You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
1257 lines
36 KiB
1257 lines
36 KiB
// rijndael.cpp - modified by Chris Morgan <cmorgan@wpi.edu> |
|
// and Wei Dai from Paulo Baretto's Rijndael implementation |
|
// The original code and all modifications are in the public domain. |
|
|
|
// use "cl /EP /P /DCRYPTOPP_GENERATE_X64_MASM rijndael.cpp" to generate MASM code |
|
|
|
/* |
|
July 2010: Added support for AES-NI instructions via compiler intrinsics. |
|
*/ |
|
|
|
/* |
|
Feb 2009: The x86/x64 assembly code was rewritten in by Wei Dai to do counter mode |
|
caching, which was invented by Hongjun Wu and popularized by Daniel J. Bernstein |
|
and Peter Schwabe in their paper "New AES software speed records". The round |
|
function was also modified to include a trick similar to one in Brian Gladman's |
|
x86 assembly code, doing an 8-bit register move to minimize the number of |
|
register spills. Also switched to compressed tables and copying round keys to |
|
the stack. |
|
|
|
The C++ implementation now uses compressed tables if |
|
CRYPTOPP_ALLOW_UNALIGNED_DATA_ACCESS is defined. |
|
*/ |
|
|
|
/* |
|
July 2006: Defense against timing attacks was added in by Wei Dai. |
|
|
|
The code now uses smaller tables in the first and last rounds, |
|
and preloads them into L1 cache before usage (by loading at least |
|
one element in each cache line). |
|
|
|
We try to delay subsequent accesses to each table (used in the first |
|
and last rounds) until all of the table has been preloaded. Hopefully |
|
the compiler isn't smart enough to optimize that code away. |
|
|
|
After preloading the table, we also try not to access any memory location |
|
other than the table and the stack, in order to prevent table entries from |
|
being unloaded from L1 cache, until that round is finished. |
|
(Some popular CPUs have 2-way associative caches.) |
|
*/ |
|
|
|
// This is the original introductory comment: |
|
|
|
/** |
|
* version 3.0 (December 2000) |
|
* |
|
* Optimised ANSI C code for the Rijndael cipher (now AES) |
|
* |
|
* author Vincent Rijmen <vincent.rijmen@esat.kuleuven.ac.be> |
|
* author Antoon Bosselaers <antoon.bosselaers@esat.kuleuven.ac.be> |
|
* author Paulo Barreto <paulo.barreto@terra.com.br> |
|
* |
|
* This code is hereby placed in the public domain. |
|
* |
|
* THIS SOFTWARE IS PROVIDED BY THE AUTHORS ''AS IS'' AND ANY EXPRESS |
|
* OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED |
|
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHORS OR CONTRIBUTORS BE |
|
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR |
|
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF |
|
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR |
|
* BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, |
|
* WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE |
|
* OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, |
|
* EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
|
*/ |
|
|
|
#include "pch.h" |
|
|
|
#ifndef CRYPTOPP_IMPORTS |
|
#ifndef CRYPTOPP_GENERATE_X64_MASM |
|
|
|
#include "rijndael.h" |
|
#include "misc.h" |
|
#include "cpu.h" |
|
|
|
NAMESPACE_BEGIN(CryptoPP) |
|
|
|
#ifdef CRYPTOPP_ALLOW_UNALIGNED_DATA_ACCESS |
|
#if CRYPTOPP_BOOL_SSE2_ASM_AVAILABLE || defined(CRYPTOPP_X64_MASM_AVAILABLE) |
|
namespace rdtable {CRYPTOPP_ALIGN_DATA(16) word64 Te[256+2];} |
|
using namespace rdtable; |
|
#else |
|
static word64 Te[256]; |
|
#endif |
|
static word64 Td[256]; |
|
#else |
|
static word32 Te[256*4], Td[256*4]; |
|
#endif |
|
static volatile bool s_TeFilled = false, s_TdFilled = false; |
|
|
|
// ************************* Portable Code ************************************ |
|
|
|
#define QUARTER_ROUND(L, T, t, a, b, c, d) \ |
|
a ^= L(T, 3, byte(t)); t >>= 8;\ |
|
b ^= L(T, 2, byte(t)); t >>= 8;\ |
|
c ^= L(T, 1, byte(t)); t >>= 8;\ |
|
d ^= L(T, 0, t); |
|
|
|
#define QUARTER_ROUND_LE(t, a, b, c, d) \ |
|
tempBlock[a] = ((byte *)(Te+byte(t)))[1]; t >>= 8;\ |
|
tempBlock[b] = ((byte *)(Te+byte(t)))[1]; t >>= 8;\ |
|
tempBlock[c] = ((byte *)(Te+byte(t)))[1]; t >>= 8;\ |
|
tempBlock[d] = ((byte *)(Te+t))[1]; |
|
|
|
#ifdef CRYPTOPP_ALLOW_UNALIGNED_DATA_ACCESS |
|
#define QUARTER_ROUND_LD(t, a, b, c, d) \ |
|
tempBlock[a] = ((byte *)(Td+byte(t)))[GetNativeByteOrder()*7]; t >>= 8;\ |
|
tempBlock[b] = ((byte *)(Td+byte(t)))[GetNativeByteOrder()*7]; t >>= 8;\ |
|
tempBlock[c] = ((byte *)(Td+byte(t)))[GetNativeByteOrder()*7]; t >>= 8;\ |
|
tempBlock[d] = ((byte *)(Td+t))[GetNativeByteOrder()*7]; |
|
#else |
|
#define QUARTER_ROUND_LD(t, a, b, c, d) \ |
|
tempBlock[a] = Sd[byte(t)]; t >>= 8;\ |
|
tempBlock[b] = Sd[byte(t)]; t >>= 8;\ |
|
tempBlock[c] = Sd[byte(t)]; t >>= 8;\ |
|
tempBlock[d] = Sd[t]; |
|
#endif |
|
|
|
#define QUARTER_ROUND_E(t, a, b, c, d) QUARTER_ROUND(TL_M, Te, t, a, b, c, d) |
|
#define QUARTER_ROUND_D(t, a, b, c, d) QUARTER_ROUND(TL_M, Td, t, a, b, c, d) |
|
|
|
#ifdef IS_LITTLE_ENDIAN |
|
#define QUARTER_ROUND_FE(t, a, b, c, d) QUARTER_ROUND(TL_F, Te, t, d, c, b, a) |
|
#define QUARTER_ROUND_FD(t, a, b, c, d) QUARTER_ROUND(TL_F, Td, t, d, c, b, a) |
|
#ifdef CRYPTOPP_ALLOW_UNALIGNED_DATA_ACCESS |
|
#define TL_F(T, i, x) (*(word32 *)((byte *)T + x*8 + (6-i)%4+1)) |
|
#define TL_M(T, i, x) (*(word32 *)((byte *)T + x*8 + (i+3)%4+1)) |
|
#else |
|
#define TL_F(T, i, x) rotrFixed(T[x], (3-i)*8) |
|
#define TL_M(T, i, x) T[i*256 + x] |
|
#endif |
|
#else |
|
#define QUARTER_ROUND_FE(t, a, b, c, d) QUARTER_ROUND(TL_F, Te, t, a, b, c, d) |
|
#define QUARTER_ROUND_FD(t, a, b, c, d) QUARTER_ROUND(TL_F, Td, t, a, b, c, d) |
|
#ifdef CRYPTOPP_ALLOW_UNALIGNED_DATA_ACCESS |
|
#define TL_F(T, i, x) (*(word32 *)((byte *)T + x*8 + (4-i)%4)) |
|
#define TL_M TL_F |
|
#else |
|
#define TL_F(T, i, x) rotrFixed(T[x], i*8) |
|
#define TL_M(T, i, x) T[i*256 + x] |
|
#endif |
|
#endif |
|
|
|
|
|
#define f2(x) ((x<<1)^(((x>>7)&1)*0x11b)) |
|
#define f4(x) ((x<<2)^(((x>>6)&1)*0x11b)^(((x>>6)&2)*0x11b)) |
|
#define f8(x) ((x<<3)^(((x>>5)&1)*0x11b)^(((x>>5)&2)*0x11b)^(((x>>5)&4)*0x11b)) |
|
|
|
#define f3(x) (f2(x) ^ x) |
|
#define f9(x) (f8(x) ^ x) |
|
#define fb(x) (f8(x) ^ f2(x) ^ x) |
|
#define fd(x) (f8(x) ^ f4(x) ^ x) |
|
#define fe(x) (f8(x) ^ f4(x) ^ f2(x)) |
|
|
|
void Rijndael::Base::FillEncTable() |
|
{ |
|
for (int i=0; i<256; i++) |
|
{ |
|
byte x = Se[i]; |
|
#ifdef CRYPTOPP_ALLOW_UNALIGNED_DATA_ACCESS |
|
word32 y = word32(x)<<8 | word32(x)<<16 | word32(f2(x))<<24; |
|
Te[i] = word64(y | f3(x))<<32 | y; |
|
#else |
|
word32 y = f3(x) | word32(x)<<8 | word32(x)<<16 | word32(f2(x))<<24; |
|
for (int j=0; j<4; j++) |
|
{ |
|
Te[i+j*256] = y; |
|
y = rotrFixed(y, 8); |
|
} |
|
#endif |
|
} |
|
#if CRYPTOPP_BOOL_SSE2_ASM_AVAILABLE || defined(CRYPTOPP_X64_MASM_AVAILABLE) |
|
Te[256] = Te[257] = 0; |
|
#endif |
|
s_TeFilled = true; |
|
} |
|
|
|
void Rijndael::Base::FillDecTable() |
|
{ |
|
for (int i=0; i<256; i++) |
|
{ |
|
byte x = Sd[i]; |
|
#ifdef CRYPTOPP_ALLOW_UNALIGNED_DATA_ACCESS |
|
word32 y = word32(fd(x))<<8 | word32(f9(x))<<16 | word32(fe(x))<<24; |
|
Td[i] = word64(y | fb(x))<<32 | y | x; |
|
#else |
|
word32 y = fb(x) | word32(fd(x))<<8 | word32(f9(x))<<16 | word32(fe(x))<<24;; |
|
for (int j=0; j<4; j++) |
|
{ |
|
Td[i+j*256] = y; |
|
y = rotrFixed(y, 8); |
|
} |
|
#endif |
|
} |
|
s_TdFilled = true; |
|
} |
|
|
|
void Rijndael::Base::UncheckedSetKey(const byte *userKey, unsigned int keylen, const NameValuePairs &) |
|
{ |
|
AssertValidKeyLength(keylen); |
|
|
|
m_rounds = keylen/4 + 6; |
|
m_key.New(4*(m_rounds+1)); |
|
|
|
word32 *rk = m_key; |
|
|
|
#if CRYPTOPP_BOOL_AESNI_INTRINSICS_AVAILABLE && (!defined(_MSC_VER) || _MSC_VER >= 1600 || CRYPTOPP_BOOL_X86) |
|
// MSVC 2008 SP1 generates bad code for _mm_extract_epi32() when compiling for X64 |
|
if (HasAESNI()) |
|
{ |
|
static const word32 rcLE[] = { |
|
0x01, 0x02, 0x04, 0x08, |
|
0x10, 0x20, 0x40, 0x80, |
|
0x1B, 0x36, /* for 128-bit blocks, Rijndael never uses more than 10 rcon values */ |
|
}; |
|
const word32 *rc = rcLE; |
|
|
|
__m128i temp = _mm_loadu_si128((__m128i *)(userKey+keylen-16)); |
|
memcpy(rk, userKey, keylen); |
|
|
|
while (true) |
|
{ |
|
rk[keylen/4] = rk[0] ^ _mm_extract_epi32(_mm_aeskeygenassist_si128(temp, 0), 3) ^ *(rc++); |
|
rk[keylen/4+1] = rk[1] ^ rk[keylen/4]; |
|
rk[keylen/4+2] = rk[2] ^ rk[keylen/4+1]; |
|
rk[keylen/4+3] = rk[3] ^ rk[keylen/4+2]; |
|
|
|
if (rk + keylen/4 + 4 == m_key.end()) |
|
break; |
|
|
|
if (keylen == 24) |
|
{ |
|
rk[10] = rk[ 4] ^ rk[ 9]; |
|
rk[11] = rk[ 5] ^ rk[10]; |
|
temp = _mm_insert_epi32(temp, rk[11], 3); |
|
} |
|
else if (keylen == 32) |
|
{ |
|
temp = _mm_insert_epi32(temp, rk[11], 3); |
|
rk[12] = rk[ 4] ^ _mm_extract_epi32(_mm_aeskeygenassist_si128(temp, 0), 2); |
|
rk[13] = rk[ 5] ^ rk[12]; |
|
rk[14] = rk[ 6] ^ rk[13]; |
|
rk[15] = rk[ 7] ^ rk[14]; |
|
temp = _mm_insert_epi32(temp, rk[15], 3); |
|
} |
|
else |
|
temp = _mm_insert_epi32(temp, rk[7], 3); |
|
|
|
rk += keylen/4; |
|
} |
|
|
|
if (!IsForwardTransformation()) |
|
{ |
|
rk = m_key; |
|
unsigned int i, j; |
|
|
|
std::swap(*(__m128i *)(rk), *(__m128i *)(rk+4*m_rounds)); |
|
|
|
for (i = 4, j = 4*m_rounds-4; i < j; i += 4, j -= 4) |
|
{ |
|
temp = _mm_aesimc_si128(*(__m128i *)(rk+i)); |
|
*(__m128i *)(rk+i) = _mm_aesimc_si128(*(__m128i *)(rk+j)); |
|
*(__m128i *)(rk+j) = temp; |
|
} |
|
|
|
*(__m128i *)(rk+i) = _mm_aesimc_si128(*(__m128i *)(rk+i)); |
|
} |
|
|
|
return; |
|
} |
|
#endif |
|
|
|
GetUserKey(BIG_ENDIAN_ORDER, rk, keylen/4, userKey, keylen); |
|
const word32 *rc = rcon; |
|
word32 temp; |
|
|
|
while (true) |
|
{ |
|
temp = rk[keylen/4-1]; |
|
word32 x = (word32(Se[GETBYTE(temp, 2)]) << 24) ^ (word32(Se[GETBYTE(temp, 1)]) << 16) ^ (word32(Se[GETBYTE(temp, 0)]) << 8) ^ Se[GETBYTE(temp, 3)]; |
|
rk[keylen/4] = rk[0] ^ x ^ *(rc++); |
|
rk[keylen/4+1] = rk[1] ^ rk[keylen/4]; |
|
rk[keylen/4+2] = rk[2] ^ rk[keylen/4+1]; |
|
rk[keylen/4+3] = rk[3] ^ rk[keylen/4+2]; |
|
|
|
if (rk + keylen/4 + 4 == m_key.end()) |
|
break; |
|
|
|
if (keylen == 24) |
|
{ |
|
rk[10] = rk[ 4] ^ rk[ 9]; |
|
rk[11] = rk[ 5] ^ rk[10]; |
|
} |
|
else if (keylen == 32) |
|
{ |
|
temp = rk[11]; |
|
rk[12] = rk[ 4] ^ (word32(Se[GETBYTE(temp, 3)]) << 24) ^ (word32(Se[GETBYTE(temp, 2)]) << 16) ^ (word32(Se[GETBYTE(temp, 1)]) << 8) ^ Se[GETBYTE(temp, 0)]; |
|
rk[13] = rk[ 5] ^ rk[12]; |
|
rk[14] = rk[ 6] ^ rk[13]; |
|
rk[15] = rk[ 7] ^ rk[14]; |
|
} |
|
rk += keylen/4; |
|
} |
|
|
|
rk = m_key; |
|
|
|
if (IsForwardTransformation()) |
|
{ |
|
if (!s_TeFilled) |
|
FillEncTable(); |
|
|
|
ConditionalByteReverse(BIG_ENDIAN_ORDER, rk, rk, 16); |
|
ConditionalByteReverse(BIG_ENDIAN_ORDER, rk + m_rounds*4, rk + m_rounds*4, 16); |
|
} |
|
else |
|
{ |
|
if (!s_TdFilled) |
|
FillDecTable(); |
|
|
|
unsigned int i, j; |
|
|
|
#define InverseMixColumn(x) TL_M(Td, 0, Se[GETBYTE(x, 3)]) ^ TL_M(Td, 1, Se[GETBYTE(x, 2)]) ^ TL_M(Td, 2, Se[GETBYTE(x, 1)]) ^ TL_M(Td, 3, Se[GETBYTE(x, 0)]) |
|
|
|
for (i = 4, j = 4*m_rounds-4; i < j; i += 4, j -= 4) |
|
{ |
|
temp = InverseMixColumn(rk[i ]); rk[i ] = InverseMixColumn(rk[j ]); rk[j ] = temp; |
|
temp = InverseMixColumn(rk[i + 1]); rk[i + 1] = InverseMixColumn(rk[j + 1]); rk[j + 1] = temp; |
|
temp = InverseMixColumn(rk[i + 2]); rk[i + 2] = InverseMixColumn(rk[j + 2]); rk[j + 2] = temp; |
|
temp = InverseMixColumn(rk[i + 3]); rk[i + 3] = InverseMixColumn(rk[j + 3]); rk[j + 3] = temp; |
|
} |
|
|
|
rk[i+0] = InverseMixColumn(rk[i+0]); |
|
rk[i+1] = InverseMixColumn(rk[i+1]); |
|
rk[i+2] = InverseMixColumn(rk[i+2]); |
|
rk[i+3] = InverseMixColumn(rk[i+3]); |
|
|
|
temp = ConditionalByteReverse(BIG_ENDIAN_ORDER, rk[0]); rk[0] = ConditionalByteReverse(BIG_ENDIAN_ORDER, rk[4*m_rounds+0]); rk[4*m_rounds+0] = temp; |
|
temp = ConditionalByteReverse(BIG_ENDIAN_ORDER, rk[1]); rk[1] = ConditionalByteReverse(BIG_ENDIAN_ORDER, rk[4*m_rounds+1]); rk[4*m_rounds+1] = temp; |
|
temp = ConditionalByteReverse(BIG_ENDIAN_ORDER, rk[2]); rk[2] = ConditionalByteReverse(BIG_ENDIAN_ORDER, rk[4*m_rounds+2]); rk[4*m_rounds+2] = temp; |
|
temp = ConditionalByteReverse(BIG_ENDIAN_ORDER, rk[3]); rk[3] = ConditionalByteReverse(BIG_ENDIAN_ORDER, rk[4*m_rounds+3]); rk[4*m_rounds+3] = temp; |
|
} |
|
|
|
#if CRYPTOPP_BOOL_AESNI_INTRINSICS_AVAILABLE |
|
if (HasAESNI()) |
|
ConditionalByteReverse(BIG_ENDIAN_ORDER, rk+4, rk+4, (m_rounds-1)*16); |
|
#endif |
|
} |
|
|
|
void Rijndael::Enc::ProcessAndXorBlock(const byte *inBlock, const byte *xorBlock, byte *outBlock) const |
|
{ |
|
#if CRYPTOPP_BOOL_SSE2_ASM_AVAILABLE || defined(CRYPTOPP_X64_MASM_AVAILABLE) || CRYPTOPP_BOOL_AESNI_INTRINSICS_AVAILABLE |
|
if (HasSSE2()) |
|
{ |
|
Rijndael::Enc::AdvancedProcessBlocks(inBlock, xorBlock, outBlock, 16, 0); |
|
return; |
|
} |
|
#endif |
|
|
|
typedef BlockGetAndPut<word32, NativeByteOrder> Block; |
|
|
|
word32 s0, s1, s2, s3, t0, t1, t2, t3; |
|
Block::Get(inBlock)(s0)(s1)(s2)(s3); |
|
|
|
const word32 *rk = m_key; |
|
s0 ^= rk[0]; |
|
s1 ^= rk[1]; |
|
s2 ^= rk[2]; |
|
s3 ^= rk[3]; |
|
t0 = rk[4]; |
|
t1 = rk[5]; |
|
t2 = rk[6]; |
|
t3 = rk[7]; |
|
rk += 8; |
|
|
|
// timing attack countermeasure. see comments at top for more details |
|
const int cacheLineSize = GetCacheLineSize(); |
|
unsigned int i; |
|
word32 u = 0; |
|
#ifdef CRYPTOPP_ALLOW_UNALIGNED_DATA_ACCESS |
|
for (i=0; i<2048; i+=cacheLineSize) |
|
#else |
|
for (i=0; i<1024; i+=cacheLineSize) |
|
#endif |
|
u &= *(const word32 *)(((const byte *)Te)+i); |
|
u &= Te[255]; |
|
s0 |= u; s1 |= u; s2 |= u; s3 |= u; |
|
|
|
QUARTER_ROUND_FE(s3, t0, t1, t2, t3) |
|
QUARTER_ROUND_FE(s2, t3, t0, t1, t2) |
|
QUARTER_ROUND_FE(s1, t2, t3, t0, t1) |
|
QUARTER_ROUND_FE(s0, t1, t2, t3, t0) |
|
|
|
// Nr - 2 full rounds: |
|
unsigned int r = m_rounds/2 - 1; |
|
do |
|
{ |
|
s0 = rk[0]; s1 = rk[1]; s2 = rk[2]; s3 = rk[3]; |
|
|
|
QUARTER_ROUND_E(t3, s0, s1, s2, s3) |
|
QUARTER_ROUND_E(t2, s3, s0, s1, s2) |
|
QUARTER_ROUND_E(t1, s2, s3, s0, s1) |
|
QUARTER_ROUND_E(t0, s1, s2, s3, s0) |
|
|
|
t0 = rk[4]; t1 = rk[5]; t2 = rk[6]; t3 = rk[7]; |
|
|
|
QUARTER_ROUND_E(s3, t0, t1, t2, t3) |
|
QUARTER_ROUND_E(s2, t3, t0, t1, t2) |
|
QUARTER_ROUND_E(s1, t2, t3, t0, t1) |
|
QUARTER_ROUND_E(s0, t1, t2, t3, t0) |
|
|
|
rk += 8; |
|
} while (--r); |
|
|
|
word32 tbw[4]; |
|
byte *const tempBlock = (byte *)tbw; |
|
|
|
QUARTER_ROUND_LE(t2, 15, 2, 5, 8) |
|
QUARTER_ROUND_LE(t1, 11, 14, 1, 4) |
|
QUARTER_ROUND_LE(t0, 7, 10, 13, 0) |
|
QUARTER_ROUND_LE(t3, 3, 6, 9, 12) |
|
|
|
Block::Put(xorBlock, outBlock)(tbw[0]^rk[0])(tbw[1]^rk[1])(tbw[2]^rk[2])(tbw[3]^rk[3]); |
|
} |
|
|
|
void Rijndael::Dec::ProcessAndXorBlock(const byte *inBlock, const byte *xorBlock, byte *outBlock) const |
|
{ |
|
#if CRYPTOPP_BOOL_AESNI_INTRINSICS_AVAILABLE |
|
if (HasAESNI()) |
|
{ |
|
Rijndael::Dec::AdvancedProcessBlocks(inBlock, xorBlock, outBlock, 16, 0); |
|
return; |
|
} |
|
#endif |
|
|
|
typedef BlockGetAndPut<word32, NativeByteOrder> Block; |
|
|
|
word32 s0, s1, s2, s3, t0, t1, t2, t3; |
|
Block::Get(inBlock)(s0)(s1)(s2)(s3); |
|
|
|
const word32 *rk = m_key; |
|
s0 ^= rk[0]; |
|
s1 ^= rk[1]; |
|
s2 ^= rk[2]; |
|
s3 ^= rk[3]; |
|
t0 = rk[4]; |
|
t1 = rk[5]; |
|
t2 = rk[6]; |
|
t3 = rk[7]; |
|
rk += 8; |
|
|
|
// timing attack countermeasure. see comments at top for more details |
|
const int cacheLineSize = GetCacheLineSize(); |
|
unsigned int i; |
|
word32 u = 0; |
|
#ifdef CRYPTOPP_ALLOW_UNALIGNED_DATA_ACCESS |
|
for (i=0; i<2048; i+=cacheLineSize) |
|
#else |
|
for (i=0; i<1024; i+=cacheLineSize) |
|
#endif |
|
u &= *(const word32 *)(((const byte *)Td)+i); |
|
u &= Td[255]; |
|
s0 |= u; s1 |= u; s2 |= u; s3 |= u; |
|
|
|
QUARTER_ROUND_FD(s3, t2, t1, t0, t3) |
|
QUARTER_ROUND_FD(s2, t1, t0, t3, t2) |
|
QUARTER_ROUND_FD(s1, t0, t3, t2, t1) |
|
QUARTER_ROUND_FD(s0, t3, t2, t1, t0) |
|
|
|
// Nr - 2 full rounds: |
|
unsigned int r = m_rounds/2 - 1; |
|
do |
|
{ |
|
s0 = rk[0]; s1 = rk[1]; s2 = rk[2]; s3 = rk[3]; |
|
|
|
QUARTER_ROUND_D(t3, s2, s1, s0, s3) |
|
QUARTER_ROUND_D(t2, s1, s0, s3, s2) |
|
QUARTER_ROUND_D(t1, s0, s3, s2, s1) |
|
QUARTER_ROUND_D(t0, s3, s2, s1, s0) |
|
|
|
t0 = rk[4]; t1 = rk[5]; t2 = rk[6]; t3 = rk[7]; |
|
|
|
QUARTER_ROUND_D(s3, t2, t1, t0, t3) |
|
QUARTER_ROUND_D(s2, t1, t0, t3, t2) |
|
QUARTER_ROUND_D(s1, t0, t3, t2, t1) |
|
QUARTER_ROUND_D(s0, t3, t2, t1, t0) |
|
|
|
rk += 8; |
|
} while (--r); |
|
|
|
#ifndef CRYPTOPP_ALLOW_UNALIGNED_DATA_ACCESS |
|
// timing attack countermeasure. see comments at top for more details |
|
// If CRYPTOPP_ALLOW_UNALIGNED_DATA_ACCESS is defined, |
|
// QUARTER_ROUND_LD will use Td, which is already preloaded. |
|
u = 0; |
|
for (i=0; i<256; i+=cacheLineSize) |
|
u &= *(const word32 *)(Sd+i); |
|
u &= *(const word32 *)(Sd+252); |
|
t0 |= u; t1 |= u; t2 |= u; t3 |= u; |
|
#endif |
|
|
|
word32 tbw[4]; |
|
byte *const tempBlock = (byte *)tbw; |
|
|
|
QUARTER_ROUND_LD(t2, 7, 2, 13, 8) |
|
QUARTER_ROUND_LD(t1, 3, 14, 9, 4) |
|
QUARTER_ROUND_LD(t0, 15, 10, 5, 0) |
|
QUARTER_ROUND_LD(t3, 11, 6, 1, 12) |
|
|
|
Block::Put(xorBlock, outBlock)(tbw[0]^rk[0])(tbw[1]^rk[1])(tbw[2]^rk[2])(tbw[3]^rk[3]); |
|
} |
|
|
|
// ************************* Assembly Code ************************************ |
|
|
|
#pragma warning(disable: 4731) // frame pointer register 'ebp' modified by inline assembly code |
|
|
|
#endif // #ifndef CRYPTOPP_GENERATE_X64_MASM |
|
|
|
#if CRYPTOPP_BOOL_SSE2_ASM_AVAILABLE |
|
|
|
CRYPTOPP_NAKED void CRYPTOPP_FASTCALL Rijndael_Enc_AdvancedProcessBlocks(void *locals, const word32 *k) |
|
{ |
|
#if CRYPTOPP_BOOL_X86 |
|
|
|
#define L_REG esp |
|
#define L_INDEX(i) (L_REG+512+i) |
|
#define L_INXORBLOCKS L_INBLOCKS+4 |
|
#define L_OUTXORBLOCKS L_INBLOCKS+8 |
|
#define L_OUTBLOCKS L_INBLOCKS+12 |
|
#define L_INCREMENTS L_INDEX(16*15) |
|
#define L_SP L_INDEX(16*16) |
|
#define L_LENGTH L_INDEX(16*16+4) |
|
#define L_KEYS_BEGIN L_INDEX(16*16+8) |
|
|
|
#define MOVD movd |
|
#define MM(i) mm##i |
|
|
|
#define MXOR(a,b,c) \ |
|
AS2( movzx esi, b)\ |
|
AS2( movd mm7, DWORD PTR [AS_REG_7+8*WORD_REG(si)+MAP0TO4(c)])\ |
|
AS2( pxor MM(a), mm7)\ |
|
|
|
#define MMOV(a,b,c) \ |
|
AS2( movzx esi, b)\ |
|
AS2( movd MM(a), DWORD PTR [AS_REG_7+8*WORD_REG(si)+MAP0TO4(c)])\ |
|
|
|
#else |
|
|
|
#define L_REG r8 |
|
#define L_INDEX(i) (L_REG+i) |
|
#define L_INXORBLOCKS L_INBLOCKS+8 |
|
#define L_OUTXORBLOCKS L_INBLOCKS+16 |
|
#define L_OUTBLOCKS L_INBLOCKS+24 |
|
#define L_INCREMENTS L_INDEX(16*16) |
|
#define L_LENGTH L_INDEX(16*18+8) |
|
#define L_KEYS_BEGIN L_INDEX(16*19) |
|
|
|
#define MOVD mov |
|
#define MM_0 r9d |
|
#define MM_1 r12d |
|
#ifdef __GNUC__ |
|
#define MM_2 r11d |
|
#else |
|
#define MM_2 r10d |
|
#endif |
|
#define MM(i) MM_##i |
|
|
|
#define MXOR(a,b,c) \ |
|
AS2( movzx esi, b)\ |
|
AS2( xor MM(a), DWORD PTR [AS_REG_7+8*WORD_REG(si)+MAP0TO4(c)])\ |
|
|
|
#define MMOV(a,b,c) \ |
|
AS2( movzx esi, b)\ |
|
AS2( mov MM(a), DWORD PTR [AS_REG_7+8*WORD_REG(si)+MAP0TO4(c)])\ |
|
|
|
#endif |
|
|
|
#define L_SUBKEYS L_INDEX(0) |
|
#define L_SAVED_X L_SUBKEYS |
|
#define L_KEY12 L_INDEX(16*12) |
|
#define L_LASTROUND L_INDEX(16*13) |
|
#define L_INBLOCKS L_INDEX(16*14) |
|
#define MAP0TO4(i) (ASM_MOD(i+3,4)+1) |
|
|
|
#define XOR(a,b,c) \ |
|
AS2( movzx esi, b)\ |
|
AS2( xor a, DWORD PTR [AS_REG_7+8*WORD_REG(si)+MAP0TO4(c)])\ |
|
|
|
#define MOV(a,b,c) \ |
|
AS2( movzx esi, b)\ |
|
AS2( mov a, DWORD PTR [AS_REG_7+8*WORD_REG(si)+MAP0TO4(c)])\ |
|
|
|
#ifdef CRYPTOPP_GENERATE_X64_MASM |
|
ALIGN 8 |
|
Rijndael_Enc_AdvancedProcessBlocks PROC FRAME |
|
rex_push_reg rsi |
|
push_reg rdi |
|
push_reg rbx |
|
push_reg r12 |
|
.endprolog |
|
mov L_REG, rcx |
|
mov AS_REG_7, ?Te@rdtable@CryptoPP@@3PA_KA |
|
mov edi, DWORD PTR [?g_cacheLineSize@CryptoPP@@3IA] |
|
#elif defined(__GNUC__) |
|
__asm__ __volatile__ |
|
( |
|
".intel_syntax noprefix;" |
|
#if CRYPTOPP_BOOL_X64 |
|
AS2( mov L_REG, rcx) |
|
#endif |
|
AS_PUSH_IF86(bx) |
|
AS_PUSH_IF86(bp) |
|
AS2( mov AS_REG_7, WORD_REG(si)) |
|
#else |
|
AS_PUSH_IF86(si) |
|
AS_PUSH_IF86(di) |
|
AS_PUSH_IF86(bx) |
|
AS_PUSH_IF86(bp) |
|
AS2( lea AS_REG_7, [Te]) |
|
AS2( mov edi, [g_cacheLineSize]) |
|
#endif |
|
|
|
#if CRYPTOPP_BOOL_X86 |
|
AS2( mov [ecx+16*12+16*4], esp) // save esp to L_SP |
|
AS2( lea esp, [ecx-512]) |
|
#endif |
|
|
|
// copy subkeys to stack |
|
AS2( mov WORD_REG(si), [L_KEYS_BEGIN]) |
|
AS2( mov WORD_REG(ax), 16) |
|
AS2( and WORD_REG(ax), WORD_REG(si)) |
|
AS2( movdqa xmm3, XMMWORD_PTR [WORD_REG(dx)+16+WORD_REG(ax)]) // subkey 1 (non-counter) or 2 (counter) |
|
AS2( movdqa [L_KEY12], xmm3) |
|
AS2( lea WORD_REG(ax), [WORD_REG(dx)+WORD_REG(ax)+2*16]) |
|
AS2( sub WORD_REG(ax), WORD_REG(si)) |
|
ASL(0) |
|
AS2( movdqa xmm0, [WORD_REG(ax)+WORD_REG(si)]) |
|
AS2( movdqa XMMWORD_PTR [L_SUBKEYS+WORD_REG(si)], xmm0) |
|
AS2( add WORD_REG(si), 16) |
|
AS2( cmp WORD_REG(si), 16*12) |
|
ASJ( jl, 0, b) |
|
|
|
// read subkeys 0, 1 and last |
|
AS2( movdqa xmm4, [WORD_REG(ax)+WORD_REG(si)]) // last subkey |
|
AS2( movdqa xmm1, [WORD_REG(dx)]) // subkey 0 |
|
AS2( MOVD MM(1), [WORD_REG(dx)+4*4]) // 0,1,2,3 |
|
AS2( mov ebx, [WORD_REG(dx)+5*4]) // 4,5,6,7 |
|
AS2( mov ecx, [WORD_REG(dx)+6*4]) // 8,9,10,11 |
|
AS2( mov edx, [WORD_REG(dx)+7*4]) // 12,13,14,15 |
|
|
|
// load table into cache |
|
AS2( xor WORD_REG(ax), WORD_REG(ax)) |
|
ASL(9) |
|
AS2( mov esi, [AS_REG_7+WORD_REG(ax)]) |
|
AS2( add WORD_REG(ax), WORD_REG(di)) |
|
AS2( mov esi, [AS_REG_7+WORD_REG(ax)]) |
|
AS2( add WORD_REG(ax), WORD_REG(di)) |
|
AS2( mov esi, [AS_REG_7+WORD_REG(ax)]) |
|
AS2( add WORD_REG(ax), WORD_REG(di)) |
|
AS2( mov esi, [AS_REG_7+WORD_REG(ax)]) |
|
AS2( add WORD_REG(ax), WORD_REG(di)) |
|
AS2( cmp WORD_REG(ax), 2048) |
|
ASJ( jl, 9, b) |
|
AS1( lfence) |
|
|
|
AS2( test DWORD PTR [L_LENGTH], 1) |
|
ASJ( jz, 8, f) |
|
|
|
// counter mode one-time setup |
|
AS2( mov WORD_REG(si), [L_INBLOCKS]) |
|
AS2( movdqu xmm2, [WORD_REG(si)]) // counter |
|
AS2( pxor xmm2, xmm1) |
|
AS2( psrldq xmm1, 14) |
|
AS2( movd eax, xmm1) |
|
AS2( mov al, BYTE PTR [WORD_REG(si)+15]) |
|
AS2( MOVD MM(2), eax) |
|
#if CRYPTOPP_BOOL_X86 |
|
AS2( mov eax, 1) |
|
AS2( movd mm3, eax) |
|
#endif |
|
|
|
// partial first round, in: xmm2(15,14,13,12;11,10,9,8;7,6,5,4;3,2,1,0), out: mm1, ebx, ecx, edx |
|
AS2( movd eax, xmm2) |
|
AS2( psrldq xmm2, 4) |
|
AS2( movd edi, xmm2) |
|
AS2( psrldq xmm2, 4) |
|
MXOR( 1, al, 0) // 0 |
|
XOR( edx, ah, 1) // 1 |
|
AS2( shr eax, 16) |
|
XOR( ecx, al, 2) // 2 |
|
XOR( ebx, ah, 3) // 3 |
|
AS2( mov eax, edi) |
|
AS2( movd edi, xmm2) |
|
AS2( psrldq xmm2, 4) |
|
XOR( ebx, al, 0) // 4 |
|
MXOR( 1, ah, 1) // 5 |
|
AS2( shr eax, 16) |
|
XOR( edx, al, 2) // 6 |
|
XOR( ecx, ah, 3) // 7 |
|
AS2( mov eax, edi) |
|
AS2( movd edi, xmm2) |
|
XOR( ecx, al, 0) // 8 |
|
XOR( ebx, ah, 1) // 9 |
|
AS2( shr eax, 16) |
|
MXOR( 1, al, 2) // 10 |
|
XOR( edx, ah, 3) // 11 |
|
AS2( mov eax, edi) |
|
XOR( edx, al, 0) // 12 |
|
XOR( ecx, ah, 1) // 13 |
|
AS2( shr eax, 16) |
|
XOR( ebx, al, 2) // 14 |
|
AS2( psrldq xmm2, 3) |
|
|
|
// partial second round, in: ebx(4,5,6,7), ecx(8,9,10,11), edx(12,13,14,15), out: eax, ebx, edi, mm0 |
|
AS2( mov eax, [L_KEY12+0*4]) |
|
AS2( mov edi, [L_KEY12+2*4]) |
|
AS2( MOVD MM(0), [L_KEY12+3*4]) |
|
MXOR( 0, cl, 3) /* 11 */ |
|
XOR( edi, bl, 3) /* 7 */ |
|
MXOR( 0, bh, 2) /* 6 */ |
|
AS2( shr ebx, 16) /* 4,5 */ |
|
XOR( eax, bl, 1) /* 5 */ |
|
MOV( ebx, bh, 0) /* 4 */ |
|
AS2( xor ebx, [L_KEY12+1*4]) |
|
XOR( eax, ch, 2) /* 10 */ |
|
AS2( shr ecx, 16) /* 8,9 */ |
|
XOR( eax, dl, 3) /* 15 */ |
|
XOR( ebx, dh, 2) /* 14 */ |
|
AS2( shr edx, 16) /* 12,13 */ |
|
XOR( edi, ch, 0) /* 8 */ |
|
XOR( ebx, cl, 1) /* 9 */ |
|
XOR( edi, dl, 1) /* 13 */ |
|
MXOR( 0, dh, 0) /* 12 */ |
|
|
|
AS2( movd ecx, xmm2) |
|
AS2( MOVD edx, MM(1)) |
|
AS2( MOVD [L_SAVED_X+3*4], MM(0)) |
|
AS2( mov [L_SAVED_X+0*4], eax) |
|
AS2( mov [L_SAVED_X+1*4], ebx) |
|
AS2( mov [L_SAVED_X+2*4], edi) |
|
ASJ( jmp, 5, f) |
|
|
|
ASL(3) |
|
// non-counter mode per-block setup |
|
AS2( MOVD MM(1), [L_KEY12+0*4]) // 0,1,2,3 |
|
AS2( mov ebx, [L_KEY12+1*4]) // 4,5,6,7 |
|
AS2( mov ecx, [L_KEY12+2*4]) // 8,9,10,11 |
|
AS2( mov edx, [L_KEY12+3*4]) // 12,13,14,15 |
|
ASL(8) |
|
AS2( mov WORD_REG(ax), [L_INBLOCKS]) |
|
AS2( movdqu xmm2, [WORD_REG(ax)]) |
|
AS2( mov WORD_REG(si), [L_INXORBLOCKS]) |
|
AS2( movdqu xmm5, [WORD_REG(si)]) |
|
AS2( pxor xmm2, xmm1) |
|
AS2( pxor xmm2, xmm5) |
|
|
|
// first round, in: xmm2(15,14,13,12;11,10,9,8;7,6,5,4;3,2,1,0), out: eax, ebx, ecx, edx |
|
AS2( movd eax, xmm2) |
|
AS2( psrldq xmm2, 4) |
|
AS2( movd edi, xmm2) |
|
AS2( psrldq xmm2, 4) |
|
MXOR( 1, al, 0) // 0 |
|
XOR( edx, ah, 1) // 1 |
|
AS2( shr eax, 16) |
|
XOR( ecx, al, 2) // 2 |
|
XOR( ebx, ah, 3) // 3 |
|
AS2( mov eax, edi) |
|
AS2( movd edi, xmm2) |
|
AS2( psrldq xmm2, 4) |
|
XOR( ebx, al, 0) // 4 |
|
MXOR( 1, ah, 1) // 5 |
|
AS2( shr eax, 16) |
|
XOR( edx, al, 2) // 6 |
|
XOR( ecx, ah, 3) // 7 |
|
AS2( mov eax, edi) |
|
AS2( movd edi, xmm2) |
|
XOR( ecx, al, 0) // 8 |
|
XOR( ebx, ah, 1) // 9 |
|
AS2( shr eax, 16) |
|
MXOR( 1, al, 2) // 10 |
|
XOR( edx, ah, 3) // 11 |
|
AS2( mov eax, edi) |
|
XOR( edx, al, 0) // 12 |
|
XOR( ecx, ah, 1) // 13 |
|
AS2( shr eax, 16) |
|
XOR( ebx, al, 2) // 14 |
|
MXOR( 1, ah, 3) // 15 |
|
AS2( MOVD eax, MM(1)) |
|
|
|
AS2( add L_REG, [L_KEYS_BEGIN]) |
|
AS2( add L_REG, 4*16) |
|
ASJ( jmp, 2, f) |
|
|
|
ASL(1) |
|
// counter-mode per-block setup |
|
AS2( MOVD ecx, MM(2)) |
|
AS2( MOVD edx, MM(1)) |
|
AS2( mov eax, [L_SAVED_X+0*4]) |
|
AS2( mov ebx, [L_SAVED_X+1*4]) |
|
AS2( xor cl, ch) |
|
AS2( and WORD_REG(cx), 255) |
|
ASL(5) |
|
#if CRYPTOPP_BOOL_X86 |
|
AS2( paddb MM(2), mm3) |
|
#else |
|
AS2( add MM(2), 1) |
|
#endif |
|
// remaining part of second round, in: edx(previous round),esi(keyed counter byte) eax,ebx,[L_SAVED_X+2*4],[L_SAVED_X+3*4], out: eax,ebx,ecx,edx |
|
AS2( xor edx, DWORD PTR [AS_REG_7+WORD_REG(cx)*8+3]) |
|
XOR( ebx, dl, 3) |
|
MOV( ecx, dh, 2) |
|
AS2( shr edx, 16) |
|
AS2( xor ecx, [L_SAVED_X+2*4]) |
|
XOR( eax, dh, 0) |
|
MOV( edx, dl, 1) |
|
AS2( xor edx, [L_SAVED_X+3*4]) |
|
|
|
AS2( add L_REG, [L_KEYS_BEGIN]) |
|
AS2( add L_REG, 3*16) |
|
ASJ( jmp, 4, f) |
|
|
|
// in: eax(0,1,2,3), ebx(4,5,6,7), ecx(8,9,10,11), edx(12,13,14,15) |
|
// out: eax, ebx, edi, mm0 |
|
#define ROUND() \ |
|
MXOR( 0, cl, 3) /* 11 */\ |
|
AS2( mov cl, al) /* 8,9,10,3 */\ |
|
XOR( edi, ah, 2) /* 2 */\ |
|
AS2( shr eax, 16) /* 0,1 */\ |
|
XOR( edi, bl, 3) /* 7 */\ |
|
MXOR( 0, bh, 2) /* 6 */\ |
|
AS2( shr ebx, 16) /* 4,5 */\ |
|
MXOR( 0, al, 1) /* 1 */\ |
|
MOV( eax, ah, 0) /* 0 */\ |
|
XOR( eax, bl, 1) /* 5 */\ |
|
MOV( ebx, bh, 0) /* 4 */\ |
|
XOR( eax, ch, 2) /* 10 */\ |
|
XOR( ebx, cl, 3) /* 3 */\ |
|
AS2( shr ecx, 16) /* 8,9 */\ |
|
XOR( eax, dl, 3) /* 15 */\ |
|
XOR( ebx, dh, 2) /* 14 */\ |
|
AS2( shr edx, 16) /* 12,13 */\ |
|
XOR( edi, ch, 0) /* 8 */\ |
|
XOR( ebx, cl, 1) /* 9 */\ |
|
XOR( edi, dl, 1) /* 13 */\ |
|
MXOR( 0, dh, 0) /* 12 */\ |
|
|
|
ASL(2) // 2-round loop |
|
AS2( MOVD MM(0), [L_SUBKEYS-4*16+3*4]) |
|
AS2( mov edi, [L_SUBKEYS-4*16+2*4]) |
|
ROUND() |
|
AS2( mov ecx, edi) |
|
AS2( xor eax, [L_SUBKEYS-4*16+0*4]) |
|
AS2( xor ebx, [L_SUBKEYS-4*16+1*4]) |
|
AS2( MOVD edx, MM(0)) |
|
|
|
ASL(4) |
|
AS2( MOVD MM(0), [L_SUBKEYS-4*16+7*4]) |
|
AS2( mov edi, [L_SUBKEYS-4*16+6*4]) |
|
ROUND() |
|
AS2( mov ecx, edi) |
|
AS2( xor eax, [L_SUBKEYS-4*16+4*4]) |
|
AS2( xor ebx, [L_SUBKEYS-4*16+5*4]) |
|
AS2( MOVD edx, MM(0)) |
|
|
|
AS2( add L_REG, 32) |
|
AS2( test L_REG, 255) |
|
ASJ( jnz, 2, b) |
|
AS2( sub L_REG, 16*16) |
|
|
|
#define LAST(a, b, c) \ |
|
AS2( movzx esi, a )\ |
|
AS2( movzx edi, BYTE PTR [AS_REG_7+WORD_REG(si)*8+1] )\ |
|
AS2( movzx esi, b )\ |
|
AS2( xor edi, DWORD PTR [AS_REG_7+WORD_REG(si)*8+0] )\ |
|
AS2( mov WORD PTR [L_LASTROUND+c], di )\ |
|
|
|
// last round |
|
LAST(ch, dl, 2) |
|
LAST(dh, al, 6) |
|
AS2( shr edx, 16) |
|
LAST(ah, bl, 10) |
|
AS2( shr eax, 16) |
|
LAST(bh, cl, 14) |
|
AS2( shr ebx, 16) |
|
LAST(dh, al, 12) |
|
AS2( shr ecx, 16) |
|
LAST(ah, bl, 0) |
|
LAST(bh, cl, 4) |
|
LAST(ch, dl, 8) |
|
|
|
AS2( mov WORD_REG(ax), [L_OUTXORBLOCKS]) |
|
AS2( mov WORD_REG(bx), [L_OUTBLOCKS]) |
|
|
|
AS2( mov WORD_REG(cx), [L_LENGTH]) |
|
AS2( sub WORD_REG(cx), 16) |
|
|
|
AS2( movdqu xmm2, [WORD_REG(ax)]) |
|
AS2( pxor xmm2, xmm4) |
|
|
|
#if CRYPTOPP_BOOL_X86 |
|
AS2( movdqa xmm0, [L_INCREMENTS]) |
|
AS2( paddd xmm0, [L_INBLOCKS]) |
|
AS2( movdqa [L_INBLOCKS], xmm0) |
|
#else |
|
AS2( movdqa xmm0, [L_INCREMENTS+16]) |
|
AS2( paddq xmm0, [L_INBLOCKS+16]) |
|
AS2( movdqa [L_INBLOCKS+16], xmm0) |
|
#endif |
|
|
|
AS2( pxor xmm2, [L_LASTROUND]) |
|
AS2( movdqu [WORD_REG(bx)], xmm2) |
|
|
|
ASJ( jle, 7, f) |
|
AS2( mov [L_LENGTH], WORD_REG(cx)) |
|
AS2( test WORD_REG(cx), 1) |
|
ASJ( jnz, 1, b) |
|
#if CRYPTOPP_BOOL_X64 |
|
AS2( movdqa xmm0, [L_INCREMENTS]) |
|
AS2( paddq xmm0, [L_INBLOCKS]) |
|
AS2( movdqa [L_INBLOCKS], xmm0) |
|
#endif |
|
ASJ( jmp, 3, b) |
|
|
|
ASL(7) |
|
// erase keys on stack |
|
AS2( xorps xmm0, xmm0) |
|
AS2( lea WORD_REG(ax), [L_SUBKEYS+7*16]) |
|
AS2( movaps [WORD_REG(ax)-7*16], xmm0) |
|
AS2( movaps [WORD_REG(ax)-6*16], xmm0) |
|
AS2( movaps [WORD_REG(ax)-5*16], xmm0) |
|
AS2( movaps [WORD_REG(ax)-4*16], xmm0) |
|
AS2( movaps [WORD_REG(ax)-3*16], xmm0) |
|
AS2( movaps [WORD_REG(ax)-2*16], xmm0) |
|
AS2( movaps [WORD_REG(ax)-1*16], xmm0) |
|
AS2( movaps [WORD_REG(ax)+0*16], xmm0) |
|
AS2( movaps [WORD_REG(ax)+1*16], xmm0) |
|
AS2( movaps [WORD_REG(ax)+2*16], xmm0) |
|
AS2( movaps [WORD_REG(ax)+3*16], xmm0) |
|
AS2( movaps [WORD_REG(ax)+4*16], xmm0) |
|
AS2( movaps [WORD_REG(ax)+5*16], xmm0) |
|
AS2( movaps [WORD_REG(ax)+6*16], xmm0) |
|
#if CRYPTOPP_BOOL_X86 |
|
AS2( mov esp, [L_SP]) |
|
AS1( emms) |
|
#endif |
|
AS_POP_IF86(bp) |
|
AS_POP_IF86(bx) |
|
#if defined(_MSC_VER) && CRYPTOPP_BOOL_X86 |
|
AS_POP_IF86(di) |
|
AS_POP_IF86(si) |
|
AS1(ret) |
|
#endif |
|
#ifdef CRYPTOPP_GENERATE_X64_MASM |
|
pop r12 |
|
pop rbx |
|
pop rdi |
|
pop rsi |
|
ret |
|
Rijndael_Enc_AdvancedProcessBlocks ENDP |
|
#endif |
|
#ifdef __GNUC__ |
|
".att_syntax prefix;" |
|
: |
|
: "c" (locals), "d" (k), "S" (Te), "D" (g_cacheLineSize) |
|
: "memory", "cc", "%eax" |
|
#if CRYPTOPP_BOOL_X64 |
|
, "%rbx", "%r8", "%r9", "%r10", "%r11", "%r12" |
|
#endif |
|
); |
|
#endif |
|
} |
|
|
|
#endif |
|
|
|
#ifndef CRYPTOPP_GENERATE_X64_MASM |
|
|
|
#ifdef CRYPTOPP_X64_MASM_AVAILABLE |
|
extern "C" { |
|
void Rijndael_Enc_AdvancedProcessBlocks(void *locals, const word32 *k); |
|
} |
|
#endif |
|
|
|
#if CRYPTOPP_BOOL_X64 || CRYPTOPP_BOOL_X86 |
|
|
|
static inline bool AliasedWithTable(const byte *begin, const byte *end) |
|
{ |
|
size_t s0 = size_t(begin)%4096, s1 = size_t(end)%4096; |
|
size_t t0 = size_t(Te)%4096, t1 = (size_t(Te)+sizeof(Te))%4096; |
|
if (t1 > t0) |
|
return (s0 >= t0 && s0 < t1) || (s1 > t0 && s1 <= t1); |
|
else |
|
return (s0 < t1 || s1 <= t1) || (s0 >= t0 || s1 > t0); |
|
} |
|
|
|
#if CRYPTOPP_BOOL_AESNI_INTRINSICS_AVAILABLE |
|
|
|
inline void AESNI_Enc_Block(__m128i &block, const __m128i *subkeys, unsigned int rounds) |
|
{ |
|
block = _mm_xor_si128(block, subkeys[0]); |
|
for (unsigned int i=1; i<rounds-1; i+=2) |
|
{ |
|
block = _mm_aesenc_si128(block, subkeys[i]); |
|
block = _mm_aesenc_si128(block, subkeys[i+1]); |
|
} |
|
block = _mm_aesenc_si128(block, subkeys[rounds-1]); |
|
block = _mm_aesenclast_si128(block, subkeys[rounds]); |
|
} |
|
|
|
inline void AESNI_Enc_4_Blocks(__m128i &block0, __m128i &block1, __m128i &block2, __m128i &block3, const __m128i *subkeys, unsigned int rounds) |
|
{ |
|
__m128i rk = subkeys[0]; |
|
block0 = _mm_xor_si128(block0, rk); |
|
block1 = _mm_xor_si128(block1, rk); |
|
block2 = _mm_xor_si128(block2, rk); |
|
block3 = _mm_xor_si128(block3, rk); |
|
for (unsigned int i=1; i<rounds; i++) |
|
{ |
|
rk = subkeys[i]; |
|
block0 = _mm_aesenc_si128(block0, rk); |
|
block1 = _mm_aesenc_si128(block1, rk); |
|
block2 = _mm_aesenc_si128(block2, rk); |
|
block3 = _mm_aesenc_si128(block3, rk); |
|
} |
|
rk = subkeys[rounds]; |
|
block0 = _mm_aesenclast_si128(block0, rk); |
|
block1 = _mm_aesenclast_si128(block1, rk); |
|
block2 = _mm_aesenclast_si128(block2, rk); |
|
block3 = _mm_aesenclast_si128(block3, rk); |
|
} |
|
|
|
inline void AESNI_Dec_Block(__m128i &block, const __m128i *subkeys, unsigned int rounds) |
|
{ |
|
block = _mm_xor_si128(block, subkeys[0]); |
|
for (unsigned int i=1; i<rounds-1; i+=2) |
|
{ |
|
block = _mm_aesdec_si128(block, subkeys[i]); |
|
block = _mm_aesdec_si128(block, subkeys[i+1]); |
|
} |
|
block = _mm_aesdec_si128(block, subkeys[rounds-1]); |
|
block = _mm_aesdeclast_si128(block, subkeys[rounds]); |
|
} |
|
|
|
inline void AESNI_Dec_4_Blocks(__m128i &block0, __m128i &block1, __m128i &block2, __m128i &block3, const __m128i *subkeys, unsigned int rounds) |
|
{ |
|
__m128i rk = subkeys[0]; |
|
block0 = _mm_xor_si128(block0, rk); |
|
block1 = _mm_xor_si128(block1, rk); |
|
block2 = _mm_xor_si128(block2, rk); |
|
block3 = _mm_xor_si128(block3, rk); |
|
for (unsigned int i=1; i<rounds; i++) |
|
{ |
|
rk = subkeys[i]; |
|
block0 = _mm_aesdec_si128(block0, rk); |
|
block1 = _mm_aesdec_si128(block1, rk); |
|
block2 = _mm_aesdec_si128(block2, rk); |
|
block3 = _mm_aesdec_si128(block3, rk); |
|
} |
|
rk = subkeys[rounds]; |
|
block0 = _mm_aesdeclast_si128(block0, rk); |
|
block1 = _mm_aesdeclast_si128(block1, rk); |
|
block2 = _mm_aesdeclast_si128(block2, rk); |
|
block3 = _mm_aesdeclast_si128(block3, rk); |
|
} |
|
|
|
static CRYPTOPP_ALIGN_DATA(16) const word32 s_one[] = {0, 0, 0, 1<<24}; |
|
|
|
template <typename F1, typename F4> |
|
inline size_t AESNI_AdvancedProcessBlocks(F1 func1, F4 func4, const __m128i *subkeys, unsigned int rounds, const byte *inBlocks, const byte *xorBlocks, byte *outBlocks, size_t length, word32 flags) |
|
{ |
|
size_t blockSize = 16; |
|
size_t inIncrement = (flags & (BlockTransformation::BT_InBlockIsCounter|BlockTransformation::BT_DontIncrementInOutPointers)) ? 0 : blockSize; |
|
size_t xorIncrement = xorBlocks ? blockSize : 0; |
|
size_t outIncrement = (flags & BlockTransformation::BT_DontIncrementInOutPointers) ? 0 : blockSize; |
|
|
|
if (flags & BlockTransformation::BT_ReverseDirection) |
|
{ |
|
assert(length % blockSize == 0); |
|
inBlocks += length - blockSize; |
|
xorBlocks += length - blockSize; |
|
outBlocks += length - blockSize; |
|
inIncrement = 0-inIncrement; |
|
xorIncrement = 0-xorIncrement; |
|
outIncrement = 0-outIncrement; |
|
} |
|
|
|
if (flags & BlockTransformation::BT_AllowParallel) |
|
{ |
|
while (length >= 4*blockSize) |
|
{ |
|
__m128i block0 = _mm_loadu_si128((const __m128i *)inBlocks), block1, block2, block3; |
|
if (flags & BlockTransformation::BT_InBlockIsCounter) |
|
{ |
|
const __m128i be1 = *(const __m128i *)s_one; |
|
block1 = _mm_add_epi32(block0, be1); |
|
block2 = _mm_add_epi32(block1, be1); |
|
block3 = _mm_add_epi32(block2, be1); |
|
_mm_storeu_si128((__m128i *)inBlocks, _mm_add_epi32(block3, be1)); |
|
} |
|
else |
|
{ |
|
inBlocks += inIncrement; |
|
block1 = _mm_loadu_si128((const __m128i *)inBlocks); |
|
inBlocks += inIncrement; |
|
block2 = _mm_loadu_si128((const __m128i *)inBlocks); |
|
inBlocks += inIncrement; |
|
block3 = _mm_loadu_si128((const __m128i *)inBlocks); |
|
inBlocks += inIncrement; |
|
} |
|
|
|
if (flags & BlockTransformation::BT_XorInput) |
|
{ |
|
block0 = _mm_xor_si128(block0, _mm_loadu_si128((const __m128i *)xorBlocks)); |
|
xorBlocks += xorIncrement; |
|
block1 = _mm_xor_si128(block1, _mm_loadu_si128((const __m128i *)xorBlocks)); |
|
xorBlocks += xorIncrement; |
|
block2 = _mm_xor_si128(block2, _mm_loadu_si128((const __m128i *)xorBlocks)); |
|
xorBlocks += xorIncrement; |
|
block3 = _mm_xor_si128(block3, _mm_loadu_si128((const __m128i *)xorBlocks)); |
|
xorBlocks += xorIncrement; |
|
} |
|
|
|
func4(block0, block1, block2, block3, subkeys, rounds); |
|
|
|
if (xorBlocks && !(flags & BlockTransformation::BT_XorInput)) |
|
{ |
|
block0 = _mm_xor_si128(block0, _mm_loadu_si128((const __m128i *)xorBlocks)); |
|
xorBlocks += xorIncrement; |
|
block1 = _mm_xor_si128(block1, _mm_loadu_si128((const __m128i *)xorBlocks)); |
|
xorBlocks += xorIncrement; |
|
block2 = _mm_xor_si128(block2, _mm_loadu_si128((const __m128i *)xorBlocks)); |
|
xorBlocks += xorIncrement; |
|
block3 = _mm_xor_si128(block3, _mm_loadu_si128((const __m128i *)xorBlocks)); |
|
xorBlocks += xorIncrement; |
|
} |
|
|
|
_mm_storeu_si128((__m128i *)outBlocks, block0); |
|
outBlocks += outIncrement; |
|
_mm_storeu_si128((__m128i *)outBlocks, block1); |
|
outBlocks += outIncrement; |
|
_mm_storeu_si128((__m128i *)outBlocks, block2); |
|
outBlocks += outIncrement; |
|
_mm_storeu_si128((__m128i *)outBlocks, block3); |
|
outBlocks += outIncrement; |
|
|
|
length -= 4*blockSize; |
|
} |
|
} |
|
|
|
while (length >= blockSize) |
|
{ |
|
__m128i block = _mm_loadu_si128((const __m128i *)inBlocks); |
|
|
|
if (flags & BlockTransformation::BT_XorInput) |
|
block = _mm_xor_si128(block, _mm_loadu_si128((const __m128i *)xorBlocks)); |
|
|
|
if (flags & BlockTransformation::BT_InBlockIsCounter) |
|
const_cast<byte *>(inBlocks)[15]++; |
|
|
|
func1(block, subkeys, rounds); |
|
|
|
if (xorBlocks && !(flags & BlockTransformation::BT_XorInput)) |
|
block = _mm_xor_si128(block, _mm_loadu_si128((const __m128i *)xorBlocks)); |
|
|
|
_mm_storeu_si128((__m128i *)outBlocks, block); |
|
|
|
inBlocks += inIncrement; |
|
outBlocks += outIncrement; |
|
xorBlocks += xorIncrement; |
|
length -= blockSize; |
|
} |
|
|
|
return length; |
|
} |
|
#endif |
|
|
|
size_t Rijndael::Enc::AdvancedProcessBlocks(const byte *inBlocks, const byte *xorBlocks, byte *outBlocks, size_t length, word32 flags) const |
|
{ |
|
#if CRYPTOPP_BOOL_AESNI_INTRINSICS_AVAILABLE |
|
if (HasAESNI()) |
|
return AESNI_AdvancedProcessBlocks(AESNI_Enc_Block, AESNI_Enc_4_Blocks, (const __m128i *)m_key.begin(), m_rounds, inBlocks, xorBlocks, outBlocks, length, flags); |
|
#endif |
|
|
|
#if CRYPTOPP_BOOL_SSE2_ASM_AVAILABLE || defined(CRYPTOPP_X64_MASM_AVAILABLE) |
|
if (HasSSE2()) |
|
{ |
|
if (length < BLOCKSIZE) |
|
return length; |
|
|
|
struct Locals |
|
{ |
|
word32 subkeys[4*12], workspace[8]; |
|
const byte *inBlocks, *inXorBlocks, *outXorBlocks; |
|
byte *outBlocks; |
|
size_t inIncrement, inXorIncrement, outXorIncrement, outIncrement; |
|
size_t regSpill, lengthAndCounterFlag, keysBegin; |
|
}; |
|
|
|
size_t increment = BLOCKSIZE; |
|
const byte* zeros = (byte *)(Te+256); |
|
byte *space; |
|
|
|
do { |
|
space = (byte *)alloca(255+sizeof(Locals)); |
|
space += (256-(size_t)space%256)%256; |
|
} |
|
while (AliasedWithTable(space, space+sizeof(Locals))); |
|
|
|
if (flags & BT_ReverseDirection) |
|
{ |
|
assert(length % BLOCKSIZE == 0); |
|
inBlocks += length - BLOCKSIZE; |
|
xorBlocks += length - BLOCKSIZE; |
|
outBlocks += length - BLOCKSIZE; |
|
increment = 0-increment; |
|
} |
|
|
|
Locals &locals = *(Locals *)space; |
|
|
|
locals.inBlocks = inBlocks; |
|
locals.inXorBlocks = (flags & BT_XorInput) && xorBlocks ? xorBlocks : zeros; |
|
locals.outXorBlocks = (flags & BT_XorInput) || !xorBlocks ? zeros : xorBlocks; |
|
locals.outBlocks = outBlocks; |
|
|
|
locals.inIncrement = (flags & BT_DontIncrementInOutPointers) ? 0 : increment; |
|
locals.inXorIncrement = (flags & BT_XorInput) && xorBlocks ? increment : 0; |
|
locals.outXorIncrement = (flags & BT_XorInput) || !xorBlocks ? 0 : increment; |
|
locals.outIncrement = (flags & BT_DontIncrementInOutPointers) ? 0 : increment; |
|
|
|
locals.lengthAndCounterFlag = length - (length%16) - bool(flags & BT_InBlockIsCounter); |
|
int keysToCopy = m_rounds - (flags & BT_InBlockIsCounter ? 3 : 2); |
|
locals.keysBegin = (12-keysToCopy)*16; |
|
|
|
Rijndael_Enc_AdvancedProcessBlocks(&locals, m_key); |
|
return length % BLOCKSIZE; |
|
} |
|
#endif |
|
|
|
return BlockTransformation::AdvancedProcessBlocks(inBlocks, xorBlocks, outBlocks, length, flags); |
|
} |
|
|
|
#endif |
|
|
|
#if CRYPTOPP_BOOL_AESNI_INTRINSICS_AVAILABLE |
|
|
|
size_t Rijndael::Dec::AdvancedProcessBlocks(const byte *inBlocks, const byte *xorBlocks, byte *outBlocks, size_t length, word32 flags) const |
|
{ |
|
if (HasAESNI()) |
|
return AESNI_AdvancedProcessBlocks(AESNI_Dec_Block, AESNI_Dec_4_Blocks, (const __m128i *)m_key.begin(), m_rounds, inBlocks, xorBlocks, outBlocks, length, flags); |
|
|
|
return BlockTransformation::AdvancedProcessBlocks(inBlocks, xorBlocks, outBlocks, length, flags); |
|
} |
|
|
|
#endif // #if CRYPTOPP_BOOL_AESNI_INTRINSICS_AVAILABLE |
|
|
|
NAMESPACE_END |
|
|
|
#endif |
|
#endif
|
|
|