You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
420 lines
13 KiB
420 lines
13 KiB
#ifndef CRYPTOPP_INTEGER_H |
|
#define CRYPTOPP_INTEGER_H |
|
|
|
/** \file */ |
|
|
|
#include "cryptlib.h" |
|
#include "secblock.h" |
|
|
|
#include <iosfwd> |
|
#include <algorithm> |
|
|
|
NAMESPACE_BEGIN(CryptoPP) |
|
|
|
struct InitializeInteger // used to initialize static variables |
|
{ |
|
InitializeInteger(); |
|
}; |
|
|
|
typedef SecBlock<word, AllocatorWithCleanup<word, CRYPTOPP_BOOL_X86> > IntegerSecBlock; |
|
|
|
//! multiple precision integer and basic arithmetics |
|
/*! This class can represent positive and negative integers |
|
with absolute value less than (256**sizeof(word)) ** (256**sizeof(int)). |
|
\nosubgrouping |
|
*/ |
|
class CRYPTOPP_DLL Integer : private InitializeInteger, public ASN1Object |
|
{ |
|
public: |
|
//! \name ENUMS, EXCEPTIONS, and TYPEDEFS |
|
//@{ |
|
//! division by zero exception |
|
class DivideByZero : public Exception |
|
{ |
|
public: |
|
DivideByZero() : Exception(OTHER_ERROR, "Integer: division by zero") {} |
|
}; |
|
|
|
//! |
|
class RandomNumberNotFound : public Exception |
|
{ |
|
public: |
|
RandomNumberNotFound() : Exception(OTHER_ERROR, "Integer: no integer satisfies the given parameters") {} |
|
}; |
|
|
|
//! |
|
enum Sign {POSITIVE=0, NEGATIVE=1}; |
|
|
|
//! |
|
enum Signedness { |
|
//! |
|
UNSIGNED, |
|
//! |
|
SIGNED}; |
|
|
|
//! |
|
enum RandomNumberType { |
|
//! |
|
ANY, |
|
//! |
|
PRIME}; |
|
//@} |
|
|
|
//! \name CREATORS |
|
//@{ |
|
//! creates the zero integer |
|
Integer(); |
|
|
|
//! copy constructor |
|
Integer(const Integer& t); |
|
|
|
//! convert from signed long |
|
Integer(signed long value); |
|
|
|
//! convert from lword |
|
Integer(Sign s, lword value); |
|
|
|
//! convert from two words |
|
Integer(Sign s, word highWord, word lowWord); |
|
|
|
//! convert from string |
|
/*! str can be in base 2, 8, 10, or 16. Base is determined by a |
|
case insensitive suffix of 'h', 'o', or 'b'. No suffix means base 10. |
|
*/ |
|
explicit Integer(const char *str); |
|
explicit Integer(const wchar_t *str); |
|
|
|
//! convert from big-endian byte array |
|
Integer(const byte *encodedInteger, size_t byteCount, Signedness s=UNSIGNED); |
|
|
|
//! convert from big-endian form stored in a BufferedTransformation |
|
Integer(BufferedTransformation &bt, size_t byteCount, Signedness s=UNSIGNED); |
|
|
|
//! convert from BER encoded byte array stored in a BufferedTransformation object |
|
explicit Integer(BufferedTransformation &bt); |
|
|
|
//! create a random integer |
|
/*! The random integer created is uniformly distributed over [0, 2**bitcount). */ |
|
Integer(RandomNumberGenerator &rng, size_t bitcount); |
|
|
|
//! avoid calling constructors for these frequently used integers |
|
static const Integer & CRYPTOPP_API Zero(); |
|
//! avoid calling constructors for these frequently used integers |
|
static const Integer & CRYPTOPP_API One(); |
|
//! avoid calling constructors for these frequently used integers |
|
static const Integer & CRYPTOPP_API Two(); |
|
|
|
//! create a random integer of special type |
|
/*! Ideally, the random integer created should be uniformly distributed |
|
over {x | min <= x <= max and x is of rnType and x % mod == equiv}. |
|
However the actual distribution may not be uniform because sequential |
|
search is used to find an appropriate number from a random starting |
|
point. |
|
May return (with very small probability) a pseudoprime when a prime |
|
is requested and max > lastSmallPrime*lastSmallPrime (lastSmallPrime |
|
is declared in nbtheory.h). |
|
\throw RandomNumberNotFound if the set is empty. |
|
*/ |
|
Integer(RandomNumberGenerator &rng, const Integer &min, const Integer &max, RandomNumberType rnType=ANY, const Integer &equiv=Zero(), const Integer &mod=One()); |
|
|
|
//! return the integer 2**e |
|
static Integer CRYPTOPP_API Power2(size_t e); |
|
//@} |
|
|
|
//! \name ENCODE/DECODE |
|
//@{ |
|
//! minimum number of bytes to encode this integer |
|
/*! MinEncodedSize of 0 is 1 */ |
|
size_t MinEncodedSize(Signedness=UNSIGNED) const; |
|
//! encode in big-endian format |
|
/*! unsigned means encode absolute value, signed means encode two's complement if negative. |
|
if outputLen < MinEncodedSize, the most significant bytes will be dropped |
|
if outputLen > MinEncodedSize, the most significant bytes will be padded |
|
*/ |
|
void Encode(byte *output, size_t outputLen, Signedness=UNSIGNED) const; |
|
//! |
|
void Encode(BufferedTransformation &bt, size_t outputLen, Signedness=UNSIGNED) const; |
|
|
|
//! encode using Distinguished Encoding Rules, put result into a BufferedTransformation object |
|
void DEREncode(BufferedTransformation &bt) const; |
|
|
|
//! encode absolute value as big-endian octet string |
|
void DEREncodeAsOctetString(BufferedTransformation &bt, size_t length) const; |
|
|
|
//! encode absolute value in OpenPGP format, return length of output |
|
size_t OpenPGPEncode(byte *output, size_t bufferSize) const; |
|
//! encode absolute value in OpenPGP format, put result into a BufferedTransformation object |
|
size_t OpenPGPEncode(BufferedTransformation &bt) const; |
|
|
|
//! |
|
void Decode(const byte *input, size_t inputLen, Signedness=UNSIGNED); |
|
//! |
|
//* Precondition: bt.MaxRetrievable() >= inputLen |
|
void Decode(BufferedTransformation &bt, size_t inputLen, Signedness=UNSIGNED); |
|
|
|
//! |
|
void BERDecode(const byte *input, size_t inputLen); |
|
//! |
|
void BERDecode(BufferedTransformation &bt); |
|
|
|
//! decode nonnegative value as big-endian octet string |
|
void BERDecodeAsOctetString(BufferedTransformation &bt, size_t length); |
|
|
|
class OpenPGPDecodeErr : public Exception |
|
{ |
|
public: |
|
OpenPGPDecodeErr() : Exception(INVALID_DATA_FORMAT, "OpenPGP decode error") {} |
|
}; |
|
|
|
//! |
|
void OpenPGPDecode(const byte *input, size_t inputLen); |
|
//! |
|
void OpenPGPDecode(BufferedTransformation &bt); |
|
//@} |
|
|
|
//! \name ACCESSORS |
|
//@{ |
|
//! return true if *this can be represented as a signed long |
|
bool IsConvertableToLong() const; |
|
//! return equivalent signed long if possible, otherwise undefined |
|
signed long ConvertToLong() const; |
|
|
|
//! number of significant bits = floor(log2(abs(*this))) + 1 |
|
unsigned int BitCount() const; |
|
//! number of significant bytes = ceiling(BitCount()/8) |
|
unsigned int ByteCount() const; |
|
//! number of significant words = ceiling(ByteCount()/sizeof(word)) |
|
unsigned int WordCount() const; |
|
|
|
//! return the i-th bit, i=0 being the least significant bit |
|
bool GetBit(size_t i) const; |
|
//! return the i-th byte |
|
byte GetByte(size_t i) const; |
|
//! return n lowest bits of *this >> i |
|
lword GetBits(size_t i, size_t n) const; |
|
|
|
//! |
|
bool IsZero() const {return !*this;} |
|
//! |
|
bool NotZero() const {return !IsZero();} |
|
//! |
|
bool IsNegative() const {return sign == NEGATIVE;} |
|
//! |
|
bool NotNegative() const {return !IsNegative();} |
|
//! |
|
bool IsPositive() const {return NotNegative() && NotZero();} |
|
//! |
|
bool NotPositive() const {return !IsPositive();} |
|
//! |
|
bool IsEven() const {return GetBit(0) == 0;} |
|
//! |
|
bool IsOdd() const {return GetBit(0) == 1;} |
|
//@} |
|
|
|
//! \name MANIPULATORS |
|
//@{ |
|
//! |
|
Integer& operator=(const Integer& t); |
|
|
|
//! |
|
Integer& operator+=(const Integer& t); |
|
//! |
|
Integer& operator-=(const Integer& t); |
|
//! |
|
Integer& operator*=(const Integer& t) {return *this = Times(t);} |
|
//! |
|
Integer& operator/=(const Integer& t) {return *this = DividedBy(t);} |
|
//! |
|
Integer& operator%=(const Integer& t) {return *this = Modulo(t);} |
|
//! |
|
Integer& operator/=(word t) {return *this = DividedBy(t);} |
|
//! |
|
Integer& operator%=(word t) {return *this = Integer(POSITIVE, 0, Modulo(t));} |
|
|
|
//! |
|
Integer& operator<<=(size_t); |
|
//! |
|
Integer& operator>>=(size_t); |
|
|
|
//! |
|
void Randomize(RandomNumberGenerator &rng, size_t bitcount); |
|
//! |
|
void Randomize(RandomNumberGenerator &rng, const Integer &min, const Integer &max); |
|
//! set this Integer to a random element of {x | min <= x <= max and x is of rnType and x % mod == equiv} |
|
/*! returns false if the set is empty */ |
|
bool Randomize(RandomNumberGenerator &rng, const Integer &min, const Integer &max, RandomNumberType rnType, const Integer &equiv=Zero(), const Integer &mod=One()); |
|
|
|
bool GenerateRandomNoThrow(RandomNumberGenerator &rng, const NameValuePairs ¶ms = g_nullNameValuePairs); |
|
void GenerateRandom(RandomNumberGenerator &rng, const NameValuePairs ¶ms = g_nullNameValuePairs) |
|
{ |
|
if (!GenerateRandomNoThrow(rng, params)) |
|
throw RandomNumberNotFound(); |
|
} |
|
|
|
//! set the n-th bit to value |
|
void SetBit(size_t n, bool value=1); |
|
//! set the n-th byte to value |
|
void SetByte(size_t n, byte value); |
|
|
|
//! |
|
void Negate(); |
|
//! |
|
void SetPositive() {sign = POSITIVE;} |
|
//! |
|
void SetNegative() {if (!!(*this)) sign = NEGATIVE;} |
|
|
|
//! |
|
void swap(Integer &a); |
|
//@} |
|
|
|
//! \name UNARY OPERATORS |
|
//@{ |
|
//! |
|
bool operator!() const; |
|
//! |
|
Integer operator+() const {return *this;} |
|
//! |
|
Integer operator-() const; |
|
//! |
|
Integer& operator++(); |
|
//! |
|
Integer& operator--(); |
|
//! |
|
Integer operator++(int) {Integer temp = *this; ++*this; return temp;} |
|
//! |
|
Integer operator--(int) {Integer temp = *this; --*this; return temp;} |
|
//@} |
|
|
|
//! \name BINARY OPERATORS |
|
//@{ |
|
//! signed comparison |
|
/*! \retval -1 if *this < a |
|
\retval 0 if *this = a |
|
\retval 1 if *this > a |
|
*/ |
|
int Compare(const Integer& a) const; |
|
|
|
//! |
|
Integer Plus(const Integer &b) const; |
|
//! |
|
Integer Minus(const Integer &b) const; |
|
//! |
|
Integer Times(const Integer &b) const; |
|
//! |
|
Integer DividedBy(const Integer &b) const; |
|
//! |
|
Integer Modulo(const Integer &b) const; |
|
//! |
|
Integer DividedBy(word b) const; |
|
//! |
|
word Modulo(word b) const; |
|
|
|
//! |
|
Integer operator>>(size_t n) const {return Integer(*this)>>=n;} |
|
//! |
|
Integer operator<<(size_t n) const {return Integer(*this)<<=n;} |
|
//@} |
|
|
|
//! \name OTHER ARITHMETIC FUNCTIONS |
|
//@{ |
|
//! |
|
Integer AbsoluteValue() const; |
|
//! |
|
Integer Doubled() const {return Plus(*this);} |
|
//! |
|
Integer Squared() const {return Times(*this);} |
|
//! extract square root, if negative return 0, else return floor of square root |
|
Integer SquareRoot() const; |
|
//! return whether this integer is a perfect square |
|
bool IsSquare() const; |
|
|
|
//! is 1 or -1 |
|
bool IsUnit() const; |
|
//! return inverse if 1 or -1, otherwise return 0 |
|
Integer MultiplicativeInverse() const; |
|
|
|
//! modular multiplication |
|
CRYPTOPP_DLL friend Integer CRYPTOPP_API a_times_b_mod_c(const Integer &x, const Integer& y, const Integer& m); |
|
//! modular exponentiation |
|
CRYPTOPP_DLL friend Integer CRYPTOPP_API a_exp_b_mod_c(const Integer &x, const Integer& e, const Integer& m); |
|
|
|
//! calculate r and q such that (a == d*q + r) && (0 <= r < abs(d)) |
|
static void CRYPTOPP_API Divide(Integer &r, Integer &q, const Integer &a, const Integer &d); |
|
//! use a faster division algorithm when divisor is short |
|
static void CRYPTOPP_API Divide(word &r, Integer &q, const Integer &a, word d); |
|
|
|
//! returns same result as Divide(r, q, a, Power2(n)), but faster |
|
static void CRYPTOPP_API DivideByPowerOf2(Integer &r, Integer &q, const Integer &a, unsigned int n); |
|
|
|
//! greatest common divisor |
|
static Integer CRYPTOPP_API Gcd(const Integer &a, const Integer &n); |
|
//! calculate multiplicative inverse of *this mod n |
|
Integer InverseMod(const Integer &n) const; |
|
//! |
|
word InverseMod(word n) const; |
|
//@} |
|
|
|
//! \name INPUT/OUTPUT |
|
//@{ |
|
//! |
|
friend CRYPTOPP_DLL std::istream& CRYPTOPP_API operator>>(std::istream& in, Integer &a); |
|
//! |
|
friend CRYPTOPP_DLL std::ostream& CRYPTOPP_API operator<<(std::ostream& out, const Integer &a); |
|
//@} |
|
|
|
private: |
|
friend class ModularArithmetic; |
|
friend class MontgomeryRepresentation; |
|
friend class HalfMontgomeryRepresentation; |
|
|
|
Integer(word value, size_t length); |
|
|
|
int PositiveCompare(const Integer &t) const; |
|
friend void PositiveAdd(Integer &sum, const Integer &a, const Integer &b); |
|
friend void PositiveSubtract(Integer &diff, const Integer &a, const Integer &b); |
|
friend void PositiveMultiply(Integer &product, const Integer &a, const Integer &b); |
|
friend void PositiveDivide(Integer &remainder, Integer "ient, const Integer ÷nd, const Integer &divisor); |
|
|
|
IntegerSecBlock reg; |
|
Sign sign; |
|
}; |
|
|
|
//! |
|
inline bool operator==(const CryptoPP::Integer& a, const CryptoPP::Integer& b) {return a.Compare(b)==0;} |
|
//! |
|
inline bool operator!=(const CryptoPP::Integer& a, const CryptoPP::Integer& b) {return a.Compare(b)!=0;} |
|
//! |
|
inline bool operator> (const CryptoPP::Integer& a, const CryptoPP::Integer& b) {return a.Compare(b)> 0;} |
|
//! |
|
inline bool operator>=(const CryptoPP::Integer& a, const CryptoPP::Integer& b) {return a.Compare(b)>=0;} |
|
//! |
|
inline bool operator< (const CryptoPP::Integer& a, const CryptoPP::Integer& b) {return a.Compare(b)< 0;} |
|
//! |
|
inline bool operator<=(const CryptoPP::Integer& a, const CryptoPP::Integer& b) {return a.Compare(b)<=0;} |
|
//! |
|
inline CryptoPP::Integer operator+(const CryptoPP::Integer &a, const CryptoPP::Integer &b) {return a.Plus(b);} |
|
//! |
|
inline CryptoPP::Integer operator-(const CryptoPP::Integer &a, const CryptoPP::Integer &b) {return a.Minus(b);} |
|
//! |
|
inline CryptoPP::Integer operator*(const CryptoPP::Integer &a, const CryptoPP::Integer &b) {return a.Times(b);} |
|
//! |
|
inline CryptoPP::Integer operator/(const CryptoPP::Integer &a, const CryptoPP::Integer &b) {return a.DividedBy(b);} |
|
//! |
|
inline CryptoPP::Integer operator%(const CryptoPP::Integer &a, const CryptoPP::Integer &b) {return a.Modulo(b);} |
|
//! |
|
inline CryptoPP::Integer operator/(const CryptoPP::Integer &a, CryptoPP::word b) {return a.DividedBy(b);} |
|
//! |
|
inline CryptoPP::word operator%(const CryptoPP::Integer &a, CryptoPP::word b) {return a.Modulo(b);} |
|
|
|
NAMESPACE_END |
|
|
|
#ifndef __BORLANDC__ |
|
NAMESPACE_BEGIN(std) |
|
inline void swap(CryptoPP::Integer &a, CryptoPP::Integer &b) |
|
{ |
|
a.swap(b); |
|
} |
|
NAMESPACE_END |
|
#endif |
|
|
|
#endif
|
|
|