
# ifndef OPENSSL_NO_CAMELLIA |
|
BIO_printf(bio_err, "camellia "); |
|
# endif |
|
# ifndef OPENSSL_NO_RSA |
|
BIO_printf(bio_err, "rsa "); |
|
# endif |
|
# ifndef OPENSSL_NO_BF |
|
BIO_printf(bio_err, "blowfish"); |
|
# endif |
|
# if !defined(OPENSSL_NO_IDEA) || !defined(OPENSSL_NO_SEED) || \ |
|
!defined(OPENSSL_NO_RC2) || !defined(OPENSSL_NO_DES) || \ |
|
!defined(OPENSSL_NO_RSA) || !defined(OPENSSL_NO_BF) || \ |
|
!defined(OPENSSL_NO_AES) || !defined(OPENSSL_NO_CAMELLIA) |
|
BIO_printf(bio_err, "\n"); |
|
# endif |
|
|
|
BIO_printf(bio_err, "\n"); |
|
BIO_printf(bio_err, "Available options:\n"); |
|
# if defined(TIMES) || defined(USE_TOD) |
|
BIO_printf(bio_err, "-elapsed " |
|
"measure time in real time instead of CPU user time.\n"); |
|
# endif |
|
# ifndef OPENSSL_NO_ENGINE |
|
BIO_printf(bio_err, |
|
"-engine e " |
|
"use engine e, possibly a hardware device.\n"); |
|
# endif |
|
BIO_printf(bio_err, "-evp e " "use EVP e.\n"); |
|
BIO_printf(bio_err, |
|
"-decrypt " |
|
"time decryption instead of encryption (only EVP).\n"); |
|
BIO_printf(bio_err, |
|
"-mr " |
|
"produce machine readable output.\n"); |
|
# ifndef NO_FORK |
|
BIO_printf(bio_err, |
|
"-multi n " "run n benchmarks in parallel.\n"); |
|
# endif |
|
goto end; |
|
} |
|
argc--; |
|
argv++; |
|
j++; |
|
} |
|
|
|
# ifndef NO_FORK |
|
if (multi && do_multi(multi)) |
|
goto show_res; |
|
# endif |
|
|
|
if (j == 0) { |
|
for (i = 0; i < ALGOR_NUM; i++) { |
|
if (i != D_EVP) |
|
doit[i] = 1; |
|
} |
|
for (i = 0; i < RSA_NUM; i++) |
|
rsa_doit[i] = 1; |
|
for (i = 0; i < DSA_NUM; i++) |
|
dsa_doit[i] = 1; |
|
# ifndef OPENSSL_NO_ECDSA |
|
for (i = 0; i < EC_NUM; i++) |
|
ecdsa_doit[i] = 1; |
|
# endif |
|
# ifndef OPENSSL_NO_ECDH |
|
for (i = 0; i < EC_NUM; i++) |
|
ecdh_doit[i] = 1; |
|
# endif |
|
} |
|
for (i = 0; i < ALGOR_NUM; i++) |
|
if (doit[i]) |
|
pr_header++; |
|
|
|
if (usertime == 0 && !mr) |
|
BIO_printf(bio_err, |
|
"You have chosen to measure elapsed time " |
|
"instead of user CPU time.\n"); |
|
|
|
# ifndef OPENSSL_NO_RSA |
|
for (i = 0; i < RSA_NUM; i++) { |
|
const unsigned char *p; |
|
|
|
p = rsa_data[i]; |
|
rsa_key[i] = d2i_RSAPrivateKey(NULL, &p, rsa_data_length[i]); |
|
if (rsa_key[i] == NULL) { |
|
BIO_printf(bio_err, "internal error loading RSA key number %d\n", |
|
i); |
|
goto end; |
|
} |
|
# if 0 |
|
else { |
|
BIO_printf(bio_err, |
|
mr ? "+RK:%d:" |
|
: "Loaded RSA key, %d bit modulus and e= 0x", |
|
BN_num_bits(rsa_key[i]->n)); |
|
BN_print(bio_err, rsa_key[i]->e); |
|
BIO_printf(bio_err, "\n"); |
|
} |
|
# endif |
|
} |
|
# endif |
|
|
|
# ifndef OPENSSL_NO_DSA |
|
dsa_key[0] = get_dsa512(); |
|
dsa_key[1] = get_dsa1024(); |
|
dsa_key[2] = get_dsa2048(); |
|
# endif |
|
|
|
# ifndef OPENSSL_NO_DES |
|
DES_set_key_unchecked(&key, &sch); |
|
DES_set_key_unchecked(&key2, &sch2); |
|
DES_set_key_unchecked(&key3, &sch3); |
|
# endif |
|
# ifndef OPENSSL_NO_AES |
|
AES_set_encrypt_key(key16, 128, &aes_ks1); |
|
AES_set_encrypt_key(key24, 192, &aes_ks2); |
|
AES_set_encrypt_key(key32, 256, &aes_ks3); |
|
# endif |
|
# ifndef OPENSSL_NO_CAMELLIA |
|
Camellia_set_key(key16, 128, &camellia_ks1); |
|
Camellia_set_key(ckey24, 192, &camellia_ks2); |
|
Camellia_set_key(ckey32, 256, &camellia_ks3); |
|
# endif |
|
# ifndef OPENSSL_NO_IDEA |
|
idea_set_encrypt_key(key16, &idea_ks); |
|
# endif |
|
# ifndef OPENSSL_NO_SEED |
|
SEED_set_key(key16, &seed_ks); |
|
# endif |
|
# ifndef OPENSSL_NO_RC4 |
|
RC4_set_key(&rc4_ks, 16, key16); |
|
# endif |
|
# ifndef OPENSSL_NO_RC2 |
|
RC2_set_key(&rc2_ks, 16, key16, 128); |
|
# endif |
|
# ifndef OPENSSL_NO_RC5 |
|
RC5_32_set_key(&rc5_ks, 16, key16, 12); |
|
# endif |
|
# ifndef OPENSSL_NO_BF |
|
BF_set_key(&bf_ks, 16, key16); |
|
# endif |
|
# ifndef OPENSSL_NO_CAST |
|
CAST_set_key(&cast_ks, 16, key16); |
|
# endif |
|
# ifndef OPENSSL_NO_RSA |
|
memset(rsa_c, 0, sizeof(rsa_c)); |
|
# endif |
|
# ifndef SIGALRM |
|
# ifndef OPENSSL_NO_DES |
|
BIO_printf(bio_err, "First we calculate the approximate speed ...\n"); |
|
count = 10; |
|
do { |
|
long it; |
|
count *= 2; |
|
Time_F(START); |
|
for (it = count; it; it--) |
|
DES_ecb_encrypt((DES_cblock *)buf, |
|
(DES_cblock *)buf, &sch, DES_ENCRYPT); |
|
d = Time_F(STOP); |
|
} while (d < 3); |
|
save_count = count; |
|
c[D_MD2][0] = count / 10; |
|
c[D_MDC2][0] = count / 10; |
|
c[D_MD4][0] = count; |
|
c[D_MD5][0] = count; |
|
c[D_HMAC][0] = count; |
|
c[D_SHA1][0] = count; |
|
c[D_RMD160][0] = count; |
|
c[D_RC4][0] = count * 5; |
|
c[D_CBC_DES][0] = count; |
|
c[D_EDE3_DES][0] = count / 3; |
|
c[D_CBC_IDEA][0] = count; |
|
c[D_CBC_SEED][0] = count; |
|
c[D_CBC_RC2][0] = count; |
|
c[D_CBC_RC5][0] = count; |
|
c[D_CBC_BF][0] = count; |
|
c[D_CBC_CAST][0] = count; |
|
c[D_CBC_128_AES][0] = count; |
|
c[D_CBC_192_AES][0] = count; |
|
c[D_CBC_256_AES][0] = count; |
|
c[D_CBC_128_CML][0] = count; |
|
c[D_CBC_192_CML][0] = count; |
|
c[D_CBC_256_CML][0] = count; |
|
c[D_SHA256][0] = count; |
|
c[D_SHA512][0] = count; |
|
c[D_WHIRLPOOL][0] = count; |
|
c[D_IGE_128_AES][0] = count; |
|
c[D_IGE_192_AES][0] = count; |
|
c[D_IGE_256_AES][0] = count; |
|
c[D_GHASH][0] = count; |
|
|
|
for (i = 1; i < SIZE_NUM; i++) { |
|
c[D_MD2][i] = c[D_MD2][0] * 4 * lengths[0] / lengths[i]; |
|
c[D_MDC2][i] = c[D_MDC2][0] * 4 * lengths[0] / lengths[i]; |
|
c[D_MD4][i] = c[D_MD4][0] * 4 * lengths[0] / lengths[i]; |
|
c[D_MD5][i] = c[D_MD5][0] * 4 * lengths[0] / lengths[i]; |
|
c[D_HMAC][i] = c[D_HMAC][0] * 4 * lengths[0] / lengths[i]; |
|
c[D_SHA1][i] = c[D_SHA1][0] * 4 * lengths[0] / lengths[i]; |
|
c[D_RMD160][i] = c[D_RMD160][0] * 4 * lengths[0] / lengths[i]; |
|
c[D_SHA256][i] = c[D_SHA256][0] * 4 * lengths[0] / lengths[i]; |
|
c[D_SHA512][i] = c[D_SHA512][0] * 4 * lengths[0] / lengths[i]; |
|
c[D_WHIRLPOOL][i] = c[D_WHIRLPOOL][0] * 4 * lengths[0] / lengths[i]; |
|
} |
|
for (i = 1; i < SIZE_NUM; i++) { |
|
long l0, l1; |
|
|
|
l0 = (long)lengths[i - 1]; |
|
l1 = (long)lengths[i]; |
|
c[D_RC4][i] = c[D_RC4][i - 1] * l0 / l1; |
|
c[D_CBC_DES][i] = c[D_CBC_DES][i - 1] * l0 / l1; |
|
c[D_EDE3_DES][i] = c[D_EDE3_DES][i - 1] * l0 / l1; |
|
c[D_CBC_IDEA][i] = c[D_CBC_IDEA][i - 1] * l0 / l1; |
|
c[D_CBC_SEED][i] = c[D_CBC_SEED][i - 1] * l0 / l1; |
|
c[D_CBC_RC2][i] = c[D_CBC_RC2][i - 1] * l0 / l1; |
|
c[D_CBC_RC5][i] = c[D_CBC_RC5][i - 1] * l0 / l1; |
|
c[D_CBC_BF][i] = c[D_CBC_BF][i - 1] * l0 / l1; |
|
c[D_CBC_CAST][i] = c[D_CBC_CAST][i - 1] * l0 / l1; |
|
c[D_CBC_128_AES][i] = c[D_CBC_128_AES][i - 1] * l0 / l1; |
|
c[D_CBC_192_AES][i] = c[D_CBC_192_AES][i - 1] * l0 / l1; |
|
c[D_CBC_256_AES][i] = c[D_CBC_256_AES][i - 1] * l0 / l1; |
|
c[D_CBC_128_CML][i] = c[D_CBC_128_CML][i - 1] * l0 / l1; |
|
c[D_CBC_192_CML][i] = c[D_CBC_192_CML][i - 1] * l0 / l1; |
|
c[D_CBC_256_CML][i] = c[D_CBC_256_CML][i - 1] * l0 / l1; |
|
c[D_IGE_128_AES][i] = c[D_IGE_128_AES][i - 1] * l0 / l1; |
|
c[D_IGE_192_AES][i] = c[D_IGE_192_AES][i - 1] * l0 / l1; |
|
c[D_IGE_256_AES][i] = c[D_IGE_256_AES][i - 1] * l0 / l1; |
|
} |
|
# ifndef OPENSSL_NO_RSA |
|
rsa_c[R_RSA_512][0] = count / 2000; |
|
rsa_c[R_RSA_512][1] = count / 400; |
|
for (i = 1; i < RSA_NUM; i++) { |
|
rsa_c[i][0] = rsa_c[i - 1][0] / 8; |
|
rsa_c[i][1] = rsa_c[i - 1][1] / 4; |
|
if ((rsa_doit[i] <= 1) && (rsa_c[i][0] == 0)) |
|
rsa_doit[i] = 0; |
|
else { |
|
if (rsa_c[i][0] == 0) { |
|
rsa_c[i][0] = 1; |
|
rsa_c[i][1] = 20; |
|
} |
|
} |
|
} |
|
# endif |
|
|
|
# ifndef OPENSSL_NO_DSA |
|
dsa_c[R_DSA_512][0] = count / 1000; |
|
dsa_c[R_DSA_512][1] = count / 1000 / 2; |
|
for (i = 1; i < DSA_NUM; i++) { |
|
dsa_c[i][0] = dsa_c[i - 1][0] / 4; |
|
dsa_c[i][1] = dsa_c[i - 1][1] / 4; |
|
if ((dsa_doit[i] <= 1) && (dsa_c[i][0] == 0)) |
|
dsa_doit[i] = 0; |
|
else { |
|
if (dsa_c[i] == 0) { |
|
dsa_c[i][0] = 1; |
|
dsa_c[i][1] = 1; |
|
} |
|
} |
|
} |
|
# endif |
|
|
|
# ifndef OPENSSL_NO_ECDSA |
|
ecdsa_c[R_EC_P160][0] = count / 1000; |
|
ecdsa_c[R_EC_P160][1] = count / 1000 / 2; |
|
for (i = R_EC_P192; i <= R_EC_P521; i++) { |
|
ecdsa_c[i][0] = ecdsa_c[i - 1][0] / 2; |
|
ecdsa_c[i][1] = ecdsa_c[i - 1][1] / 2; |
|
if ((ecdsa_doit[i] <= 1) && (ecdsa_c[i][0] == 0)) |
|
ecdsa_doit[i] = 0; |
|
else { |
|
if (ecdsa_c[i] == 0) { |
|
ecdsa_c[i][0] = 1; |
|
ecdsa_c[i][1] = 1; |
|
} |
|
} |
|
} |
|
ecdsa_c[R_EC_K163][0] = count / 1000; |
|
ecdsa_c[R_EC_K163][1] = count / 1000 / 2; |
|
for (i = R_EC_K233; i <= R_EC_K571; i++) { |
|
ecdsa_c[i][0] = ecdsa_c[i - 1][0] / 2; |
|
ecdsa_c[i][1] = ecdsa_c[i - 1][1] / 2; |
|
if ((ecdsa_doit[i] <= 1) && (ecdsa_c[i][0] == 0)) |
|
ecdsa_doit[i] = 0; |
|
else { |
|
if (ecdsa_c[i] == 0) { |
|
ecdsa_c[i][0] = 1; |
|
ecdsa_c[i][1] = 1; |
|
} |
|
} |
|
} |
|
ecdsa_c[R_EC_B163][0] = count / 1000; |
|
ecdsa_c[R_EC_B163][1] = count / 1000 / 2; |
|
for (i = R_EC_B233; i <= R_EC_B571; i++) { |
|
ecdsa_c[i][0] = ecdsa_c[i - 1][0] / 2; |
|
ecdsa_c[i][1] = ecdsa_c[i - 1][1] / 2; |
|
if ((ecdsa_doit[i] <= 1) && (ecdsa_c[i][0] == 0)) |
|
ecdsa_doit[i] = 0; |
|
else { |
|
if (ecdsa_c[i] == 0) { |
|
ecdsa_c[i][0] = 1; |
|
ecdsa_c[i][1] = 1; |
|
} |
|
} |
|
} |
|
# endif |
|
|
|
# ifndef OPENSSL_NO_ECDH |
|
ecdh_c[R_EC_P160][0] = count / 1000; |
|
ecdh_c[R_EC_P160][1] = count / 1000; |
|
for (i = R_EC_P192; i <= R_EC_P521; i++) { |
|
ecdh_c[i][0] = ecdh_c[i - 1][0] / 2; |
|
ecdh_c[i][1] = ecdh_c[i - 1][1] / 2; |
|
if ((ecdh_doit[i] <= 1) && (ecdh_c[i][0] == 0)) |
|
ecdh_doit[i] = 0; |
|
else { |
|
if (ecdh_c[i] == 0) { |
|
ecdh_c[i][0] = 1; |
|
ecdh_c[i][1] = 1; |
|
} |
|
} |
|
} |
|
ecdh_c[R_EC_K163][0] = count / 1000; |
|
ecdh_c[R_EC_K163][1] = count / 1000; |
|
for (i = R_EC_K233; i <= R_EC_K571; i++) { |
|
ecdh_c[i][0] = ecdh_c[i - 1][0] / 2; |
|
ecdh_c[i][1] = ecdh_c[i - 1][1] / 2; |
|
if ((ecdh_doit[i] <= 1) && (ecdh_c[i][0] == 0)) |
|
ecdh_doit[i] = 0; |
|
else { |
|
if (ecdh_c[i] == 0) { |
|
ecdh_c[i][0] = 1; |
|
ecdh_c[i][1] = 1; |
|
} |
|
} |
|
} |
|
ecdh_c[R_EC_B163][0] = count / 1000; |
|
ecdh_c[R_EC_B163][1] = count / 1000; |
|
for (i = R_EC_B233; i <= R_EC_B571; i++) { |
|
ecdh_c[i][0] = ecdh_c[i - 1][0] / 2; |
|
ecdh_c[i][1] = ecdh_c[i - 1][1] / 2; |
|
if ((ecdh_doit[i] <= 1) && (ecdh_c[i][0] == 0)) |
|
ecdh_doit[i] = 0; |
|
else { |
|
if (ecdh_c[i] == 0) { |
|
ecdh_c[i][0] = 1; |
|
ecdh_c[i][1] = 1; |
|
} |
|
} |
|
} |
|
# endif |
|
|
|
# define COND(d) (count < (d)) |
|
# define COUNT(d) (d) |
|
# else |
|
/* not worth fixing */ |
|
# error "You cannot disable DES on systems without SIGALRM." |
|
# endif /* OPENSSL_NO_DES */ |
|
# else |
|
# define COND(c) (run && count<0x7fffffff) |
|
# define COUNT(d) (count) |
|
# ifndef _WIN32 |
|
signal(SIGALRM, sig_done); |
|
# endif |
|
# endif /* SIGALRM */ |
|
|
|
# ifndef OPENSSL_NO_MD2 |
|
if (doit[D_MD2]) { |
|
for (j = 0; j < SIZE_NUM; j++) { |
|
print_message(names[D_MD2], c[D_MD2][j], lengths[j]); |
|
Time_F(START); |
|
for (count = 0, run = 1; COND(c[D_MD2][j]); count++) |
|
EVP_Digest(buf, (unsigned long)lengths[j], &(md2[0]), NULL, |
|
EVP_md2(), NULL); |
|
d = Time_F(STOP); |
|
print_result(D_MD2, j, count, d); |
|
} |
|
} |
|
# endif |
|
# ifndef OPENSSL_NO_MDC2 |
|
if (doit[D_MDC2]) { |
|
for (j = 0; j < SIZE_NUM; j++) { |
|
print_message(names[D_MDC2], c[D_MDC2][j], lengths[j]); |
|
Time_F(START); |
|
for (count = 0, run = 1; COND(c[D_MDC2][j]); count++) |
|
EVP_Digest(buf, (unsigned long)lengths[j], &(mdc2[0]), NULL, |
|
EVP_mdc2(), NULL); |
|
d = Time_F(STOP); |
|
print_result(D_MDC2, j, count, d); |
|
} |
|
} |
|
# endif |
|
|
|
# ifndef OPENSSL_NO_MD4 |
|
if (doit[D_MD4]) { |
|
for (j = 0; j < SIZE_NUM; j++) { |
|
print_message(names[D_MD4], c[D_MD4][j], lengths[j]); |
|
Time_F(START); |
|
for (count = 0, run = 1; COND(c[D_MD4][j]); count++) |
|
EVP_Digest(&(buf[0]), (unsigned long)lengths[j], &(md4[0]), |
|
NULL, EVP_md4(), NULL); |
|
d = Time_F(STOP); |
|
print_result(D_MD4, j, count, d); |
|
} |
|
} |
|
# endif |
|
|
|
# ifndef OPENSSL_NO_MD5 |
|
if (doit[D_MD5]) { |
|
for (j = 0; j < SIZE_NUM; j++) { |
|
print_message(names[D_MD5], c[D_MD5][j], lengths[j]); |
|
Time_F(START); |
|
for (count = 0, run = 1; COND(c[D_MD5][j]); count++) |
|
EVP_Digest(&(buf[0]), (unsigned long)lengths[j], &(md5[0]), |
|
NULL, EVP_get_digestbyname("md5"), NULL); |
|
d = Time_F(STOP); |
|
print_result(D_MD5, j, count, d); |
|
} |
|
} |
|
# endif |
|
|
|
# if !defined(OPENSSL_NO_MD5) && !defined(OPENSSL_NO_HMAC) |
|
if (doit[D_HMAC]) { |
|
HMAC_CTX hctx; |
|
|
|
HMAC_CTX_init(&hctx); |
|
HMAC_Init_ex(&hctx, (unsigned char *)"This is a key...", |
|
16, EVP_md5(), NULL); |
|
|
|
for (j = 0; j < SIZE_NUM; j++) { |
|
print_message(names[D_HMAC], c[D_HMAC][j], lengths[j]); |
|
Time_F(START); |
|
for (count = 0, run = 1; COND(c[D_HMAC][j]); count++) { |
|
HMAC_Init_ex(&hctx, NULL, 0, NULL, NULL); |
|
HMAC_Update(&hctx, buf, lengths[j]); |
|
HMAC_Final(&hctx, &(hmac[0]), NULL); |
|
} |
|
d = Time_F(STOP); |
|
print_result(D_HMAC, j, count, d); |
|
} |
|
HMAC_CTX_cleanup(&hctx); |
|
} |
|
# endif |
|
# ifndef OPENSSL_NO_SHA |
|
if (doit[D_SHA1]) { |
|
for (j = 0; j < SIZE_NUM; j++) { |
|
print_message(names[D_SHA1], c[D_SHA1][j], lengths[j]); |
|
Time_F(START); |
|
for (count = 0, run = 1; COND(c[D_SHA1][j]); count++) |
|
EVP_Digest(buf, (unsigned long)lengths[j], &(sha[0]), NULL, |
|
EVP_sha1(), NULL); |
|
d = Time_F(STOP); |
|
print_result(D_SHA1, j, count, d); |
|
} |
|
} |
|
# ifndef OPENSSL_NO_SHA256 |
|
if (doit[D_SHA256]) { |
|
for (j = 0; j < SIZE_NUM; j++) { |
|
print_message(names[D_SHA256], c[D_SHA256][j], lengths[j]); |
|
Time_F(START); |
|
for (count = 0, run = 1; COND(c[D_SHA256][j]); count++) |
|
SHA256(buf, lengths[j], sha256); |
|
d = Time_F(STOP); |
|
print_result(D_SHA256, j, count, d); |
|
} |
|
} |
|
# endif |
|
|
|
# ifndef OPENSSL_NO_SHA512 |
|
if (doit[D_SHA512]) { |
|
for (j = 0; j < SIZE_NUM; j++) { |
|
print_message(names[D_SHA512], c[D_SHA512][j], lengths[j]); |
|
Time_F(START); |
|
for (count = 0, run = 1; COND(c[D_SHA512][j]); count++) |
|
SHA512(buf, lengths[j], sha512); |
|
d = Time_F(STOP); |
|
print_result(D_SHA512, j, count, d); |
|
} |
|
} |
|
# endif |
|
# endif |
|
|
|
# ifndef OPENSSL_NO_WHIRLPOOL |
|
if (doit[D_WHIRLPOOL]) { |
|
for (j = 0; j < SIZE_NUM; j++) { |
|
print_message(names[D_WHIRLPOOL], c[D_WHIRLPOOL][j], lengths[j]); |
|
Time_F(START); |
|
for (count = 0, run = 1; COND(c[D_WHIRLPOOL][j]); count++) |
|
WHIRLPOOL(buf, lengths[j], whirlpool); |
|
d = Time_F(STOP); |
|
print_result(D_WHIRLPOOL, j, count, d); |
|
} |
|
} |
|
# endif |
|
|
|
# ifndef OPENSSL_NO_RIPEMD |
|
if (doit[D_RMD160]) { |
|
for (j = 0; j < SIZE_NUM; j++) { |
|
print_message(names[D_RMD160], c[D_RMD160][j], lengths[j]); |
|
Time_F(START); |
|
for (count = 0, run = 1; COND(c[D_RMD160][j]); count++) |
|
EVP_Digest(buf, (unsigned long)lengths[j], &(rmd160[0]), NULL, |
|
EVP_ripemd160(), NULL); |
|
d = Time_F(STOP); |
|
print_result(D_RMD160, j, count, d); |
|
} |
|
} |
|
# endif |
|
# ifndef OPENSSL_NO_RC4 |
|
if (doit[D_RC4]) { |
|
for (j = 0; j < SIZE_NUM; j++) { |
|
print_message(names[D_RC4], c[D_RC4][j], lengths[j]); |
|
Time_F(START); |
|
for (count = 0, run = 1; COND(c[D_RC4][j]); count++) |
|
RC4(&rc4_ks, (unsigned int)lengths[j], buf, buf); |
|
d = Time_F(STOP); |
|
print_result(D_RC4, j, count, d); |
|
} |
|
} |
|
# endif |
|
# ifndef OPENSSL_NO_DES |
|
if (doit[D_CBC_DES]) { |
|
for (j = 0; j < SIZE_NUM; j++) { |
|
print_message(names[D_CBC_DES], c[D_CBC_DES][j], lengths[j]); |
|
Time_F(START); |
|
for (count = 0, run = 1; COND(c[D_CBC_DES][j]); count++) |
|
DES_ncbc_encrypt(buf, buf, lengths[j], &sch, |
|
&DES_iv, DES_ENCRYPT); |
|
d = Time_F(STOP); |
|
print_result(D_CBC_DES, j, count, d); |
|
} |
|
} |
|
|
|
if (doit[D_EDE3_DES]) { |
|
for (j = 0; j < SIZE_NUM; j++) { |
|
print_message(names[D_EDE3_DES], c[D_EDE3_DES][j], lengths[j]); |
|
Time_F(START); |
|
for (count = 0, run = 1; COND(c[D_EDE3_DES][j]); count++) |
|
DES_ede3_cbc_encrypt(buf, buf, lengths[j], |
|
&sch, &sch2, &sch3, |
|
&DES_iv, DES_ENCRYPT); |
|
d = Time_F(STOP); |
|
print_result(D_EDE3_DES, j, count, d); |
|
} |
|
} |
|
# endif |
|
# ifndef OPENSSL_NO_AES |
|
if (doit[D_CBC_128_AES]) { |
|
for (j = 0; j < SIZE_NUM; j++) { |
|
print_message(names[D_CBC_128_AES], c[D_CBC_128_AES][j], |
|
lengths[j]); |
|
Time_F(START); |
|
for (count = 0, run = 1; COND(c[D_CBC_128_AES][j]); count++) |
|
AES_cbc_encrypt(buf, buf, |
|
(unsigned long)lengths[j], &aes_ks1, |
|
iv, AES_ENCRYPT); |
|
d = Time_F(STOP); |
|
print_result(D_CBC_128_AES, j, count, d); |
|
} |
|
} |
|
if (doit[D_CBC_192_AES]) { |
|
for (j = 0; j < SIZE_NUM; j++) { |
|
print_message(names[D_CBC_192_AES], c[D_CBC_192_AES][j], |
|
lengths[j]); |
|
Time_F(START); |
|
for (count = 0, run = 1; COND(c[D_CBC_192_AES][j]); count++) |
|
AES_cbc_encrypt(buf, buf, |
|
(unsigned long)lengths[j], &aes_ks2, |
|
iv, AES_ENCRYPT); |
|
d = Time_F(STOP); |
|
print_result(D_CBC_192_AES, j, count, d); |
|
} |
|
} |
|
if (doit[D_CBC_256_AES]) { |
|
for (j = 0; j < SIZE_NUM; j++) { |
|
print_message(names[D_CBC_256_AES], c[D_CBC_256_AES][j], |
|
lengths[j]); |
|
Time_F(START); |
|
for (count = 0, run = 1; COND(c[D_CBC_256_AES][j]); count++) |
|
AES_cbc_encrypt(buf, buf, |
|
(unsigned long)lengths[j], &aes_ks3, |
|
iv, AES_ENCRYPT); |
|
d = Time_F(STOP); |
|
print_result(D_CBC_256_AES, j, count, d); |
|
} |
|
} |
|
|
|
if (doit[D_IGE_128_AES]) { |
|
for (j = 0; j < SIZE_NUM; j++) { |
|
print_message(names[D_IGE_128_AES], c[D_IGE_128_AES][j], |
|
lengths[j]); |
|
Time_F(START); |
|
for (count = 0, run = 1; COND(c[D_IGE_128_AES][j]); count++) |
|
AES_ige_encrypt(buf, buf2, |
|
(unsigned long)lengths[j], &aes_ks1, |
|
iv, AES_ENCRYPT); |
|
d = Time_F(STOP); |
|
print_result(D_IGE_128_AES, j, count, d); |
|
} |
|
} |
|
if (doit[D_IGE_192_AES]) { |
|
for (j = 0; j < SIZE_NUM; j++) { |
|
print_message(names[D_IGE_192_AES], c[D_IGE_192_AES][j], |
|
lengths[j]); |
|
Time_F(START); |
|
for (count = 0, run = 1; COND(c[D_IGE_192_AES][j]); count++) |
|
AES_ige_encrypt(buf, buf2, |
|
(unsigned long)lengths[j], &aes_ks2, |
|
iv, AES_ENCRYPT); |
|
d = Time_F(STOP); |
|
print_result(D_IGE_192_AES, j, count, d); |
|
} |
|
} |
|
if (doit[D_IGE_256_AES]) { |
|
for (j = 0; j < SIZE_NUM; j++) { |
|
print_message(names[D_IGE_256_AES], c[D_IGE_256_AES][j], |
|
lengths[j]); |
|
Time_F(START); |
|
for (count = 0, run = 1; COND(c[D_IGE_256_AES][j]); count++) |
|
AES_ige_encrypt(buf, buf2, |
|
(unsigned long)lengths[j], &aes_ks3, |
|
iv, AES_ENCRYPT); |
|
d = Time_F(STOP); |
|
print_result(D_IGE_256_AES, j, count, d); |
|
} |
|
} |
|
if (doit[D_GHASH]) { |
|
GCM128_CONTEXT *ctx = |
|
CRYPTO_gcm128_new(&aes_ks1, (block128_f) AES_encrypt); |
|
CRYPTO_gcm128_setiv(ctx, (unsigned char *)"0123456789ab", 12); |
|
|
|
for (j = 0; j < SIZE_NUM; j++) { |
|
print_message(names[D_GHASH], c[D_GHASH][j], lengths[j]); |
|
Time_F(START); |
|
for (count = 0, run = 1; COND(c[D_GHASH][j]); count++) |
|
CRYPTO_gcm128_aad(ctx, buf, lengths[j]); |
|
d = Time_F(STOP); |
|
print_result(D_GHASH, j, count, d); |
|
} |
|
CRYPTO_gcm128_release(ctx); |
|
} |
|
# endif |
|
# ifndef OPENSSL_NO_CAMELLIA |
|
if (doit[D_CBC_128_CML]) { |
|
for (j = 0; j < SIZE_NUM; j++) { |
|
print_message(names[D_CBC_128_CML], c[D_CBC_128_CML][j], |
|
lengths[j]); |
|
Time_F(START); |
|
for (count = 0, run = 1; COND(c[D_CBC_128_CML][j]); count++) |
|
Camellia_cbc_encrypt(buf, buf, |
|
(unsigned long)lengths[j], &camellia_ks1, |
|
iv, CAMELLIA_ENCRYPT); |
|
d = Time_F(STOP); |
|
print_result(D_CBC_128_CML, j, count, d); |
|
} |
|
} |
|
if (doit[D_CBC_192_CML]) { |
|
for (j = 0; j < SIZE_NUM; j++) { |
|
print_message(names[D_CBC_192_CML], c[D_CBC_192_CML][j], |
|
lengths[j]); |
|
Time_F(START); |
|
for (count = 0, run = 1; COND(c[D_CBC_192_CML][j]); count++) |
|
Camellia_cbc_encrypt(buf, buf, |
|
(unsigned long)lengths[j], &camellia_ks2, |
|
iv, CAMELLIA_ENCRYPT); |
|
d = Time_F(STOP); |
|
print_result(D_CBC_192_CML, j, count, d); |
|
} |
|
} |
|
if (doit[D_CBC_256_CML]) { |
|
for (j = 0; j < SIZE_NUM; j++) { |
|
print_message(names[D_CBC_256_CML], c[D_CBC_256_CML][j], |
|
lengths[j]); |
|
Time_F(START); |
|
for (count = 0, run = 1; COND(c[D_CBC_256_CML][j]); count++) |
|
Camellia_cbc_encrypt(buf, buf, |
|
(unsigned long)lengths[j], &camellia_ks3, |
|
iv, CAMELLIA_ENCRYPT); |
|
d = Time_F(STOP); |
|
print_result(D_CBC_256_CML, j, count, d); |
|
} |
|
} |
|
# endif |
|
# ifndef OPENSSL_NO_IDEA |
|
if (doit[D_CBC_IDEA]) { |
|
for (j = 0; j < SIZE_NUM; j++) { |
|
print_message(names[D_CBC_IDEA], c[D_CBC_IDEA][j], lengths[j]); |
|
Time_F(START); |
|
for (count = 0, run = 1; COND(c[D_CBC_IDEA][j]); count++) |
|
idea_cbc_encrypt(buf, buf, |
|
(unsigned long)lengths[j], &idea_ks, |
|
iv, IDEA_ENCRYPT); |
|
d = Time_F(STOP); |
|
print_result(D_CBC_IDEA, j, count, d); |
|
} |
|
} |
|
# endif |
|
# ifndef OPENSSL_NO_SEED |
|
if (doit[D_CBC_SEED]) { |
|
for (j = 0; j < SIZE_NUM; j++) { |
|
print_message(names[D_CBC_SEED], c[D_CBC_SEED][j], lengths[j]); |
|
Time_F(START); |
|
for (count = 0, run = 1; COND(c[D_CBC_SEED][j]); count++) |
|
SEED_cbc_encrypt(buf, buf, |
|
(unsigned long)lengths[j], &seed_ks, iv, 1); |
|
d = Time_F(STOP); |
|
print_result(D_CBC_SEED, j, count, d); |
|
} |
|
} |
|
# endif |
|
# ifndef OPENSSL_NO_RC2 |
|
if (doit[D_CBC_RC2]) { |
|
for (j = 0; j < SIZE_NUM; j++) { |
|
print_message(names[D_CBC_RC2], c[D_CBC_RC2][j], lengths[j]); |
|
Time_F(START); |
|
for (count = 0, run = 1; COND(c[D_CBC_RC2][j]); count++) |
|
RC2_cbc_encrypt(buf, buf, |
|
(unsigned long)lengths[j], &rc2_ks, |
|
iv, RC2_ENCRYPT); |
|
d = Time_F(STOP); |
|
print_result(D_CBC_RC2, j, count, d); |
|
} |
|
} |
|
# endif |
|
# ifndef OPENSSL_NO_RC5 |
|
if (doit[D_CBC_RC5]) { |
|
for (j = 0; j < SIZE_NUM; j++) { |
|
print_message(names[D_CBC_RC5], c[D_CBC_RC5][j], lengths[j]); |
|
Time_F(START); |
|
for (count = 0, run = 1; COND(c[D_CBC_RC5][j]); count++) |
|
RC5_32_cbc_encrypt(buf, buf, |
|
(unsigned long)lengths[j], &rc5_ks, |
|
iv, RC5_ENCRYPT); |
|
d = Time_F(STOP); |
|
print_result(D_CBC_RC5, j, count, d); |
|
} |
|
} |
|
# endif |
|
# ifndef OPENSSL_NO_BF |
|
if (doit[D_CBC_BF]) { |
|
for (j = 0; j < SIZE_NUM; j++) { |
|
print_message(names[D_CBC_BF], c[D_CBC_BF][j], lengths[j]); |
|
Time_F(START); |
|
for (count = 0, run = 1; COND(c[D_CBC_BF][j]); count++) |
|
BF_cbc_encrypt(buf, buf, |
|
(unsigned long)lengths[j], &bf_ks, |
|
iv, BF_ENCRYPT); |
|
d = Time_F(STOP); |
|
print_result(D_CBC_BF, j, count, d); |
|
} |
|
} |
|
# endif |
|
# ifndef OPENSSL_NO_CAST |
|
if (doit[D_CBC_CAST]) { |
|
for (j = 0; j < SIZE_NUM; j++) { |
|
print_message(names[D_CBC_CAST], c[D_CBC_CAST][j], lengths[j]); |
|
Time_F(START); |
|
for (count = 0, run = 1; COND(c[D_CBC_CAST][j]); count++) |
|
CAST_cbc_encrypt(buf, buf, |
|
(unsigned long)lengths[j], &cast_ks, |
|
iv, CAST_ENCRYPT); |
|
d = Time_F(STOP); |
|
print_result(D_CBC_CAST, j, count, d); |
|
} |
|
} |
|
# endif |
|
|
|
if (doit[D_EVP]) { |
|
for (j = 0; j < SIZE_NUM; j++) { |
|
if (evp_cipher) { |
|
EVP_CIPHER_CTX ctx; |
|
int outl; |
|
|
|
names[D_EVP] = OBJ_nid2ln(evp_cipher->nid); |
|
/* |
|
* -O3 -fschedule-insns messes up an optimization here! |
|
* names[D_EVP] somehow becomes NULL |
|
*/ |
|
print_message(names[D_EVP], save_count, lengths[j]); |
|
|
|
EVP_CIPHER_CTX_init(&ctx); |
|
if (decrypt) |
|
EVP_DecryptInit_ex(&ctx, evp_cipher, NULL, key16, iv); |
|
else |
|
EVP_EncryptInit_ex(&ctx, evp_cipher, NULL, key16, iv); |
|
EVP_CIPHER_CTX_set_padding(&ctx, 0); |
|
|
|
Time_F(START); |
|
if (decrypt) |
|
for (count = 0, run = 1; |
|
COND(save_count * 4 * lengths[0] / lengths[j]); |
|
count++) |
|
EVP_DecryptUpdate(&ctx, buf, &outl, buf, lengths[j]); |
|
else |
|
for (count = 0, run = 1; |
|
COND(save_count * 4 * lengths[0] / lengths[j]); |
|
count++) |
|
EVP_EncryptUpdate(&ctx, buf, &outl, buf, lengths[j]); |
|
if (decrypt) |
|
EVP_DecryptFinal_ex(&ctx, buf, &outl); |
|
else |
|
EVP_EncryptFinal_ex(&ctx, buf, &outl); |
|
d = Time_F(STOP); |
|
EVP_CIPHER_CTX_cleanup(&ctx); |
|
} |
|
if (evp_md) { |
|
names[D_EVP] = OBJ_nid2ln(evp_md->type); |
|
print_message(names[D_EVP], save_count, lengths[j]); |
|
|
|
Time_F(START); |
|
for (count = 0, run = 1; |
|
COND(save_count * 4 * lengths[0] / lengths[j]); count++) |
|
EVP_Digest(buf, lengths[j], &(md[0]), NULL, evp_md, NULL); |
|
|
|
d = Time_F(STOP); |
|
} |
|
print_result(D_EVP, j, count, d); |
|
} |
|
} |
|
|
|
RAND_pseudo_bytes(buf, 36); |
|
# ifndef OPENSSL_NO_RSA |
|
for (j = 0; j < RSA_NUM; j++) { |
|
int ret; |
|
if (!rsa_doit[j]) |
|
continue; |
|
ret = RSA_sign(NID_md5_sha1, buf, 36, buf2, &rsa_num, rsa_key[j]); |
|
if (ret == 0) { |
|
BIO_printf(bio_err, |
|
"RSA sign failure. No RSA sign will be done.\n"); |
|
ERR_print_errors(bio_err); |
|
rsa_count = 1; |
|
} else { |
|
pkey_print_message("private", "rsa", |
|
rsa_c[j][0], rsa_bits[j], RSA_SECONDS); |
|
/* RSA_blinding_on(rsa_key[j],NULL); */ |
|
Time_F(START); |
|
for (count = 0, run = 1; COND(rsa_c[j][0]); count++) { |
|
ret = RSA_sign(NID_md5_sha1, buf, 36, buf2, |
|
&rsa_num, rsa_key[j]); |
|
if (ret == 0) { |
|
BIO_printf(bio_err, "RSA sign failure\n"); |
|
ERR_print_errors(bio_err); |
|
count = 1; |
|
break; |
|
} |
|
} |
|
d = Time_F(STOP); |
|
BIO_printf(bio_err, |
|
mr ? "+R1:%ld:%d:%.2f\n" |
|
: "%ld %d bit private RSA's in %.2fs\n", |
|
count, rsa_bits[j], d); |
|
rsa_results[j][0] = d / (double)count; |
|
rsa_count = count; |
|
} |
|
|
|
# if 1 |
|
ret = RSA_verify(NID_md5_sha1, buf, 36, buf2, rsa_num, rsa_key[j]); |
|
if (ret <= 0) { |
|
BIO_printf(bio_err, |
|
"RSA verify failure. No RSA verify will be done.\n"); |
|
ERR_print_errors(bio_err); |
|
rsa_doit[j] = 0; |
|
} else { |
|
pkey_print_message("public", "rsa", |
|
rsa_c[j][1], rsa_bits[j], RSA_SECONDS); |
|
Time_F(START); |
|
for (count = 0, run = 1; COND(rsa_c[j][1]); count++) { |
|
ret = RSA_verify(NID_md5_sha1, buf, 36, buf2, |
|
rsa_num, rsa_key[j]); |
|
if (ret <= 0) { |
|
BIO_printf(bio_err, "RSA verify failure\n"); |
|
ERR_print_errors(bio_err); |
|
count = 1; |
|
break; |
|
} |
|
} |
|
d = Time_F(STOP); |
|
BIO_printf(bio_err, |
|
mr ? "+R2:%ld:%d:%.2f\n" |
|
: "%ld %d bit public RSA's in %.2fs\n", |
|
count, rsa_bits[j], d); |
|
rsa_results[j][1] = d / (double)count; |
|
} |
|
# endif |
|
|
|
if (rsa_count <= 1) { |
|
/* if longer than 10s, don't do any more */ |
|
for (j++; j < RSA_NUM; j++) |
|
rsa_doit[j] = 0; |
|
} |
|
} |
|
# endif |
|
|
|
RAND_pseudo_bytes(buf, 20); |
|
# ifndef OPENSSL_NO_DSA |
|
if (RAND_status() != 1) { |
|
RAND_seed(rnd_seed, sizeof rnd_seed); |
|
rnd_fake = 1; |
|
} |
|
for (j = 0; j < DSA_NUM; j++) { |
|
unsigned int kk; |
|
int ret; |
|
|
|
if (!dsa_doit[j]) |
|
continue; |
|
|
|
/* DSA_generate_key(dsa_key[j]); */ |
|
/* DSA_sign_setup(dsa_key[j],NULL); */ |
|
ret = DSA_sign(EVP_PKEY_DSA, buf, 20, buf2, &kk, dsa_key[j]); |
|
if (ret == 0) { |
|
BIO_printf(bio_err, |
|
"DSA sign failure. No DSA sign will be done.\n"); |
|
ERR_print_errors(bio_err); |
|
rsa_count = 1; |
|
} else { |
|
pkey_print_message("sign", "dsa", |
|
dsa_c[j][0], dsa_bits[j], DSA_SECONDS); |
|
Time_F(START); |
|
for (count = 0, run = 1; COND(dsa_c[j][0]); count++) { |
|
ret = DSA_sign(EVP_PKEY_DSA, buf, 20, buf2, &kk, dsa_key[j]); |
|
if (ret == 0) { |
|
BIO_printf(bio_err, "DSA sign failure\n"); |
|
ERR_print_errors(bio_err); |
|
count = 1; |
|
break; |
|
} |
|
} |
|
d = Time_F(STOP); |
|
BIO_printf(bio_err, |
|
mr ? "+R3:%ld:%d:%.2f\n" |
|
: "%ld %d bit DSA signs in %.2fs\n", |
|
count, dsa_bits[j], d); |
|
dsa_results[j][0] = d / (double)count; |
|
rsa_count = count; |
|
} |
|
|
|
ret = DSA_verify(EVP_PKEY_DSA, buf, 20, buf2, kk, dsa_key[j]); |
|
if (ret <= 0) { |
|
BIO_printf(bio_err, |
|
"DSA verify failure. No DSA verify will be done.\n"); |
|
ERR_print_errors(bio_err); |
|
dsa_doit[j] = 0; |
|
} else { |
|
pkey_print_message("verify", "dsa", |
|
dsa_c[j][1], dsa_bits[j], DSA_SECONDS); |
|
Time_F(START); |
|
for (count = 0, run = 1; COND(dsa_c[j][1]); count++) { |
|
ret = DSA_verify(EVP_PKEY_DSA, buf, 20, buf2, kk, dsa_key[j]); |
|
if (ret <= 0) { |
|
BIO_printf(bio_err, "DSA verify failure\n"); |
|
ERR_print_errors(bio_err); |
|
count = 1; |
|
break; |
|
} |
|
} |
|
d = Time_F(STOP); |
|
BIO_printf(bio_err, |
|
mr ? "+R4:%ld:%d:%.2f\n" |
|
: "%ld %d bit DSA verify in %.2fs\n", |
|
count, dsa_bits[j], d); |
|
dsa_results[j][1] = d / (double)count; |
|
} |
|
|
|
if (rsa_count <= 1) { |
|
/* if longer than 10s, don't do any more */ |
|
for (j++; j < DSA_NUM; j++) |
|
dsa_doit[j] = 0; |
|
} |
|
} |
|
if (rnd_fake) |
|
RAND_cleanup(); |
|
# endif |
|
|
|
# ifndef OPENSSL_NO_ECDSA |
|
if (RAND_status() != 1) { |
|
RAND_seed(rnd_seed, sizeof rnd_seed); |
|
rnd_fake = 1; |
|
} |
|
for (j = 0; j < EC_NUM; j++) { |
|
int ret; |
|
|
|
if (!ecdsa_doit[j]) |
|
continue; /* Ignore Curve */ |
|
ecdsa[j] = EC_KEY_new_by_curve_name(test_curves[j]); |
|
if (ecdsa[j] == NULL) { |
|
BIO_printf(bio_err, "ECDSA failure.\n"); |
|
ERR_print_errors(bio_err); |
|
rsa_count = 1; |
|
} else { |
|
# if 1 |
|
EC_KEY_precompute_mult(ecdsa[j], NULL); |
|
# endif |
|
/* Perform ECDSA signature test */ |
|
EC_KEY_generate_key(ecdsa[j]); |
|
ret = ECDSA_sign(0, buf, 20, ecdsasig, &ecdsasiglen, ecdsa[j]); |
|
if (ret == 0) { |
|
BIO_printf(bio_err, |
|
"ECDSA sign failure. No ECDSA sign will be done.\n"); |
|
ERR_print_errors(bio_err); |
|
rsa_count = 1; |
|
} else { |
|
pkey_print_message("sign", "ecdsa", |
|
ecdsa_c[j][0], |
|
test_curves_bits[j], ECDSA_SECONDS); |
|
|
|
Time_F(START); |
|
for (count = 0, run = 1; COND(ecdsa_c[j][0]); count++) { |
|
ret = ECDSA_sign(0, buf, 20, |
|
ecdsasig, &ecdsasiglen, ecdsa[j]); |
|
if (ret == 0) { |
|
BIO_printf(bio_err, "ECDSA sign failure\n"); |
|
ERR_print_errors(bio_err); |
|
count = 1; |
|
break; |
|
} |
|
} |
|
d = Time_F(STOP); |
|
|
|
BIO_printf(bio_err, |
|
mr ? "+R5:%ld:%d:%.2f\n" : |
|
"%ld %d bit ECDSA signs in %.2fs \n", |
|
count, test_curves_bits[j], d); |
|
ecdsa_results[j][0] = d / (double)count; |
|
rsa_count = count; |
|
} |
|
|
|
/* Perform ECDSA verification test */ |
|
ret = ECDSA_verify(0, buf, 20, ecdsasig, ecdsasiglen, ecdsa[j]); |
|
if (ret != 1) { |
|
BIO_printf(bio_err, |
|
"ECDSA verify failure. No ECDSA verify will be done.\n"); |
|
ERR_print_errors(bio_err); |
|
ecdsa_doit[j] = 0; |
|
} else { |
|
pkey_print_message("verify", "ecdsa", |
|
ecdsa_c[j][1], |
|
test_curves_bits[j], ECDSA_SECONDS); |
|
Time_F(START); |
|
for (count = 0, run = 1; COND(ecdsa_c[j][1]); count++) { |
|
ret = |
|
ECDSA_verify(0, buf, 20, ecdsasig, ecdsasiglen, |
|
ecdsa[j]); |
|
if (ret != 1) { |
|
BIO_printf(bio_err, "ECDSA verify failure\n"); |
|
ERR_print_errors(bio_err); |
|
count = 1; |
|
break; |
|
} |
|
} |
|
d = Time_F(STOP); |
|
BIO_printf(bio_err, |
|
mr ? "+R6:%ld:%d:%.2f\n" |
|
: "%ld %d bit ECDSA verify in %.2fs\n", |
|
count, test_curves_bits[j], d); |
|
ecdsa_results[j][1] = d / (double)count; |
|
} |
|
|
|
if (rsa_count <= 1) { |
|
/* if longer than 10s, don't do any more */ |
|
for (j++; j < EC_NUM; j++) |
|
ecdsa_doit[j] = 0; |
|
} |
|
} |
|
} |
|
if (rnd_fake) |
|
RAND_cleanup(); |
|
# endif |
|
|
|
# ifndef OPENSSL_NO_ECDH |
|
if (RAND_status() != 1) { |
|
RAND_seed(rnd_seed, sizeof rnd_seed); |
|
rnd_fake = 1; |
|
} |
|
for (j = 0; j < EC_NUM; j++) { |
|
if (!ecdh_doit[j]) |
|
continue; |
|
ecdh_a[j] = EC_KEY_new_by_curve_name(test_curves[j]); |
|
ecdh_b[j] = EC_KEY_new_by_curve_name(test_curves[j]); |
|
if ((ecdh_a[j] == NULL) || (ecdh_b[j] == NULL)) { |
|
BIO_printf(bio_err, "ECDH failure.\n"); |
|
ERR_print_errors(bio_err); |
|
rsa_count = 1; |
|
} else { |
|
/* generate two ECDH key pairs */ |
|
if (!EC_KEY_generate_key(ecdh_a[j]) || |
|
!EC_KEY_generate_key(ecdh_b[j])) { |
|
BIO_printf(bio_err, "ECDH key generation failure.\n"); |
|
ERR_print_errors(bio_err); |
|
rsa_count = 1; |
|
} else { |
|
/* |
|
* If field size is not more than 24 octets, then use SHA-1 |
|
* hash of result; otherwise, use result (see section 4.8 of |
|
* draft-ietf-tls-ecc-03.txt). |
|
*/ |
|
int field_size, outlen; |
|
void *(*kdf) (const void *in, size_t inlen, void *out, |
|
size_t *xoutlen); |
|
field_size = |
|
EC_GROUP_get_degree(EC_KEY_get0_group(ecdh_a[j])); |
|
if (field_size <= 24 * 8) { |
|
outlen = KDF1_SHA1_len; |
|
kdf = KDF1_SHA1; |
|
} else { |
|
outlen = (field_size + 7) / 8; |
|
kdf = NULL; |
|
} |
|
secret_size_a = |
|
ECDH_compute_key(secret_a, outlen, |
|
EC_KEY_get0_public_key(ecdh_b[j]), |
|
ecdh_a[j], kdf); |
|
secret_size_b = |
|
ECDH_compute_key(secret_b, outlen, |
|
EC_KEY_get0_public_key(ecdh_a[j]), |
|
ecdh_b[j], kdf); |
|
if (secret_size_a != secret_size_b) |
|
ecdh_checks = 0; |
|
else |
|
ecdh_checks = 1; |
|
|
|
for (secret_idx = 0; (secret_idx < secret_size_a) |
|
&& (ecdh_checks == 1); secret_idx++) { |
|
if (secret_a[secret_idx] != secret_b[secret_idx]) |
|
ecdh_checks = 0; |
|
} |
|
|
|
if (ecdh_checks == 0) { |
|
BIO_printf(bio_err, "ECDH computations don't match.\n"); |
|
ERR_print_errors(bio_err); |
|
rsa_count = 1; |
|
} |
|
|
|
pkey_print_message("", "ecdh", |
|
ecdh_c[j][0], |
|
test_curves_bits[j], ECDH_SECONDS); |
|
Time_F(START); |
|
for (count = 0, run = 1; COND(ecdh_c[j][0]); count++) { |
|
ECDH_compute_key(secret_a, outlen, |
|
EC_KEY_get0_public_key(ecdh_b[j]), |
|
ecdh_a[j], kdf); |
|
} |
|
d = Time_F(STOP); |
|
BIO_printf(bio_err, |
|
mr ? "+R7:%ld:%d:%.2f\n" : |
|
"%ld %d-bit ECDH ops in %.2fs\n", count, |
|
test_curves_bits[j], d); |
|
ecdh_results[j][0] = d / (double)count; |
|
rsa_count = count; |
|
} |
|
} |
|
|
|
if (rsa_count <= 1) { |
|
/* if longer than 10s, don't do any more */ |
|
for (j++; j < EC_NUM; j++) |
|
ecdh_doit[j] = 0; |
|
} |
|
} |
|
if (rnd_fake) |
|
RAND_cleanup(); |
|
# endif |
|
# ifndef NO_FORK |
|
show_res: |
|
# endif |
|
if (!mr) { |
|
fprintf(stdout, "%s\n", SSLeay_version(SSLEAY_VERSION)); |
|
fprintf(stdout, "%s\n", SSLeay_version(SSLEAY_BUILT_ON)); |
|
printf("options:"); |
|
printf("%s ", BN_options()); |
|
# ifndef OPENSSL_NO_MD2 |
|
printf("%s ", MD2_options()); |
|
# endif |
|
# ifndef OPENSSL_NO_RC4 |
|
printf("%s ", RC4_options()); |
|
# endif |
|
# ifndef OPENSSL_NO_DES |
|
printf("%s ", DES_options()); |
|
# endif |
|
# ifndef OPENSSL_NO_AES |
|
printf("%s ", AES_options()); |
|
# endif |
|
# ifndef OPENSSL_NO_IDEA |
|
printf("%s ", idea_options()); |
|
# endif |
|
# ifndef OPENSSL_NO_BF |
|
printf("%s ", BF_options()); |
|
# endif |
|
fprintf(stdout, "\n%s\n", SSLeay_version(SSLEAY_CFLAGS)); |
|
} |
|
|
|
if (pr_header) { |
|
if (mr) |
|
fprintf(stdout, "+H"); |
|
else { |
|
fprintf(stdout, |
|
"The 'numbers' are in 1000s of bytes per second processed.\n"); |
|
fprintf(stdout, "type "); |
|
} |
|
for (j = 0; j < SIZE_NUM; j++) |
|
fprintf(stdout, mr ? ":%d" : "%7d bytes", lengths[j]); |
|
fprintf(stdout, "\n"); |
|
} |
|
|
|
for (k = 0; k < ALGOR_NUM; k++) { |
|
if (!doit[k]) |
|
continue; |
|
if (mr) |
|
fprintf(stdout, "+F:%d:%s", k, names[k]); |
|
else |
|
fprintf(stdout, "%-13s", names[k]); |
|
for (j = 0; j < SIZE_NUM; j++) { |
|
if (results[k][j] > 10000 && !mr) |
|
fprintf(stdout, " %11.2fk", results[k][j] / 1e3); |
|
else |
|
fprintf(stdout, mr ? ":%.2f" : " %11.2f ", results[k][j]); |
|
} |
|
fprintf(stdout, "\n"); |
|
} |
|
# ifndef OPENSSL_NO_RSA |
|
j = 1; |
|
for (k = 0; k < RSA_NUM; k++) { |
|
if (!rsa_doit[k]) |
|
continue; |
|
if (j && !mr) { |
|
printf("%18ssign verify sign/s verify/s\n", " "); |
|
j = 0; |
|
} |
|
if (mr) |
|
fprintf(stdout, "+F2:%u:%u:%f:%f\n", |
|
k, rsa_bits[k], rsa_results[k][0], rsa_results[k][1]); |
|
else |
|
fprintf(stdout, "rsa %4u bits %8.6fs %8.6fs %8.1f %8.1f\n", |
|
rsa_bits[k], rsa_results[k][0], rsa_results[k][1], |
|
1.0 / rsa_results[k][0], 1.0 / rsa_results[k][1]); |
|
} |
|
# endif |
|
# ifndef OPENSSL_NO_DSA |
|
j = 1; |
|
for (k = 0; k < DSA_NUM; k++) { |
|
if (!dsa_doit[k]) |
|
continue; |
|
if (j && !mr) { |
|
printf("%18ssign verify sign/s verify/s\n", " "); |
|
j = 0; |
|
} |
|
if (mr) |
|
fprintf(stdout, "+F3:%u:%u:%f:%f\n", |
|
k, dsa_bits[k], dsa_results[k][0], dsa_results[k][1]); |
|
else |
|
fprintf(stdout, "dsa %4u bits %8.6fs %8.6fs %8.1f %8.1f\n", |
|
dsa_bits[k], dsa_results[k][0], dsa_results[k][1], |
|
1.0 / dsa_results[k][0], 1.0 / dsa_results[k][1]); |
|
} |
|
# endif |
|
# ifndef OPENSSL_NO_ECDSA |
|
j = 1; |
|
for (k = 0; k < EC_NUM; k++) { |
|
if (!ecdsa_doit[k]) |
|
continue; |
|
if (j && !mr) { |
|
printf("%30ssign verify sign/s verify/s\n", " "); |
|
j = 0; |
|
} |
|
|
|
if (mr) |
|
fprintf(stdout, "+F4:%u:%u:%f:%f\n", |
|
k, test_curves_bits[k], |
|
ecdsa_results[k][0], ecdsa_results[k][1]); |
|
else |
|
fprintf(stdout, |
|
"%4u bit ecdsa (%s) %8.4fs %8.4fs %8.1f %8.1f\n", |
|
test_curves_bits[k], |
|
test_curves_names[k], |
|
ecdsa_results[k][0], ecdsa_results[k][1], |
|
1.0 / ecdsa_results[k][0], 1.0 / ecdsa_results[k][1]); |
|
} |
|
# endif |
|
|
|
# ifndef OPENSSL_NO_ECDH |
|
j = 1; |
|
for (k = 0; k < EC_NUM; k++) { |
|
if (!ecdh_doit[k]) |
|
continue; |
|
if (j && !mr) { |
|
printf("%30sop op/s\n", " "); |
|
j = 0; |
|
} |
|
if (mr) |
|
fprintf(stdout, "+F5:%u:%u:%f:%f\n", |
|
k, test_curves_bits[k], |
|
ecdh_results[k][0], 1.0 / ecdh_results[k][0]); |
|
|
|
else |
|
fprintf(stdout, "%4u bit ecdh (%s) %8.4fs %8.1f\n", |
|
test_curves_bits[k], |
|
test_curves_names[k], |
|
ecdh_results[k][0], 1.0 / ecdh_results[k][0]); |
|
} |
|
# endif |
|
|
|
mret = 0; |
|
|
|
end: |
|
ERR_print_errors(bio_err); |
|
if (buf != NULL) |
|
OPENSSL_free(buf); |
|
if (buf2 != NULL) |
|
OPENSSL_free(buf2); |
|
# ifndef OPENSSL_NO_RSA |
|
for (i = 0; i < RSA_NUM; i++) |
|
if (rsa_key[i] != NULL) |
|
RSA_free(rsa_key[i]); |
|
# endif |
|
# ifndef OPENSSL_NO_DSA |
|
for (i = 0; i < DSA_NUM; i++) |
|
if (dsa_key[i] != NULL) |
|
DSA_free(dsa_key[i]); |
|
# endif |
|
|
|
# ifndef OPENSSL_NO_ECDSA |
|
for (i = 0; i < EC_NUM; i++) |
|
if (ecdsa[i] != NULL) |
|
EC_KEY_free(ecdsa[i]); |
|
# endif |
|
# ifndef OPENSSL_NO_ECDH |
|
for (i = 0; i < EC_NUM; i++) { |
|
if (ecdh_a[i] != NULL) |
|
EC_KEY_free(ecdh_a[i]); |
|
if (ecdh_b[i] != NULL) |
|
EC_KEY_free(ecdh_b[i]); |
|
} |
|
# endif |
|
|
|
apps_shutdown(); |
|
OPENSSL_EXIT(mret); |
|
} |
|
|
|
static void print_message(const char *s, long num, int length) |
|
{ |
|
# ifdef SIGALRM |
|
BIO_printf(bio_err, |
|
mr ? "+DT:%s:%d:%d\n" |
|
: "Doing %s for %ds on %d size blocks: ", s, SECONDS, length); |
|
(void)BIO_flush(bio_err); |
|
alarm(SECONDS); |
|
# else |
|
BIO_printf(bio_err, |
|
mr ? "+DN:%s:%ld:%d\n" |
|
: "Doing %s %ld times on %d size blocks: ", s, num, length); |
|
(void)BIO_flush(bio_err); |
|
# endif |
|
# ifdef LINT |
|
num = num; |
|
# endif |
|
} |
|
|
|
static void pkey_print_message(const char *str, const char *str2, long num, |
|
int bits, int tm) |
|
{ |
|
# ifdef SIGALRM |
|
BIO_printf(bio_err, |
|
mr ? "+DTP:%d:%s:%s:%d\n" |
|
: "Doing %d bit %s %s's for %ds: ", bits, str, str2, tm); |
|
(void)BIO_flush(bio_err); |
|
alarm(tm); |
|
# else |
|
BIO_printf(bio_err, |
|
mr ? "+DNP:%ld:%d:%s:%s\n" |
|
: "Doing %ld %d bit %s %s's: ", num, bits, str, str2); |
|
(void)BIO_flush(bio_err); |
|
# endif |
|
# ifdef LINT |
|
num = num; |
|
# endif |
|
} |
|
|
|
static void print_result(int alg, int run_no, int count, double time_used) |
|
{ |
|
BIO_printf(bio_err, |
|
mr ? "+R:%d:%s:%f\n" |
|
: "%d %s's in %.2fs\n", count, names[alg], time_used); |
|
results[alg][run_no] = ((double)count) / time_used * lengths[run_no]; |
|
} |
|
|
|
# ifndef NO_FORK |
|
static char *sstrsep(char **string, const char *delim) |
|
{ |
|
char isdelim[256]; |
|
char *token = *string; |
|
|
|
if (**string == 0) |
|
return NULL; |
|
|
|
memset(isdelim, 0, sizeof isdelim); |
|
isdelim[0] = 1; |
|
|
|
while (*delim) { |
|
isdelim[(unsigned char)(*delim)] = 1; |
|
delim++; |
|
} |
|
|
|
while (!isdelim[(unsigned char)(**string)]) { |
|
(*string)++; |
|
} |
|
|
|
if (**string) { |
|
**string = 0; |
|
(*string)++; |
|
} |
|
|
|
return token; |
|
} |
|
|
|
static int do_multi(int multi) |
|
{ |
|
int n; |
|
int fd[2]; |
|
int *fds; |
|
static char sep[] = ":"; |
|
|
|
fds = malloc(multi * sizeof *fds); |
|
for (n = 0; n < multi; ++n) { |
|
if (pipe(fd) == -1) { |
|
fprintf(stderr, "pipe failure\n"); |
|
exit(1); |
|
} |
|
fflush(stdout); |
|
fflush(stderr); |
|
if (fork()) { |
|
close(fd[1]); |
|
fds[n] = fd[0]; |
|
} else { |
|
close(fd[0]); |
|
close(1); |
|
if (dup(fd[1]) == -1) { |
|
fprintf(stderr, "dup failed\n"); |
|
exit(1); |
|
} |
|
close(fd[1]); |
|
mr = 1; |
|
usertime = 0; |
|
free(fds); |
|
return 0; |
|
} |
|
printf("Forked child %d\n", n); |
|
} |
|
|
|
/* for now, assume the pipe is long enough to take all the output */ |
|
for (n = 0; n < multi; ++n) { |
|
FILE *f; |
|
char buf[1024]; |
|
char *p; |
|
|
|
f = fdopen(fds[n], "r"); |
|
while (fgets(buf, sizeof buf, f)) { |
|
p = strchr(buf, '\n'); |
|
if (p) |
|
*p = '\0'; |
|
if (buf[0] != '+') { |
|
fprintf(stderr, "Don't understand line '%s' from child %d\n", |
|
buf, n); |
|
continue; |
|
} |
|
printf("Got: %s from %d\n", buf, n); |
|
if (!strncmp(buf, "+F:", 3)) { |
|
int alg; |
|
int j; |
|
|
|
p = buf + 3; |
|
alg = atoi(sstrsep(&p, sep)); |
|
sstrsep(&p, sep); |
|
for (j = 0; j < SIZE_NUM; ++j) |
|
results[alg][j] += atof(sstrsep(&p, sep)); |
|
} else if (!strncmp(buf, "+F2:", 4)) { |
|
int k; |
|
double d; |
|
|
|
p = buf + 4; |
|
k = atoi(sstrsep(&p, sep)); |
|
sstrsep(&p, sep); |
|
|
|
d = atof(sstrsep(&p, sep)); |
|
if (n) |
|
rsa_results[k][0] = 1 / (1 / rsa_results[k][0] + 1 / d); |
|
else |
|
rsa_results[k][0] = d; |
|
|
|
d = atof(sstrsep(&p, sep)); |
|
if (n) |
|
rsa_results[k][1] = 1 / (1 / rsa_results[k][1] + 1 / d); |
|
else |
|
rsa_results[k][1] = d; |
|
} |
|
# ifndef OPENSSL_NO_DSA |
|
else if (!strncmp(buf, "+F3:", 4)) { |
|
int k; |
|
double d; |
|
|
|
p = buf + 4; |
|
k = atoi(sstrsep(&p, sep)); |
|
sstrsep(&p, sep); |
|
|
|
d = atof(sstrsep(&p, sep)); |
|
if (n) |
|
dsa_results[k][0] = 1 / (1 / dsa_results[k][0] + 1 / d); |
|
else |
|
dsa_results[k][0] = d; |
|
|
|
d = atof(sstrsep(&p, sep)); |
|
if (n) |
|
dsa_results[k][1] = 1 / (1 / dsa_results[k][1] + 1 / d); |
|
else |
|
dsa_results[k][1] = d; |
|
} |
|
# endif |
|
# ifndef OPENSSL_NO_ECDSA |
|
else if (!strncmp(buf, "+F4:", 4)) { |
|
int k; |
|
double d; |
|
|
|
p = buf + 4; |
|
k = atoi(sstrsep(&p, sep)); |
|
sstrsep(&p, sep); |
|
|
|
d = atof(sstrsep(&p, sep)); |
|
if (n) |
|
ecdsa_results[k][0] = |
|
1 / (1 / ecdsa_results[k][0] + 1 / d); |
|
else |
|
ecdsa_results[k][0] = d; |
|
|
|
d = atof(sstrsep(&p, sep)); |
|
if (n) |
|
ecdsa_results[k][1] = |
|
1 / (1 / ecdsa_results[k][1] + 1 / d); |
|
else |
|
ecdsa_results[k][1] = d; |
|
} |
|
# endif |
|
|
|
# ifndef OPENSSL_NO_ECDH |
|
else if (!strncmp(buf, "+F5:", 4)) { |
|
int k; |
|
double d; |
|
|
|
p = buf + 4; |
|
k = atoi(sstrsep(&p, sep)); |
|
sstrsep(&p, sep); |
|
|
|
d = atof(sstrsep(&p, sep)); |
|
if (n) |
|
ecdh_results[k][0] = 1 / (1 / ecdh_results[k][0] + 1 / d); |
|
else |
|
ecdh_results[k][0] = d; |
|
|
|
} |
|
# endif |
|
|
|
else if (!strncmp(buf, "+H:", 3)) { |
|
} else |
|
fprintf(stderr, "Unknown type '%s' from child %d\n", buf, n); |
|
} |
|
|
|
fclose(f); |
|
} |
|
free(fds); |
|
return 1; |
|
} |
|
# endif |
|
#endif
|
|
|