You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
4235 lines
104 KiB
4235 lines
104 KiB
// integer.cpp - written and placed in the public domain by Wei Dai |
|
// contains public domain code contributed by Alister Lee and Leonard Janke |
|
|
|
#include "pch.h" |
|
|
|
#ifndef CRYPTOPP_IMPORTS |
|
|
|
#include "integer.h" |
|
#include "modarith.h" |
|
#include "nbtheory.h" |
|
#include "asn.h" |
|
#include "oids.h" |
|
#include "words.h" |
|
#include "algparam.h" |
|
#include "pubkey.h" // for P1363_KDF2 |
|
#include "sha.h" |
|
#include "cpu.h" |
|
|
|
#include <iostream> |
|
|
|
#if _MSC_VER >= 1400 |
|
#include <intrin.h> |
|
#endif |
|
|
|
#ifdef __DECCXX |
|
#include <c_asm.h> |
|
#endif |
|
|
|
#ifdef CRYPTOPP_MSVC6_NO_PP |
|
#pragma message("You do not seem to have the Visual C++ Processor Pack installed, so use of SSE2 instructions will be disabled.") |
|
#endif |
|
|
|
#define CRYPTOPP_INTEGER_SSE2 (CRYPTOPP_BOOL_SSE2_ASM_AVAILABLE && CRYPTOPP_BOOL_X86) |
|
|
|
NAMESPACE_BEGIN(CryptoPP) |
|
|
|
bool AssignIntToInteger(const std::type_info &valueType, void *pInteger, const void *pInt) |
|
{ |
|
if (valueType != typeid(Integer)) |
|
return false; |
|
*reinterpret_cast<Integer *>(pInteger) = *reinterpret_cast<const int *>(pInt); |
|
return true; |
|
} |
|
|
|
inline static int Compare(const word *A, const word *B, size_t N) |
|
{ |
|
while (N--) |
|
if (A[N] > B[N]) |
|
return 1; |
|
else if (A[N] < B[N]) |
|
return -1; |
|
|
|
return 0; |
|
} |
|
|
|
inline static int Increment(word *A, size_t N, word B=1) |
|
{ |
|
assert(N); |
|
word t = A[0]; |
|
A[0] = t+B; |
|
if (A[0] >= t) |
|
return 0; |
|
for (unsigned i=1; i<N; i++) |
|
if (++A[i]) |
|
return 0; |
|
return 1; |
|
} |
|
|
|
inline static int Decrement(word *A, size_t N, word B=1) |
|
{ |
|
assert(N); |
|
word t = A[0]; |
|
A[0] = t-B; |
|
if (A[0] <= t) |
|
return 0; |
|
for (unsigned i=1; i<N; i++) |
|
if (A[i]--) |
|
return 0; |
|
return 1; |
|
} |
|
|
|
static void TwosComplement(word *A, size_t N) |
|
{ |
|
Decrement(A, N); |
|
for (unsigned i=0; i<N; i++) |
|
A[i] = ~A[i]; |
|
} |
|
|
|
static word AtomicInverseModPower2(word A) |
|
{ |
|
assert(A%2==1); |
|
|
|
word R=A%8; |
|
|
|
for (unsigned i=3; i<WORD_BITS; i*=2) |
|
R = R*(2-R*A); |
|
|
|
assert(R*A==1); |
|
return R; |
|
} |
|
|
|
// ******************************************************** |
|
|
|
#if !defined(CRYPTOPP_NATIVE_DWORD_AVAILABLE) || (defined(__x86_64__) && defined(CRYPTOPP_WORD128_AVAILABLE)) |
|
#define Declare2Words(x) word x##0, x##1; |
|
#define AssignWord(a, b) a##0 = b; a##1 = 0; |
|
#define Add2WordsBy1(a, b, c) a##0 = b##0 + c; a##1 = b##1 + (a##0 < c); |
|
#define LowWord(a) a##0 |
|
#define HighWord(a) a##1 |
|
#ifdef _MSC_VER |
|
#define MultiplyWordsLoHi(p0, p1, a, b) p0 = _umul128(a, b, &p1); |
|
#ifndef __INTEL_COMPILER |
|
#define Double3Words(c, d) d##1 = __shiftleft128(d##0, d##1, 1); d##0 = __shiftleft128(c, d##0, 1); c *= 2; |
|
#endif |
|
#elif defined(__DECCXX) |
|
#define MultiplyWordsLoHi(p0, p1, a, b) p0 = a*b; p1 = asm("umulh %a0, %a1, %v0", a, b); |
|
#elif defined(__x86_64__) |
|
#if defined(__SUNPRO_CC) && __SUNPRO_CC < 0x5100 |
|
// Sun Studio's gcc-style inline assembly is heavily bugged as of version 5.9 Patch 124864-09 2008/12/16, but this one works |
|
#define MultiplyWordsLoHi(p0, p1, a, b) asm ("mulq %3" : "=a"(p0), "=d"(p1) : "a"(a), "r"(b) : "cc"); |
|
#else |
|
#define MultiplyWordsLoHi(p0, p1, a, b) asm ("mulq %3" : "=a"(p0), "=d"(p1) : "a"(a), "g"(b) : "cc"); |
|
#define MulAcc(c, d, a, b) asm ("mulq %6; addq %3, %0; adcq %4, %1; adcq $0, %2;" : "+r"(c), "+r"(d##0), "+r"(d##1), "=a"(p0), "=d"(p1) : "a"(a), "g"(b) : "cc"); |
|
#define Double3Words(c, d) asm ("addq %0, %0; adcq %1, %1; adcq %2, %2;" : "+r"(c), "+r"(d##0), "+r"(d##1) : : "cc"); |
|
#define Acc2WordsBy1(a, b) asm ("addq %2, %0; adcq $0, %1;" : "+r"(a##0), "+r"(a##1) : "r"(b) : "cc"); |
|
#define Acc2WordsBy2(a, b) asm ("addq %2, %0; adcq %3, %1;" : "+r"(a##0), "+r"(a##1) : "r"(b##0), "r"(b##1) : "cc"); |
|
#define Acc3WordsBy2(c, d, e) asm ("addq %5, %0; adcq %6, %1; adcq $0, %2;" : "+r"(c), "=r"(e##0), "=r"(e##1) : "1"(d##0), "2"(d##1), "r"(e##0), "r"(e##1) : "cc"); |
|
#endif |
|
#endif |
|
#define MultiplyWords(p, a, b) MultiplyWordsLoHi(p##0, p##1, a, b) |
|
#ifndef Double3Words |
|
#define Double3Words(c, d) d##1 = 2*d##1 + (d##0>>(WORD_BITS-1)); d##0 = 2*d##0 + (c>>(WORD_BITS-1)); c *= 2; |
|
#endif |
|
#ifndef Acc2WordsBy2 |
|
#define Acc2WordsBy2(a, b) a##0 += b##0; a##1 += a##0 < b##0; a##1 += b##1; |
|
#endif |
|
#define AddWithCarry(u, a, b) {word t = a+b; u##0 = t + u##1; u##1 = (t<a) + (u##0<t);} |
|
#define SubtractWithBorrow(u, a, b) {word t = a-b; u##0 = t - u##1; u##1 = (t>a) + (u##0>t);} |
|
#define GetCarry(u) u##1 |
|
#define GetBorrow(u) u##1 |
|
#else |
|
#define Declare2Words(x) dword x; |
|
#if _MSC_VER >= 1400 && !defined(__INTEL_COMPILER) |
|
#define MultiplyWords(p, a, b) p = __emulu(a, b); |
|
#else |
|
#define MultiplyWords(p, a, b) p = (dword)a*b; |
|
#endif |
|
#define AssignWord(a, b) a = b; |
|
#define Add2WordsBy1(a, b, c) a = b + c; |
|
#define Acc2WordsBy2(a, b) a += b; |
|
#define LowWord(a) word(a) |
|
#define HighWord(a) word(a>>WORD_BITS) |
|
#define Double3Words(c, d) d = 2*d + (c>>(WORD_BITS-1)); c *= 2; |
|
#define AddWithCarry(u, a, b) u = dword(a) + b + GetCarry(u); |
|
#define SubtractWithBorrow(u, a, b) u = dword(a) - b - GetBorrow(u); |
|
#define GetCarry(u) HighWord(u) |
|
#define GetBorrow(u) word(u>>(WORD_BITS*2-1)) |
|
#endif |
|
#ifndef MulAcc |
|
#define MulAcc(c, d, a, b) MultiplyWords(p, a, b); Acc2WordsBy1(p, c); c = LowWord(p); Acc2WordsBy1(d, HighWord(p)); |
|
#endif |
|
#ifndef Acc2WordsBy1 |
|
#define Acc2WordsBy1(a, b) Add2WordsBy1(a, a, b) |
|
#endif |
|
#ifndef Acc3WordsBy2 |
|
#define Acc3WordsBy2(c, d, e) Acc2WordsBy1(e, c); c = LowWord(e); Add2WordsBy1(e, d, HighWord(e)); |
|
#endif |
|
|
|
class DWord |
|
{ |
|
public: |
|
DWord() {} |
|
|
|
#ifdef CRYPTOPP_NATIVE_DWORD_AVAILABLE |
|
explicit DWord(word low) |
|
{ |
|
m_whole = low; |
|
} |
|
#else |
|
explicit DWord(word low) |
|
{ |
|
m_halfs.low = low; |
|
m_halfs.high = 0; |
|
} |
|
#endif |
|
|
|
DWord(word low, word high) |
|
{ |
|
m_halfs.low = low; |
|
m_halfs.high = high; |
|
} |
|
|
|
static DWord Multiply(word a, word b) |
|
{ |
|
DWord r; |
|
#ifdef CRYPTOPP_NATIVE_DWORD_AVAILABLE |
|
r.m_whole = (dword)a * b; |
|
#elif defined(MultiplyWordsLoHi) |
|
MultiplyWordsLoHi(r.m_halfs.low, r.m_halfs.high, a, b); |
|
#endif |
|
return r; |
|
} |
|
|
|
static DWord MultiplyAndAdd(word a, word b, word c) |
|
{ |
|
DWord r = Multiply(a, b); |
|
return r += c; |
|
} |
|
|
|
DWord & operator+=(word a) |
|
{ |
|
#ifdef CRYPTOPP_NATIVE_DWORD_AVAILABLE |
|
m_whole = m_whole + a; |
|
#else |
|
m_halfs.low += a; |
|
m_halfs.high += (m_halfs.low < a); |
|
#endif |
|
return *this; |
|
} |
|
|
|
DWord operator+(word a) |
|
{ |
|
DWord r; |
|
#ifdef CRYPTOPP_NATIVE_DWORD_AVAILABLE |
|
r.m_whole = m_whole + a; |
|
#else |
|
r.m_halfs.low = m_halfs.low + a; |
|
r.m_halfs.high = m_halfs.high + (r.m_halfs.low < a); |
|
#endif |
|
return r; |
|
} |
|
|
|
DWord operator-(DWord a) |
|
{ |
|
DWord r; |
|
#ifdef CRYPTOPP_NATIVE_DWORD_AVAILABLE |
|
r.m_whole = m_whole - a.m_whole; |
|
#else |
|
r.m_halfs.low = m_halfs.low - a.m_halfs.low; |
|
r.m_halfs.high = m_halfs.high - a.m_halfs.high - (r.m_halfs.low > m_halfs.low); |
|
#endif |
|
return r; |
|
} |
|
|
|
DWord operator-(word a) |
|
{ |
|
DWord r; |
|
#ifdef CRYPTOPP_NATIVE_DWORD_AVAILABLE |
|
r.m_whole = m_whole - a; |
|
#else |
|
r.m_halfs.low = m_halfs.low - a; |
|
r.m_halfs.high = m_halfs.high - (r.m_halfs.low > m_halfs.low); |
|
#endif |
|
return r; |
|
} |
|
|
|
// returns quotient, which must fit in a word |
|
word operator/(word divisor); |
|
|
|
word operator%(word a); |
|
|
|
bool operator!() const |
|
{ |
|
#ifdef CRYPTOPP_NATIVE_DWORD_AVAILABLE |
|
return !m_whole; |
|
#else |
|
return !m_halfs.high && !m_halfs.low; |
|
#endif |
|
} |
|
|
|
word GetLowHalf() const {return m_halfs.low;} |
|
word GetHighHalf() const {return m_halfs.high;} |
|
word GetHighHalfAsBorrow() const {return 0-m_halfs.high;} |
|
|
|
private: |
|
union |
|
{ |
|
#ifdef CRYPTOPP_NATIVE_DWORD_AVAILABLE |
|
dword m_whole; |
|
#endif |
|
struct |
|
{ |
|
#ifdef IS_LITTLE_ENDIAN |
|
word low; |
|
word high; |
|
#else |
|
word high; |
|
word low; |
|
#endif |
|
} m_halfs; |
|
}; |
|
}; |
|
|
|
class Word |
|
{ |
|
public: |
|
Word() {} |
|
|
|
Word(word value) |
|
{ |
|
m_whole = value; |
|
} |
|
|
|
Word(hword low, hword high) |
|
{ |
|
m_whole = low | (word(high) << (WORD_BITS/2)); |
|
} |
|
|
|
static Word Multiply(hword a, hword b) |
|
{ |
|
Word r; |
|
r.m_whole = (word)a * b; |
|
return r; |
|
} |
|
|
|
Word operator-(Word a) |
|
{ |
|
Word r; |
|
r.m_whole = m_whole - a.m_whole; |
|
return r; |
|
} |
|
|
|
Word operator-(hword a) |
|
{ |
|
Word r; |
|
r.m_whole = m_whole - a; |
|
return r; |
|
} |
|
|
|
// returns quotient, which must fit in a word |
|
hword operator/(hword divisor) |
|
{ |
|
return hword(m_whole / divisor); |
|
} |
|
|
|
bool operator!() const |
|
{ |
|
return !m_whole; |
|
} |
|
|
|
word GetWhole() const {return m_whole;} |
|
hword GetLowHalf() const {return hword(m_whole);} |
|
hword GetHighHalf() const {return hword(m_whole>>(WORD_BITS/2));} |
|
hword GetHighHalfAsBorrow() const {return 0-hword(m_whole>>(WORD_BITS/2));} |
|
|
|
private: |
|
word m_whole; |
|
}; |
|
|
|
// do a 3 word by 2 word divide, returns quotient and leaves remainder in A |
|
template <class S, class D> |
|
S DivideThreeWordsByTwo(S *A, S B0, S B1, D *dummy=NULL) |
|
{ |
|
// assert {A[2],A[1]} < {B1,B0}, so quotient can fit in a S |
|
assert(A[2] < B1 || (A[2]==B1 && A[1] < B0)); |
|
|
|
// estimate the quotient: do a 2 S by 1 S divide |
|
S Q; |
|
if (S(B1+1) == 0) |
|
Q = A[2]; |
|
else if (B1 > 0) |
|
Q = D(A[1], A[2]) / S(B1+1); |
|
else |
|
Q = D(A[0], A[1]) / B0; |
|
|
|
// now subtract Q*B from A |
|
D p = D::Multiply(B0, Q); |
|
D u = (D) A[0] - p.GetLowHalf(); |
|
A[0] = u.GetLowHalf(); |
|
u = (D) A[1] - p.GetHighHalf() - u.GetHighHalfAsBorrow() - D::Multiply(B1, Q); |
|
A[1] = u.GetLowHalf(); |
|
A[2] += u.GetHighHalf(); |
|
|
|
// Q <= actual quotient, so fix it |
|
while (A[2] || A[1] > B1 || (A[1]==B1 && A[0]>=B0)) |
|
{ |
|
u = (D) A[0] - B0; |
|
A[0] = u.GetLowHalf(); |
|
u = (D) A[1] - B1 - u.GetHighHalfAsBorrow(); |
|
A[1] = u.GetLowHalf(); |
|
A[2] += u.GetHighHalf(); |
|
Q++; |
|
assert(Q); // shouldn't overflow |
|
} |
|
|
|
return Q; |
|
} |
|
|
|
// do a 4 word by 2 word divide, returns 2 word quotient in Q0 and Q1 |
|
template <class S, class D> |
|
inline D DivideFourWordsByTwo(S *T, const D &Al, const D &Ah, const D &B) |
|
{ |
|
if (!B) // if divisor is 0, we assume divisor==2**(2*WORD_BITS) |
|
return D(Ah.GetLowHalf(), Ah.GetHighHalf()); |
|
else |
|
{ |
|
S Q[2]; |
|
T[0] = Al.GetLowHalf(); |
|
T[1] = Al.GetHighHalf(); |
|
T[2] = Ah.GetLowHalf(); |
|
T[3] = Ah.GetHighHalf(); |
|
Q[1] = DivideThreeWordsByTwo<S, D>(T+1, B.GetLowHalf(), B.GetHighHalf()); |
|
Q[0] = DivideThreeWordsByTwo<S, D>(T, B.GetLowHalf(), B.GetHighHalf()); |
|
return D(Q[0], Q[1]); |
|
} |
|
} |
|
|
|
// returns quotient, which must fit in a word |
|
inline word DWord::operator/(word a) |
|
{ |
|
#ifdef CRYPTOPP_NATIVE_DWORD_AVAILABLE |
|
return word(m_whole / a); |
|
#else |
|
hword r[4]; |
|
return DivideFourWordsByTwo<hword, Word>(r, m_halfs.low, m_halfs.high, a).GetWhole(); |
|
#endif |
|
} |
|
|
|
inline word DWord::operator%(word a) |
|
{ |
|
#ifdef CRYPTOPP_NATIVE_DWORD_AVAILABLE |
|
return word(m_whole % a); |
|
#else |
|
if (a < (word(1) << (WORD_BITS/2))) |
|
{ |
|
hword h = hword(a); |
|
word r = m_halfs.high % h; |
|
r = ((m_halfs.low >> (WORD_BITS/2)) + (r << (WORD_BITS/2))) % h; |
|
return hword((hword(m_halfs.low) + (r << (WORD_BITS/2))) % h); |
|
} |
|
else |
|
{ |
|
hword r[4]; |
|
DivideFourWordsByTwo<hword, Word>(r, m_halfs.low, m_halfs.high, a); |
|
return Word(r[0], r[1]).GetWhole(); |
|
} |
|
#endif |
|
} |
|
|
|
// ******************************************************** |
|
|
|
// use some tricks to share assembly code between MSVC and GCC |
|
#if defined(__GNUC__) |
|
#define AddPrologue \ |
|
int result; \ |
|
__asm__ __volatile__ \ |
|
( \ |
|
".intel_syntax noprefix;" |
|
#define AddEpilogue \ |
|
".att_syntax prefix;" \ |
|
: "=a" (result)\ |
|
: "d" (C), "a" (A), "D" (B), "c" (N) \ |
|
: "%esi", "memory", "cc" \ |
|
);\ |
|
return result; |
|
#define MulPrologue \ |
|
__asm__ __volatile__ \ |
|
( \ |
|
".intel_syntax noprefix;" \ |
|
AS1( push ebx) \ |
|
AS2( mov ebx, edx) |
|
#define MulEpilogue \ |
|
AS1( pop ebx) \ |
|
".att_syntax prefix;" \ |
|
: \ |
|
: "d" (s_maskLow16), "c" (C), "a" (A), "D" (B) \ |
|
: "%esi", "memory", "cc" \ |
|
); |
|
#define SquPrologue MulPrologue |
|
#define SquEpilogue \ |
|
AS1( pop ebx) \ |
|
".att_syntax prefix;" \ |
|
: \ |
|
: "d" (s_maskLow16), "c" (C), "a" (A) \ |
|
: "%esi", "%edi", "memory", "cc" \ |
|
); |
|
#define TopPrologue MulPrologue |
|
#define TopEpilogue \ |
|
AS1( pop ebx) \ |
|
".att_syntax prefix;" \ |
|
: \ |
|
: "d" (s_maskLow16), "c" (C), "a" (A), "D" (B), "S" (L) \ |
|
: "memory", "cc" \ |
|
); |
|
#else |
|
#define AddPrologue \ |
|
__asm push edi \ |
|
__asm push esi \ |
|
__asm mov eax, [esp+12] \ |
|
__asm mov edi, [esp+16] |
|
#define AddEpilogue \ |
|
__asm pop esi \ |
|
__asm pop edi \ |
|
__asm ret 8 |
|
#if _MSC_VER < 1300 |
|
#define SaveEBX __asm push ebx |
|
#define RestoreEBX __asm pop ebx |
|
#else |
|
#define SaveEBX |
|
#define RestoreEBX |
|
#endif |
|
#define SquPrologue \ |
|
AS2( mov eax, A) \ |
|
AS2( mov ecx, C) \ |
|
SaveEBX \ |
|
AS2( lea ebx, s_maskLow16) |
|
#define MulPrologue \ |
|
AS2( mov eax, A) \ |
|
AS2( mov edi, B) \ |
|
AS2( mov ecx, C) \ |
|
SaveEBX \ |
|
AS2( lea ebx, s_maskLow16) |
|
#define TopPrologue \ |
|
AS2( mov eax, A) \ |
|
AS2( mov edi, B) \ |
|
AS2( mov ecx, C) \ |
|
AS2( mov esi, L) \ |
|
SaveEBX \ |
|
AS2( lea ebx, s_maskLow16) |
|
#define SquEpilogue RestoreEBX |
|
#define MulEpilogue RestoreEBX |
|
#define TopEpilogue RestoreEBX |
|
#endif |
|
|
|
#ifdef CRYPTOPP_X64_MASM_AVAILABLE |
|
extern "C" { |
|
int Baseline_Add(size_t N, word *C, const word *A, const word *B); |
|
int Baseline_Sub(size_t N, word *C, const word *A, const word *B); |
|
} |
|
#elif defined(CRYPTOPP_X64_ASM_AVAILABLE) && defined(__GNUC__) && defined(CRYPTOPP_WORD128_AVAILABLE) |
|
int Baseline_Add(size_t N, word *C, const word *A, const word *B) |
|
{ |
|
word result; |
|
__asm__ __volatile__ |
|
( |
|
".intel_syntax;" |
|
AS1( neg %1) |
|
ASJ( jz, 1, f) |
|
AS2( mov %0,[%3+8*%1]) |
|
AS2( add %0,[%4+8*%1]) |
|
AS2( mov [%2+8*%1],%0) |
|
ASL(0) |
|
AS2( mov %0,[%3+8*%1+8]) |
|
AS2( adc %0,[%4+8*%1+8]) |
|
AS2( mov [%2+8*%1+8],%0) |
|
AS2( lea %1,[%1+2]) |
|
ASJ( jrcxz, 1, f) |
|
AS2( mov %0,[%3+8*%1]) |
|
AS2( adc %0,[%4+8*%1]) |
|
AS2( mov [%2+8*%1],%0) |
|
ASJ( jmp, 0, b) |
|
ASL(1) |
|
AS2( mov %0, 0) |
|
AS2( adc %0, %0) |
|
".att_syntax;" |
|
: "=&r" (result), "+c" (N) |
|
: "r" (C+N), "r" (A+N), "r" (B+N) |
|
: "memory", "cc" |
|
); |
|
return (int)result; |
|
} |
|
|
|
int Baseline_Sub(size_t N, word *C, const word *A, const word *B) |
|
{ |
|
word result; |
|
__asm__ __volatile__ |
|
( |
|
".intel_syntax;" |
|
AS1( neg %1) |
|
ASJ( jz, 1, f) |
|
AS2( mov %0,[%3+8*%1]) |
|
AS2( sub %0,[%4+8*%1]) |
|
AS2( mov [%2+8*%1],%0) |
|
ASL(0) |
|
AS2( mov %0,[%3+8*%1+8]) |
|
AS2( sbb %0,[%4+8*%1+8]) |
|
AS2( mov [%2+8*%1+8],%0) |
|
AS2( lea %1,[%1+2]) |
|
ASJ( jrcxz, 1, f) |
|
AS2( mov %0,[%3+8*%1]) |
|
AS2( sbb %0,[%4+8*%1]) |
|
AS2( mov [%2+8*%1],%0) |
|
ASJ( jmp, 0, b) |
|
ASL(1) |
|
AS2( mov %0, 0) |
|
AS2( adc %0, %0) |
|
".att_syntax;" |
|
: "=&r" (result), "+c" (N) |
|
: "r" (C+N), "r" (A+N), "r" (B+N) |
|
: "memory", "cc" |
|
); |
|
return (int)result; |
|
} |
|
#elif defined(CRYPTOPP_X86_ASM_AVAILABLE) && CRYPTOPP_BOOL_X86 |
|
CRYPTOPP_NAKED int CRYPTOPP_FASTCALL Baseline_Add(size_t N, word *C, const word *A, const word *B) |
|
{ |
|
AddPrologue |
|
|
|
// now: eax = A, edi = B, edx = C, ecx = N |
|
AS2( lea eax, [eax+4*ecx]) |
|
AS2( lea edi, [edi+4*ecx]) |
|
AS2( lea edx, [edx+4*ecx]) |
|
|
|
AS1( neg ecx) // ecx is negative index |
|
AS2( test ecx, 2) // this clears carry flag |
|
ASJ( jz, 0, f) |
|
AS2( sub ecx, 2) |
|
ASJ( jmp, 1, f) |
|
|
|
ASL(0) |
|
ASJ( jecxz, 2, f) // loop until ecx overflows and becomes zero |
|
AS2( mov esi,[eax+4*ecx]) |
|
AS2( adc esi,[edi+4*ecx]) |
|
AS2( mov [edx+4*ecx],esi) |
|
AS2( mov esi,[eax+4*ecx+4]) |
|
AS2( adc esi,[edi+4*ecx+4]) |
|
AS2( mov [edx+4*ecx+4],esi) |
|
ASL(1) |
|
AS2( mov esi,[eax+4*ecx+8]) |
|
AS2( adc esi,[edi+4*ecx+8]) |
|
AS2( mov [edx+4*ecx+8],esi) |
|
AS2( mov esi,[eax+4*ecx+12]) |
|
AS2( adc esi,[edi+4*ecx+12]) |
|
AS2( mov [edx+4*ecx+12],esi) |
|
|
|
AS2( lea ecx,[ecx+4]) // advance index, avoid inc which causes slowdown on Intel Core 2 |
|
ASJ( jmp, 0, b) |
|
|
|
ASL(2) |
|
AS2( mov eax, 0) |
|
AS1( setc al) // store carry into eax (return result register) |
|
|
|
AddEpilogue |
|
} |
|
|
|
CRYPTOPP_NAKED int CRYPTOPP_FASTCALL Baseline_Sub(size_t N, word *C, const word *A, const word *B) |
|
{ |
|
AddPrologue |
|
|
|
// now: eax = A, edi = B, edx = C, ecx = N |
|
AS2( lea eax, [eax+4*ecx]) |
|
AS2( lea edi, [edi+4*ecx]) |
|
AS2( lea edx, [edx+4*ecx]) |
|
|
|
AS1( neg ecx) // ecx is negative index |
|
AS2( test ecx, 2) // this clears carry flag |
|
ASJ( jz, 0, f) |
|
AS2( sub ecx, 2) |
|
ASJ( jmp, 1, f) |
|
|
|
ASL(0) |
|
ASJ( jecxz, 2, f) // loop until ecx overflows and becomes zero |
|
AS2( mov esi,[eax+4*ecx]) |
|
AS2( sbb esi,[edi+4*ecx]) |
|
AS2( mov [edx+4*ecx],esi) |
|
AS2( mov esi,[eax+4*ecx+4]) |
|
AS2( sbb esi,[edi+4*ecx+4]) |
|
AS2( mov [edx+4*ecx+4],esi) |
|
ASL(1) |
|
AS2( mov esi,[eax+4*ecx+8]) |
|
AS2( sbb esi,[edi+4*ecx+8]) |
|
AS2( mov [edx+4*ecx+8],esi) |
|
AS2( mov esi,[eax+4*ecx+12]) |
|
AS2( sbb esi,[edi+4*ecx+12]) |
|
AS2( mov [edx+4*ecx+12],esi) |
|
|
|
AS2( lea ecx,[ecx+4]) // advance index, avoid inc which causes slowdown on Intel Core 2 |
|
ASJ( jmp, 0, b) |
|
|
|
ASL(2) |
|
AS2( mov eax, 0) |
|
AS1( setc al) // store carry into eax (return result register) |
|
|
|
AddEpilogue |
|
} |
|
|
|
#if CRYPTOPP_INTEGER_SSE2 |
|
CRYPTOPP_NAKED int CRYPTOPP_FASTCALL SSE2_Add(size_t N, word *C, const word *A, const word *B) |
|
{ |
|
AddPrologue |
|
|
|
// now: eax = A, edi = B, edx = C, ecx = N |
|
AS2( lea eax, [eax+4*ecx]) |
|
AS2( lea edi, [edi+4*ecx]) |
|
AS2( lea edx, [edx+4*ecx]) |
|
|
|
AS1( neg ecx) // ecx is negative index |
|
AS2( pxor mm2, mm2) |
|
ASJ( jz, 2, f) |
|
AS2( test ecx, 2) // this clears carry flag |
|
ASJ( jz, 0, f) |
|
AS2( sub ecx, 2) |
|
ASJ( jmp, 1, f) |
|
|
|
ASL(0) |
|
AS2( movd mm0, DWORD PTR [eax+4*ecx]) |
|
AS2( movd mm1, DWORD PTR [edi+4*ecx]) |
|
AS2( paddq mm0, mm1) |
|
AS2( paddq mm2, mm0) |
|
AS2( movd DWORD PTR [edx+4*ecx], mm2) |
|
AS2( psrlq mm2, 32) |
|
|
|
AS2( movd mm0, DWORD PTR [eax+4*ecx+4]) |
|
AS2( movd mm1, DWORD PTR [edi+4*ecx+4]) |
|
AS2( paddq mm0, mm1) |
|
AS2( paddq mm2, mm0) |
|
AS2( movd DWORD PTR [edx+4*ecx+4], mm2) |
|
AS2( psrlq mm2, 32) |
|
|
|
ASL(1) |
|
AS2( movd mm0, DWORD PTR [eax+4*ecx+8]) |
|
AS2( movd mm1, DWORD PTR [edi+4*ecx+8]) |
|
AS2( paddq mm0, mm1) |
|
AS2( paddq mm2, mm0) |
|
AS2( movd DWORD PTR [edx+4*ecx+8], mm2) |
|
AS2( psrlq mm2, 32) |
|
|
|
AS2( movd mm0, DWORD PTR [eax+4*ecx+12]) |
|
AS2( movd mm1, DWORD PTR [edi+4*ecx+12]) |
|
AS2( paddq mm0, mm1) |
|
AS2( paddq mm2, mm0) |
|
AS2( movd DWORD PTR [edx+4*ecx+12], mm2) |
|
AS2( psrlq mm2, 32) |
|
|
|
AS2( add ecx, 4) |
|
ASJ( jnz, 0, b) |
|
|
|
ASL(2) |
|
AS2( movd eax, mm2) |
|
AS1( emms) |
|
|
|
AddEpilogue |
|
} |
|
CRYPTOPP_NAKED int CRYPTOPP_FASTCALL SSE2_Sub(size_t N, word *C, const word *A, const word *B) |
|
{ |
|
AddPrologue |
|
|
|
// now: eax = A, edi = B, edx = C, ecx = N |
|
AS2( lea eax, [eax+4*ecx]) |
|
AS2( lea edi, [edi+4*ecx]) |
|
AS2( lea edx, [edx+4*ecx]) |
|
|
|
AS1( neg ecx) // ecx is negative index |
|
AS2( pxor mm2, mm2) |
|
ASJ( jz, 2, f) |
|
AS2( test ecx, 2) // this clears carry flag |
|
ASJ( jz, 0, f) |
|
AS2( sub ecx, 2) |
|
ASJ( jmp, 1, f) |
|
|
|
ASL(0) |
|
AS2( movd mm0, DWORD PTR [eax+4*ecx]) |
|
AS2( movd mm1, DWORD PTR [edi+4*ecx]) |
|
AS2( psubq mm0, mm1) |
|
AS2( psubq mm0, mm2) |
|
AS2( movd DWORD PTR [edx+4*ecx], mm0) |
|
AS2( psrlq mm0, 63) |
|
|
|
AS2( movd mm2, DWORD PTR [eax+4*ecx+4]) |
|
AS2( movd mm1, DWORD PTR [edi+4*ecx+4]) |
|
AS2( psubq mm2, mm1) |
|
AS2( psubq mm2, mm0) |
|
AS2( movd DWORD PTR [edx+4*ecx+4], mm2) |
|
AS2( psrlq mm2, 63) |
|
|
|
ASL(1) |
|
AS2( movd mm0, DWORD PTR [eax+4*ecx+8]) |
|
AS2( movd mm1, DWORD PTR [edi+4*ecx+8]) |
|
AS2( psubq mm0, mm1) |
|
AS2( psubq mm0, mm2) |
|
AS2( movd DWORD PTR [edx+4*ecx+8], mm0) |
|
AS2( psrlq mm0, 63) |
|
|
|
AS2( movd mm2, DWORD PTR [eax+4*ecx+12]) |
|
AS2( movd mm1, DWORD PTR [edi+4*ecx+12]) |
|
AS2( psubq mm2, mm1) |
|
AS2( psubq mm2, mm0) |
|
AS2( movd DWORD PTR [edx+4*ecx+12], mm2) |
|
AS2( psrlq mm2, 63) |
|
|
|
AS2( add ecx, 4) |
|
ASJ( jnz, 0, b) |
|
|
|
ASL(2) |
|
AS2( movd eax, mm2) |
|
AS1( emms) |
|
|
|
AddEpilogue |
|
} |
|
#endif // #if CRYPTOPP_BOOL_SSE2_ASM_AVAILABLE |
|
#else |
|
int CRYPTOPP_FASTCALL Baseline_Add(size_t N, word *C, const word *A, const word *B) |
|
{ |
|
assert (N%2 == 0); |
|
|
|
Declare2Words(u); |
|
AssignWord(u, 0); |
|
for (size_t i=0; i<N; i+=2) |
|
{ |
|
AddWithCarry(u, A[i], B[i]); |
|
C[i] = LowWord(u); |
|
AddWithCarry(u, A[i+1], B[i+1]); |
|
C[i+1] = LowWord(u); |
|
} |
|
return int(GetCarry(u)); |
|
} |
|
|
|
int CRYPTOPP_FASTCALL Baseline_Sub(size_t N, word *C, const word *A, const word *B) |
|
{ |
|
assert (N%2 == 0); |
|
|
|
Declare2Words(u); |
|
AssignWord(u, 0); |
|
for (size_t i=0; i<N; i+=2) |
|
{ |
|
SubtractWithBorrow(u, A[i], B[i]); |
|
C[i] = LowWord(u); |
|
SubtractWithBorrow(u, A[i+1], B[i+1]); |
|
C[i+1] = LowWord(u); |
|
} |
|
return int(GetBorrow(u)); |
|
} |
|
#endif |
|
|
|
static word LinearMultiply(word *C, const word *A, word B, size_t N) |
|
{ |
|
word carry=0; |
|
for(unsigned i=0; i<N; i++) |
|
{ |
|
Declare2Words(p); |
|
MultiplyWords(p, A[i], B); |
|
Acc2WordsBy1(p, carry); |
|
C[i] = LowWord(p); |
|
carry = HighWord(p); |
|
} |
|
return carry; |
|
} |
|
|
|
#ifndef CRYPTOPP_DOXYGEN_PROCESSING |
|
|
|
#define Mul_2 \ |
|
Mul_Begin(2) \ |
|
Mul_SaveAcc(0, 0, 1) Mul_Acc(1, 0) \ |
|
Mul_End(1, 1) |
|
|
|
#define Mul_4 \ |
|
Mul_Begin(4) \ |
|
Mul_SaveAcc(0, 0, 1) Mul_Acc(1, 0) \ |
|
Mul_SaveAcc(1, 0, 2) Mul_Acc(1, 1) Mul_Acc(2, 0) \ |
|
Mul_SaveAcc(2, 0, 3) Mul_Acc(1, 2) Mul_Acc(2, 1) Mul_Acc(3, 0) \ |
|
Mul_SaveAcc(3, 1, 3) Mul_Acc(2, 2) Mul_Acc(3, 1) \ |
|
Mul_SaveAcc(4, 2, 3) Mul_Acc(3, 2) \ |
|
Mul_End(5, 3) |
|
|
|
#define Mul_8 \ |
|
Mul_Begin(8) \ |
|
Mul_SaveAcc(0, 0, 1) Mul_Acc(1, 0) \ |
|
Mul_SaveAcc(1, 0, 2) Mul_Acc(1, 1) Mul_Acc(2, 0) \ |
|
Mul_SaveAcc(2, 0, 3) Mul_Acc(1, 2) Mul_Acc(2, 1) Mul_Acc(3, 0) \ |
|
Mul_SaveAcc(3, 0, 4) Mul_Acc(1, 3) Mul_Acc(2, 2) Mul_Acc(3, 1) Mul_Acc(4, 0) \ |
|
Mul_SaveAcc(4, 0, 5) Mul_Acc(1, 4) Mul_Acc(2, 3) Mul_Acc(3, 2) Mul_Acc(4, 1) Mul_Acc(5, 0) \ |
|
Mul_SaveAcc(5, 0, 6) Mul_Acc(1, 5) Mul_Acc(2, 4) Mul_Acc(3, 3) Mul_Acc(4, 2) Mul_Acc(5, 1) Mul_Acc(6, 0) \ |
|
Mul_SaveAcc(6, 0, 7) Mul_Acc(1, 6) Mul_Acc(2, 5) Mul_Acc(3, 4) Mul_Acc(4, 3) Mul_Acc(5, 2) Mul_Acc(6, 1) Mul_Acc(7, 0) \ |
|
Mul_SaveAcc(7, 1, 7) Mul_Acc(2, 6) Mul_Acc(3, 5) Mul_Acc(4, 4) Mul_Acc(5, 3) Mul_Acc(6, 2) Mul_Acc(7, 1) \ |
|
Mul_SaveAcc(8, 2, 7) Mul_Acc(3, 6) Mul_Acc(4, 5) Mul_Acc(5, 4) Mul_Acc(6, 3) Mul_Acc(7, 2) \ |
|
Mul_SaveAcc(9, 3, 7) Mul_Acc(4, 6) Mul_Acc(5, 5) Mul_Acc(6, 4) Mul_Acc(7, 3) \ |
|
Mul_SaveAcc(10, 4, 7) Mul_Acc(5, 6) Mul_Acc(6, 5) Mul_Acc(7, 4) \ |
|
Mul_SaveAcc(11, 5, 7) Mul_Acc(6, 6) Mul_Acc(7, 5) \ |
|
Mul_SaveAcc(12, 6, 7) Mul_Acc(7, 6) \ |
|
Mul_End(13, 7) |
|
|
|
#define Mul_16 \ |
|
Mul_Begin(16) \ |
|
Mul_SaveAcc(0, 0, 1) Mul_Acc(1, 0) \ |
|
Mul_SaveAcc(1, 0, 2) Mul_Acc(1, 1) Mul_Acc(2, 0) \ |
|
Mul_SaveAcc(2, 0, 3) Mul_Acc(1, 2) Mul_Acc(2, 1) Mul_Acc(3, 0) \ |
|
Mul_SaveAcc(3, 0, 4) Mul_Acc(1, 3) Mul_Acc(2, 2) Mul_Acc(3, 1) Mul_Acc(4, 0) \ |
|
Mul_SaveAcc(4, 0, 5) Mul_Acc(1, 4) Mul_Acc(2, 3) Mul_Acc(3, 2) Mul_Acc(4, 1) Mul_Acc(5, 0) \ |
|
Mul_SaveAcc(5, 0, 6) Mul_Acc(1, 5) Mul_Acc(2, 4) Mul_Acc(3, 3) Mul_Acc(4, 2) Mul_Acc(5, 1) Mul_Acc(6, 0) \ |
|
Mul_SaveAcc(6, 0, 7) Mul_Acc(1, 6) Mul_Acc(2, 5) Mul_Acc(3, 4) Mul_Acc(4, 3) Mul_Acc(5, 2) Mul_Acc(6, 1) Mul_Acc(7, 0) \ |
|
Mul_SaveAcc(7, 0, 8) Mul_Acc(1, 7) Mul_Acc(2, 6) Mul_Acc(3, 5) Mul_Acc(4, 4) Mul_Acc(5, 3) Mul_Acc(6, 2) Mul_Acc(7, 1) Mul_Acc(8, 0) \ |
|
Mul_SaveAcc(8, 0, 9) Mul_Acc(1, 8) Mul_Acc(2, 7) Mul_Acc(3, 6) Mul_Acc(4, 5) Mul_Acc(5, 4) Mul_Acc(6, 3) Mul_Acc(7, 2) Mul_Acc(8, 1) Mul_Acc(9, 0) \ |
|
Mul_SaveAcc(9, 0, 10) Mul_Acc(1, 9) Mul_Acc(2, 8) Mul_Acc(3, 7) Mul_Acc(4, 6) Mul_Acc(5, 5) Mul_Acc(6, 4) Mul_Acc(7, 3) Mul_Acc(8, 2) Mul_Acc(9, 1) Mul_Acc(10, 0) \ |
|
Mul_SaveAcc(10, 0, 11) Mul_Acc(1, 10) Mul_Acc(2, 9) Mul_Acc(3, 8) Mul_Acc(4, 7) Mul_Acc(5, 6) Mul_Acc(6, 5) Mul_Acc(7, 4) Mul_Acc(8, 3) Mul_Acc(9, 2) Mul_Acc(10, 1) Mul_Acc(11, 0) \ |
|
Mul_SaveAcc(11, 0, 12) Mul_Acc(1, 11) Mul_Acc(2, 10) Mul_Acc(3, 9) Mul_Acc(4, 8) Mul_Acc(5, 7) Mul_Acc(6, 6) Mul_Acc(7, 5) Mul_Acc(8, 4) Mul_Acc(9, 3) Mul_Acc(10, 2) Mul_Acc(11, 1) Mul_Acc(12, 0) \ |
|
Mul_SaveAcc(12, 0, 13) Mul_Acc(1, 12) Mul_Acc(2, 11) Mul_Acc(3, 10) Mul_Acc(4, 9) Mul_Acc(5, 8) Mul_Acc(6, 7) Mul_Acc(7, 6) Mul_Acc(8, 5) Mul_Acc(9, 4) Mul_Acc(10, 3) Mul_Acc(11, 2) Mul_Acc(12, 1) Mul_Acc(13, 0) \ |
|
Mul_SaveAcc(13, 0, 14) Mul_Acc(1, 13) Mul_Acc(2, 12) Mul_Acc(3, 11) Mul_Acc(4, 10) Mul_Acc(5, 9) Mul_Acc(6, 8) Mul_Acc(7, 7) Mul_Acc(8, 6) Mul_Acc(9, 5) Mul_Acc(10, 4) Mul_Acc(11, 3) Mul_Acc(12, 2) Mul_Acc(13, 1) Mul_Acc(14, 0) \ |
|
Mul_SaveAcc(14, 0, 15) Mul_Acc(1, 14) Mul_Acc(2, 13) Mul_Acc(3, 12) Mul_Acc(4, 11) Mul_Acc(5, 10) Mul_Acc(6, 9) Mul_Acc(7, 8) Mul_Acc(8, 7) Mul_Acc(9, 6) Mul_Acc(10, 5) Mul_Acc(11, 4) Mul_Acc(12, 3) Mul_Acc(13, 2) Mul_Acc(14, 1) Mul_Acc(15, 0) \ |
|
Mul_SaveAcc(15, 1, 15) Mul_Acc(2, 14) Mul_Acc(3, 13) Mul_Acc(4, 12) Mul_Acc(5, 11) Mul_Acc(6, 10) Mul_Acc(7, 9) Mul_Acc(8, 8) Mul_Acc(9, 7) Mul_Acc(10, 6) Mul_Acc(11, 5) Mul_Acc(12, 4) Mul_Acc(13, 3) Mul_Acc(14, 2) Mul_Acc(15, 1) \ |
|
Mul_SaveAcc(16, 2, 15) Mul_Acc(3, 14) Mul_Acc(4, 13) Mul_Acc(5, 12) Mul_Acc(6, 11) Mul_Acc(7, 10) Mul_Acc(8, 9) Mul_Acc(9, 8) Mul_Acc(10, 7) Mul_Acc(11, 6) Mul_Acc(12, 5) Mul_Acc(13, 4) Mul_Acc(14, 3) Mul_Acc(15, 2) \ |
|
Mul_SaveAcc(17, 3, 15) Mul_Acc(4, 14) Mul_Acc(5, 13) Mul_Acc(6, 12) Mul_Acc(7, 11) Mul_Acc(8, 10) Mul_Acc(9, 9) Mul_Acc(10, 8) Mul_Acc(11, 7) Mul_Acc(12, 6) Mul_Acc(13, 5) Mul_Acc(14, 4) Mul_Acc(15, 3) \ |
|
Mul_SaveAcc(18, 4, 15) Mul_Acc(5, 14) Mul_Acc(6, 13) Mul_Acc(7, 12) Mul_Acc(8, 11) Mul_Acc(9, 10) Mul_Acc(10, 9) Mul_Acc(11, 8) Mul_Acc(12, 7) Mul_Acc(13, 6) Mul_Acc(14, 5) Mul_Acc(15, 4) \ |
|
Mul_SaveAcc(19, 5, 15) Mul_Acc(6, 14) Mul_Acc(7, 13) Mul_Acc(8, 12) Mul_Acc(9, 11) Mul_Acc(10, 10) Mul_Acc(11, 9) Mul_Acc(12, 8) Mul_Acc(13, 7) Mul_Acc(14, 6) Mul_Acc(15, 5) \ |
|
Mul_SaveAcc(20, 6, 15) Mul_Acc(7, 14) Mul_Acc(8, 13) Mul_Acc(9, 12) Mul_Acc(10, 11) Mul_Acc(11, 10) Mul_Acc(12, 9) Mul_Acc(13, 8) Mul_Acc(14, 7) Mul_Acc(15, 6) \ |
|
Mul_SaveAcc(21, 7, 15) Mul_Acc(8, 14) Mul_Acc(9, 13) Mul_Acc(10, 12) Mul_Acc(11, 11) Mul_Acc(12, 10) Mul_Acc(13, 9) Mul_Acc(14, 8) Mul_Acc(15, 7) \ |
|
Mul_SaveAcc(22, 8, 15) Mul_Acc(9, 14) Mul_Acc(10, 13) Mul_Acc(11, 12) Mul_Acc(12, 11) Mul_Acc(13, 10) Mul_Acc(14, 9) Mul_Acc(15, 8) \ |
|
Mul_SaveAcc(23, 9, 15) Mul_Acc(10, 14) Mul_Acc(11, 13) Mul_Acc(12, 12) Mul_Acc(13, 11) Mul_Acc(14, 10) Mul_Acc(15, 9) \ |
|
Mul_SaveAcc(24, 10, 15) Mul_Acc(11, 14) Mul_Acc(12, 13) Mul_Acc(13, 12) Mul_Acc(14, 11) Mul_Acc(15, 10) \ |
|
Mul_SaveAcc(25, 11, 15) Mul_Acc(12, 14) Mul_Acc(13, 13) Mul_Acc(14, 12) Mul_Acc(15, 11) \ |
|
Mul_SaveAcc(26, 12, 15) Mul_Acc(13, 14) Mul_Acc(14, 13) Mul_Acc(15, 12) \ |
|
Mul_SaveAcc(27, 13, 15) Mul_Acc(14, 14) Mul_Acc(15, 13) \ |
|
Mul_SaveAcc(28, 14, 15) Mul_Acc(15, 14) \ |
|
Mul_End(29, 15) |
|
|
|
#define Squ_2 \ |
|
Squ_Begin(2) \ |
|
Squ_End(2) |
|
|
|
#define Squ_4 \ |
|
Squ_Begin(4) \ |
|
Squ_SaveAcc(1, 0, 2) Squ_Diag(1) \ |
|
Squ_SaveAcc(2, 0, 3) Squ_Acc(1, 2) Squ_NonDiag \ |
|
Squ_SaveAcc(3, 1, 3) Squ_Diag(2) \ |
|
Squ_SaveAcc(4, 2, 3) Squ_NonDiag \ |
|
Squ_End(4) |
|
|
|
#define Squ_8 \ |
|
Squ_Begin(8) \ |
|
Squ_SaveAcc(1, 0, 2) Squ_Diag(1) \ |
|
Squ_SaveAcc(2, 0, 3) Squ_Acc(1, 2) Squ_NonDiag \ |
|
Squ_SaveAcc(3, 0, 4) Squ_Acc(1, 3) Squ_Diag(2) \ |
|
Squ_SaveAcc(4, 0, 5) Squ_Acc(1, 4) Squ_Acc(2, 3) Squ_NonDiag \ |
|
Squ_SaveAcc(5, 0, 6) Squ_Acc(1, 5) Squ_Acc(2, 4) Squ_Diag(3) \ |
|
Squ_SaveAcc(6, 0, 7) Squ_Acc(1, 6) Squ_Acc(2, 5) Squ_Acc(3, 4) Squ_NonDiag \ |
|
Squ_SaveAcc(7, 1, 7) Squ_Acc(2, 6) Squ_Acc(3, 5) Squ_Diag(4) \ |
|
Squ_SaveAcc(8, 2, 7) Squ_Acc(3, 6) Squ_Acc(4, 5) Squ_NonDiag \ |
|
Squ_SaveAcc(9, 3, 7) Squ_Acc(4, 6) Squ_Diag(5) \ |
|
Squ_SaveAcc(10, 4, 7) Squ_Acc(5, 6) Squ_NonDiag \ |
|
Squ_SaveAcc(11, 5, 7) Squ_Diag(6) \ |
|
Squ_SaveAcc(12, 6, 7) Squ_NonDiag \ |
|
Squ_End(8) |
|
|
|
#define Squ_16 \ |
|
Squ_Begin(16) \ |
|
Squ_SaveAcc(1, 0, 2) Squ_Diag(1) \ |
|
Squ_SaveAcc(2, 0, 3) Squ_Acc(1, 2) Squ_NonDiag \ |
|
Squ_SaveAcc(3, 0, 4) Squ_Acc(1, 3) Squ_Diag(2) \ |
|
Squ_SaveAcc(4, 0, 5) Squ_Acc(1, 4) Squ_Acc(2, 3) Squ_NonDiag \ |
|
Squ_SaveAcc(5, 0, 6) Squ_Acc(1, 5) Squ_Acc(2, 4) Squ_Diag(3) \ |
|
Squ_SaveAcc(6, 0, 7) Squ_Acc(1, 6) Squ_Acc(2, 5) Squ_Acc(3, 4) Squ_NonDiag \ |
|
Squ_SaveAcc(7, 0, 8) Squ_Acc(1, 7) Squ_Acc(2, 6) Squ_Acc(3, 5) Squ_Diag(4) \ |
|
Squ_SaveAcc(8, 0, 9) Squ_Acc(1, 8) Squ_Acc(2, 7) Squ_Acc(3, 6) Squ_Acc(4, 5) Squ_NonDiag \ |
|
Squ_SaveAcc(9, 0, 10) Squ_Acc(1, 9) Squ_Acc(2, 8) Squ_Acc(3, 7) Squ_Acc(4, 6) Squ_Diag(5) \ |
|
Squ_SaveAcc(10, 0, 11) Squ_Acc(1, 10) Squ_Acc(2, 9) Squ_Acc(3, 8) Squ_Acc(4, 7) Squ_Acc(5, 6) Squ_NonDiag \ |
|
Squ_SaveAcc(11, 0, 12) Squ_Acc(1, 11) Squ_Acc(2, 10) Squ_Acc(3, 9) Squ_Acc(4, 8) Squ_Acc(5, 7) Squ_Diag(6) \ |
|
Squ_SaveAcc(12, 0, 13) Squ_Acc(1, 12) Squ_Acc(2, 11) Squ_Acc(3, 10) Squ_Acc(4, 9) Squ_Acc(5, 8) Squ_Acc(6, 7) Squ_NonDiag \ |
|
Squ_SaveAcc(13, 0, 14) Squ_Acc(1, 13) Squ_Acc(2, 12) Squ_Acc(3, 11) Squ_Acc(4, 10) Squ_Acc(5, 9) Squ_Acc(6, 8) Squ_Diag(7) \ |
|
Squ_SaveAcc(14, 0, 15) Squ_Acc(1, 14) Squ_Acc(2, 13) Squ_Acc(3, 12) Squ_Acc(4, 11) Squ_Acc(5, 10) Squ_Acc(6, 9) Squ_Acc(7, 8) Squ_NonDiag \ |
|
Squ_SaveAcc(15, 1, 15) Squ_Acc(2, 14) Squ_Acc(3, 13) Squ_Acc(4, 12) Squ_Acc(5, 11) Squ_Acc(6, 10) Squ_Acc(7, 9) Squ_Diag(8) \ |
|
Squ_SaveAcc(16, 2, 15) Squ_Acc(3, 14) Squ_Acc(4, 13) Squ_Acc(5, 12) Squ_Acc(6, 11) Squ_Acc(7, 10) Squ_Acc(8, 9) Squ_NonDiag \ |
|
Squ_SaveAcc(17, 3, 15) Squ_Acc(4, 14) Squ_Acc(5, 13) Squ_Acc(6, 12) Squ_Acc(7, 11) Squ_Acc(8, 10) Squ_Diag(9) \ |
|
Squ_SaveAcc(18, 4, 15) Squ_Acc(5, 14) Squ_Acc(6, 13) Squ_Acc(7, 12) Squ_Acc(8, 11) Squ_Acc(9, 10) Squ_NonDiag \ |
|
Squ_SaveAcc(19, 5, 15) Squ_Acc(6, 14) Squ_Acc(7, 13) Squ_Acc(8, 12) Squ_Acc(9, 11) Squ_Diag(10) \ |
|
Squ_SaveAcc(20, 6, 15) Squ_Acc(7, 14) Squ_Acc(8, 13) Squ_Acc(9, 12) Squ_Acc(10, 11) Squ_NonDiag \ |
|
Squ_SaveAcc(21, 7, 15) Squ_Acc(8, 14) Squ_Acc(9, 13) Squ_Acc(10, 12) Squ_Diag(11) \ |
|
Squ_SaveAcc(22, 8, 15) Squ_Acc(9, 14) Squ_Acc(10, 13) Squ_Acc(11, 12) Squ_NonDiag \ |
|
Squ_SaveAcc(23, 9, 15) Squ_Acc(10, 14) Squ_Acc(11, 13) Squ_Diag(12) \ |
|
Squ_SaveAcc(24, 10, 15) Squ_Acc(11, 14) Squ_Acc(12, 13) Squ_NonDiag \ |
|
Squ_SaveAcc(25, 11, 15) Squ_Acc(12, 14) Squ_Diag(13) \ |
|
Squ_SaveAcc(26, 12, 15) Squ_Acc(13, 14) Squ_NonDiag \ |
|
Squ_SaveAcc(27, 13, 15) Squ_Diag(14) \ |
|
Squ_SaveAcc(28, 14, 15) Squ_NonDiag \ |
|
Squ_End(16) |
|
|
|
#define Bot_2 \ |
|
Mul_Begin(2) \ |
|
Bot_SaveAcc(0, 0, 1) Bot_Acc(1, 0) \ |
|
Bot_End(2) |
|
|
|
#define Bot_4 \ |
|
Mul_Begin(4) \ |
|
Mul_SaveAcc(0, 0, 1) Mul_Acc(1, 0) \ |
|
Mul_SaveAcc(1, 2, 0) Mul_Acc(1, 1) Mul_Acc(0, 2) \ |
|
Bot_SaveAcc(2, 0, 3) Bot_Acc(1, 2) Bot_Acc(2, 1) Bot_Acc(3, 0) \ |
|
Bot_End(4) |
|
|
|
#define Bot_8 \ |
|
Mul_Begin(8) \ |
|
Mul_SaveAcc(0, 0, 1) Mul_Acc(1, 0) \ |
|
Mul_SaveAcc(1, 0, 2) Mul_Acc(1, 1) Mul_Acc(2, 0) \ |
|
Mul_SaveAcc(2, 0, 3) Mul_Acc(1, 2) Mul_Acc(2, 1) Mul_Acc(3, 0) \ |
|
Mul_SaveAcc(3, 0, 4) Mul_Acc(1, 3) Mul_Acc(2, 2) Mul_Acc(3, 1) Mul_Acc(4, 0) \ |
|
Mul_SaveAcc(4, 0, 5) Mul_Acc(1, 4) Mul_Acc(2, 3) Mul_Acc(3, 2) Mul_Acc(4, 1) Mul_Acc(5, 0) \ |
|
Mul_SaveAcc(5, 0, 6) Mul_Acc(1, 5) Mul_Acc(2, 4) Mul_Acc(3, 3) Mul_Acc(4, 2) Mul_Acc(5, 1) Mul_Acc(6, 0) \ |
|
Bot_SaveAcc(6, 0, 7) Bot_Acc(1, 6) Bot_Acc(2, 5) Bot_Acc(3, 4) Bot_Acc(4, 3) Bot_Acc(5, 2) Bot_Acc(6, 1) Bot_Acc(7, 0) \ |
|
Bot_End(8) |
|
|
|
#define Bot_16 \ |
|
Mul_Begin(16) \ |
|
Mul_SaveAcc(0, 0, 1) Mul_Acc(1, 0) \ |
|
Mul_SaveAcc(1, 0, 2) Mul_Acc(1, 1) Mul_Acc(2, 0) \ |
|
Mul_SaveAcc(2, 0, 3) Mul_Acc(1, 2) Mul_Acc(2, 1) Mul_Acc(3, 0) \ |
|
Mul_SaveAcc(3, 0, 4) Mul_Acc(1, 3) Mul_Acc(2, 2) Mul_Acc(3, 1) Mul_Acc(4, 0) \ |
|
Mul_SaveAcc(4, 0, 5) Mul_Acc(1, 4) Mul_Acc(2, 3) Mul_Acc(3, 2) Mul_Acc(4, 1) Mul_Acc(5, 0) \ |
|
Mul_SaveAcc(5, 0, 6) Mul_Acc(1, 5) Mul_Acc(2, 4) Mul_Acc(3, 3) Mul_Acc(4, 2) Mul_Acc(5, 1) Mul_Acc(6, 0) \ |
|
Mul_SaveAcc(6, 0, 7) Mul_Acc(1, 6) Mul_Acc(2, 5) Mul_Acc(3, 4) Mul_Acc(4, 3) Mul_Acc(5, 2) Mul_Acc(6, 1) Mul_Acc(7, 0) \ |
|
Mul_SaveAcc(7, 0, 8) Mul_Acc(1, 7) Mul_Acc(2, 6) Mul_Acc(3, 5) Mul_Acc(4, 4) Mul_Acc(5, 3) Mul_Acc(6, 2) Mul_Acc(7, 1) Mul_Acc(8, 0) \ |
|
Mul_SaveAcc(8, 0, 9) Mul_Acc(1, 8) Mul_Acc(2, 7) Mul_Acc(3, 6) Mul_Acc(4, 5) Mul_Acc(5, 4) Mul_Acc(6, 3) Mul_Acc(7, 2) Mul_Acc(8, 1) Mul_Acc(9, 0) \ |
|
Mul_SaveAcc(9, 0, 10) Mul_Acc(1, 9) Mul_Acc(2, 8) Mul_Acc(3, 7) Mul_Acc(4, 6) Mul_Acc(5, 5) Mul_Acc(6, 4) Mul_Acc(7, 3) Mul_Acc(8, 2) Mul_Acc(9, 1) Mul_Acc(10, 0) \ |
|
Mul_SaveAcc(10, 0, 11) Mul_Acc(1, 10) Mul_Acc(2, 9) Mul_Acc(3, 8) Mul_Acc(4, 7) Mul_Acc(5, 6) Mul_Acc(6, 5) Mul_Acc(7, 4) Mul_Acc(8, 3) Mul_Acc(9, 2) Mul_Acc(10, 1) Mul_Acc(11, 0) \ |
|
Mul_SaveAcc(11, 0, 12) Mul_Acc(1, 11) Mul_Acc(2, 10) Mul_Acc(3, 9) Mul_Acc(4, 8) Mul_Acc(5, 7) Mul_Acc(6, 6) Mul_Acc(7, 5) Mul_Acc(8, 4) Mul_Acc(9, 3) Mul_Acc(10, 2) Mul_Acc(11, 1) Mul_Acc(12, 0) \ |
|
Mul_SaveAcc(12, 0, 13) Mul_Acc(1, 12) Mul_Acc(2, 11) Mul_Acc(3, 10) Mul_Acc(4, 9) Mul_Acc(5, 8) Mul_Acc(6, 7) Mul_Acc(7, 6) Mul_Acc(8, 5) Mul_Acc(9, 4) Mul_Acc(10, 3) Mul_Acc(11, 2) Mul_Acc(12, 1) Mul_Acc(13, 0) \ |
|
Mul_SaveAcc(13, 0, 14) Mul_Acc(1, 13) Mul_Acc(2, 12) Mul_Acc(3, 11) Mul_Acc(4, 10) Mul_Acc(5, 9) Mul_Acc(6, 8) Mul_Acc(7, 7) Mul_Acc(8, 6) Mul_Acc(9, 5) Mul_Acc(10, 4) Mul_Acc(11, 3) Mul_Acc(12, 2) Mul_Acc(13, 1) Mul_Acc(14, 0) \ |
|
Bot_SaveAcc(14, 0, 15) Bot_Acc(1, 14) Bot_Acc(2, 13) Bot_Acc(3, 12) Bot_Acc(4, 11) Bot_Acc(5, 10) Bot_Acc(6, 9) Bot_Acc(7, 8) Bot_Acc(8, 7) Bot_Acc(9, 6) Bot_Acc(10, 5) Bot_Acc(11, 4) Bot_Acc(12, 3) Bot_Acc(13, 2) Bot_Acc(14, 1) Bot_Acc(15, 0) \ |
|
Bot_End(16) |
|
|
|
#endif |
|
|
|
#if 0 |
|
#define Mul_Begin(n) \ |
|
Declare2Words(p) \ |
|
Declare2Words(c) \ |
|
Declare2Words(d) \ |
|
MultiplyWords(p, A[0], B[0]) \ |
|
AssignWord(c, LowWord(p)) \ |
|
AssignWord(d, HighWord(p)) |
|
|
|
#define Mul_Acc(i, j) \ |
|
MultiplyWords(p, A[i], B[j]) \ |
|
Acc2WordsBy1(c, LowWord(p)) \ |
|
Acc2WordsBy1(d, HighWord(p)) |
|
|
|
#define Mul_SaveAcc(k, i, j) \ |
|
R[k] = LowWord(c); \ |
|
Add2WordsBy1(c, d, HighWord(c)) \ |
|
MultiplyWords(p, A[i], B[j]) \ |
|
AssignWord(d, HighWord(p)) \ |
|
Acc2WordsBy1(c, LowWord(p)) |
|
|
|
#define Mul_End(n) \ |
|
R[2*n-3] = LowWord(c); \ |
|
Acc2WordsBy1(d, HighWord(c)) \ |
|
MultiplyWords(p, A[n-1], B[n-1])\ |
|
Acc2WordsBy2(d, p) \ |
|
R[2*n-2] = LowWord(d); \ |
|
R[2*n-1] = HighWord(d); |
|
|
|
#define Bot_SaveAcc(k, i, j) \ |
|
R[k] = LowWord(c); \ |
|
word e = LowWord(d) + HighWord(c); \ |
|
e += A[i] * B[j]; |
|
|
|
#define Bot_Acc(i, j) \ |
|
e += A[i] * B[j]; |
|
|
|
#define Bot_End(n) \ |
|
R[n-1] = e; |
|
#else |
|
#define Mul_Begin(n) \ |
|
Declare2Words(p) \ |
|
word c; \ |
|
Declare2Words(d) \ |
|
MultiplyWords(p, A[0], B[0]) \ |
|
c = LowWord(p); \ |
|
AssignWord(d, HighWord(p)) |
|
|
|
#define Mul_Acc(i, j) \ |
|
MulAcc(c, d, A[i], B[j]) |
|
|
|
#define Mul_SaveAcc(k, i, j) \ |
|
R[k] = c; \ |
|
c = LowWord(d); \ |
|
AssignWord(d, HighWord(d)) \ |
|
MulAcc(c, d, A[i], B[j]) |
|
|
|
#define Mul_End(k, i) \ |
|
R[k] = c; \ |
|
MultiplyWords(p, A[i], B[i]) \ |
|
Acc2WordsBy2(p, d) \ |
|
R[k+1] = LowWord(p); \ |
|
R[k+2] = HighWord(p); |
|
|
|
#define Bot_SaveAcc(k, i, j) \ |
|
R[k] = c; \ |
|
c = LowWord(d); \ |
|
c += A[i] * B[j]; |
|
|
|
#define Bot_Acc(i, j) \ |
|
c += A[i] * B[j]; |
|
|
|
#define Bot_End(n) \ |
|
R[n-1] = c; |
|
#endif |
|
|
|
#define Squ_Begin(n) \ |
|
Declare2Words(p) \ |
|
word c; \ |
|
Declare2Words(d) \ |
|
Declare2Words(e) \ |
|
MultiplyWords(p, A[0], A[0]) \ |
|
R[0] = LowWord(p); \ |
|
AssignWord(e, HighWord(p)) \ |
|
MultiplyWords(p, A[0], A[1]) \ |
|
c = LowWord(p); \ |
|
AssignWord(d, HighWord(p)) \ |
|
Squ_NonDiag \ |
|
|
|
#define Squ_NonDiag \ |
|
Double3Words(c, d) |
|
|
|
#define Squ_SaveAcc(k, i, j) \ |
|
Acc3WordsBy2(c, d, e) \ |
|
R[k] = c; \ |
|
MultiplyWords(p, A[i], A[j]) \ |
|
c = LowWord(p); \ |
|
AssignWord(d, HighWord(p)) \ |
|
|
|
#define Squ_Acc(i, j) \ |
|
MulAcc(c, d, A[i], A[j]) |
|
|
|
#define Squ_Diag(i) \ |
|
Squ_NonDiag \ |
|
MulAcc(c, d, A[i], A[i]) |
|
|
|
#define Squ_End(n) \ |
|
Acc3WordsBy2(c, d, e) \ |
|
R[2*n-3] = c; \ |
|
MultiplyWords(p, A[n-1], A[n-1])\ |
|
Acc2WordsBy2(p, e) \ |
|
R[2*n-2] = LowWord(p); \ |
|
R[2*n-1] = HighWord(p); |
|
|
|
void Baseline_Multiply2(word *R, const word *A, const word *B) |
|
{ |
|
Mul_2 |
|
} |
|
|
|
void Baseline_Multiply4(word *R, const word *A, const word *B) |
|
{ |
|
Mul_4 |
|
} |
|
|
|
void Baseline_Multiply8(word *R, const word *A, const word *B) |
|
{ |
|
Mul_8 |
|
} |
|
|
|
void Baseline_Square2(word *R, const word *A) |
|
{ |
|
Squ_2 |
|
} |
|
|
|
void Baseline_Square4(word *R, const word *A) |
|
{ |
|
Squ_4 |
|
} |
|
|
|
void Baseline_Square8(word *R, const word *A) |
|
{ |
|
Squ_8 |
|
} |
|
|
|
void Baseline_MultiplyBottom2(word *R, const word *A, const word *B) |
|
{ |
|
Bot_2 |
|
} |
|
|
|
void Baseline_MultiplyBottom4(word *R, const word *A, const word *B) |
|
{ |
|
Bot_4 |
|
} |
|
|
|
void Baseline_MultiplyBottom8(word *R, const word *A, const word *B) |
|
{ |
|
Bot_8 |
|
} |
|
|
|
#define Top_Begin(n) \ |
|
Declare2Words(p) \ |
|
word c; \ |
|
Declare2Words(d) \ |
|
MultiplyWords(p, A[0], B[n-2]);\ |
|
AssignWord(d, HighWord(p)); |
|
|
|
#define Top_Acc(i, j) \ |
|
MultiplyWords(p, A[i], B[j]);\ |
|
Acc2WordsBy1(d, HighWord(p)); |
|
|
|
#define Top_SaveAcc0(i, j) \ |
|
c = LowWord(d); \ |
|
AssignWord(d, HighWord(d)) \ |
|
MulAcc(c, d, A[i], B[j]) |
|
|
|
#define Top_SaveAcc1(i, j) \ |
|
c = L<c; \ |
|
Acc2WordsBy1(d, c); \ |
|
c = LowWord(d); \ |
|
AssignWord(d, HighWord(d)) \ |
|
MulAcc(c, d, A[i], B[j]) |
|
|
|
void Baseline_MultiplyTop2(word *R, const word *A, const word *B, word L) |
|
{ |
|
word T[4]; |
|
Baseline_Multiply2(T, A, B); |
|
R[0] = T[2]; |
|
R[1] = T[3]; |
|
} |
|
|
|
void Baseline_MultiplyTop4(word *R, const word *A, const word *B, word L) |
|
{ |
|
Top_Begin(4) |
|
Top_Acc(1, 1) Top_Acc(2, 0) \ |
|
Top_SaveAcc0(0, 3) Mul_Acc(1, 2) Mul_Acc(2, 1) Mul_Acc(3, 0) \ |
|
Top_SaveAcc1(1, 3) Mul_Acc(2, 2) Mul_Acc(3, 1) \ |
|
Mul_SaveAcc(0, 2, 3) Mul_Acc(3, 2) \ |
|
Mul_End(1, 3) |
|
} |
|
|
|
void Baseline_MultiplyTop8(word *R, const word *A, const word *B, word L) |
|
{ |
|
Top_Begin(8) |
|
Top_Acc(1, 5) Top_Acc(2, 4) Top_Acc(3, 3) Top_Acc(4, 2) Top_Acc(5, 1) Top_Acc(6, 0) \ |
|
Top_SaveAcc0(0, 7) Mul_Acc(1, 6) Mul_Acc(2, 5) Mul_Acc(3, 4) Mul_Acc(4, 3) Mul_Acc(5, 2) Mul_Acc(6, 1) Mul_Acc(7, 0) \ |
|
Top_SaveAcc1(1, 7) Mul_Acc(2, 6) Mul_Acc(3, 5) Mul_Acc(4, 4) Mul_Acc(5, 3) Mul_Acc(6, 2) Mul_Acc(7, 1) \ |
|
Mul_SaveAcc(0, 2, 7) Mul_Acc(3, 6) Mul_Acc(4, 5) Mul_Acc(5, 4) Mul_Acc(6, 3) Mul_Acc(7, 2) \ |
|
Mul_SaveAcc(1, 3, 7) Mul_Acc(4, 6) Mul_Acc(5, 5) Mul_Acc(6, 4) Mul_Acc(7, 3) \ |
|
Mul_SaveAcc(2, 4, 7) Mul_Acc(5, 6) Mul_Acc(6, 5) Mul_Acc(7, 4) \ |
|
Mul_SaveAcc(3, 5, 7) Mul_Acc(6, 6) Mul_Acc(7, 5) \ |
|
Mul_SaveAcc(4, 6, 7) Mul_Acc(7, 6) \ |
|
Mul_End(5, 7) |
|
} |
|
|
|
#if !CRYPTOPP_INTEGER_SSE2 // save memory by not compiling these functions when SSE2 is available |
|
void Baseline_Multiply16(word *R, const word *A, const word *B) |
|
{ |
|
Mul_16 |
|
} |
|
|
|
void Baseline_Square16(word *R, const word *A) |
|
{ |
|
Squ_16 |
|
} |
|
|
|
void Baseline_MultiplyBottom16(word *R, const word *A, const word *B) |
|
{ |
|
Bot_16 |
|
} |
|
|
|
void Baseline_MultiplyTop16(word *R, const word *A, const word *B, word L) |
|
{ |
|
Top_Begin(16) |
|
Top_Acc(1, 13) Top_Acc(2, 12) Top_Acc(3, 11) Top_Acc(4, 10) Top_Acc(5, 9) Top_Acc(6, 8) Top_Acc(7, 7) Top_Acc(8, 6) Top_Acc(9, 5) Top_Acc(10, 4) Top_Acc(11, 3) Top_Acc(12, 2) Top_Acc(13, 1) Top_Acc(14, 0) \ |
|
Top_SaveAcc0(0, 15) Mul_Acc(1, 14) Mul_Acc(2, 13) Mul_Acc(3, 12) Mul_Acc(4, 11) Mul_Acc(5, 10) Mul_Acc(6, 9) Mul_Acc(7, 8) Mul_Acc(8, 7) Mul_Acc(9, 6) Mul_Acc(10, 5) Mul_Acc(11, 4) Mul_Acc(12, 3) Mul_Acc(13, 2) Mul_Acc(14, 1) Mul_Acc(15, 0) \ |
|
Top_SaveAcc1(1, 15) Mul_Acc(2, 14) Mul_Acc(3, 13) Mul_Acc(4, 12) Mul_Acc(5, 11) Mul_Acc(6, 10) Mul_Acc(7, 9) Mul_Acc(8, 8) Mul_Acc(9, 7) Mul_Acc(10, 6) Mul_Acc(11, 5) Mul_Acc(12, 4) Mul_Acc(13, 3) Mul_Acc(14, 2) Mul_Acc(15, 1) \ |
|
Mul_SaveAcc(0, 2, 15) Mul_Acc(3, 14) Mul_Acc(4, 13) Mul_Acc(5, 12) Mul_Acc(6, 11) Mul_Acc(7, 10) Mul_Acc(8, 9) Mul_Acc(9, 8) Mul_Acc(10, 7) Mul_Acc(11, 6) Mul_Acc(12, 5) Mul_Acc(13, 4) Mul_Acc(14, 3) Mul_Acc(15, 2) \ |
|
Mul_SaveAcc(1, 3, 15) Mul_Acc(4, 14) Mul_Acc(5, 13) Mul_Acc(6, 12) Mul_Acc(7, 11) Mul_Acc(8, 10) Mul_Acc(9, 9) Mul_Acc(10, 8) Mul_Acc(11, 7) Mul_Acc(12, 6) Mul_Acc(13, 5) Mul_Acc(14, 4) Mul_Acc(15, 3) \ |
|
Mul_SaveAcc(2, 4, 15) Mul_Acc(5, 14) Mul_Acc(6, 13) Mul_Acc(7, 12) Mul_Acc(8, 11) Mul_Acc(9, 10) Mul_Acc(10, 9) Mul_Acc(11, 8) Mul_Acc(12, 7) Mul_Acc(13, 6) Mul_Acc(14, 5) Mul_Acc(15, 4) \ |
|
Mul_SaveAcc(3, 5, 15) Mul_Acc(6, 14) Mul_Acc(7, 13) Mul_Acc(8, 12) Mul_Acc(9, 11) Mul_Acc(10, 10) Mul_Acc(11, 9) Mul_Acc(12, 8) Mul_Acc(13, 7) Mul_Acc(14, 6) Mul_Acc(15, 5) \ |
|
Mul_SaveAcc(4, 6, 15) Mul_Acc(7, 14) Mul_Acc(8, 13) Mul_Acc(9, 12) Mul_Acc(10, 11) Mul_Acc(11, 10) Mul_Acc(12, 9) Mul_Acc(13, 8) Mul_Acc(14, 7) Mul_Acc(15, 6) \ |
|
Mul_SaveAcc(5, 7, 15) Mul_Acc(8, 14) Mul_Acc(9, 13) Mul_Acc(10, 12) Mul_Acc(11, 11) Mul_Acc(12, 10) Mul_Acc(13, 9) Mul_Acc(14, 8) Mul_Acc(15, 7) \ |
|
Mul_SaveAcc(6, 8, 15) Mul_Acc(9, 14) Mul_Acc(10, 13) Mul_Acc(11, 12) Mul_Acc(12, 11) Mul_Acc(13, 10) Mul_Acc(14, 9) Mul_Acc(15, 8) \ |
|
Mul_SaveAcc(7, 9, 15) Mul_Acc(10, 14) Mul_Acc(11, 13) Mul_Acc(12, 12) Mul_Acc(13, 11) Mul_Acc(14, 10) Mul_Acc(15, 9) \ |
|
Mul_SaveAcc(8, 10, 15) Mul_Acc(11, 14) Mul_Acc(12, 13) Mul_Acc(13, 12) Mul_Acc(14, 11) Mul_Acc(15, 10) \ |
|
Mul_SaveAcc(9, 11, 15) Mul_Acc(12, 14) Mul_Acc(13, 13) Mul_Acc(14, 12) Mul_Acc(15, 11) \ |
|
Mul_SaveAcc(10, 12, 15) Mul_Acc(13, 14) Mul_Acc(14, 13) Mul_Acc(15, 12) \ |
|
Mul_SaveAcc(11, 13, 15) Mul_Acc(14, 14) Mul_Acc(15, 13) \ |
|
Mul_SaveAcc(12, 14, 15) Mul_Acc(15, 14) \ |
|
Mul_End(13, 15) |
|
} |
|
#endif |
|
|
|
// ******************************************************** |
|
|
|
#if CRYPTOPP_INTEGER_SSE2 |
|
|
|
CRYPTOPP_ALIGN_DATA(16) static const word32 s_maskLow16[4] CRYPTOPP_SECTION_ALIGN16 = {0xffff,0xffff,0xffff,0xffff}; |
|
|
|
#undef Mul_Begin |
|
#undef Mul_Acc |
|
#undef Top_Begin |
|
#undef Top_Acc |
|
#undef Squ_Acc |
|
#undef Squ_NonDiag |
|
#undef Squ_Diag |
|
#undef Squ_SaveAcc |
|
#undef Squ_Begin |
|
#undef Mul_SaveAcc |
|
#undef Bot_Acc |
|
#undef Bot_SaveAcc |
|
#undef Bot_End |
|
#undef Squ_End |
|
#undef Mul_End |
|
|
|
#define SSE2_FinalSave(k) \ |
|
AS2( psllq xmm5, 16) \ |
|
AS2( paddq xmm4, xmm5) \ |
|
AS2( movq QWORD PTR [ecx+8*(k)], xmm4) |
|
|
|
#define SSE2_SaveShift(k) \ |
|
AS2( movq xmm0, xmm6) \ |
|
AS2( punpckhqdq xmm6, xmm0) \ |
|
AS2( movq xmm1, xmm7) \ |
|
AS2( punpckhqdq xmm7, xmm1) \ |
|
AS2( paddd xmm6, xmm0) \ |
|
AS2( pslldq xmm6, 4) \ |
|
AS2( paddd xmm7, xmm1) \ |
|
AS2( paddd xmm4, xmm6) \ |
|
AS2( pslldq xmm7, 4) \ |
|
AS2( movq xmm6, xmm4) \ |
|
AS2( paddd xmm5, xmm7) \ |
|
AS2( movq xmm7, xmm5) \ |
|
AS2( movd DWORD PTR [ecx+8*(k)], xmm4) \ |
|
AS2( psrlq xmm6, 16) \ |
|
AS2( paddq xmm6, xmm7) \ |
|
AS2( punpckhqdq xmm4, xmm0) \ |
|
AS2( punpckhqdq xmm5, xmm0) \ |
|
AS2( movq QWORD PTR [ecx+8*(k)+2], xmm6) \ |
|
AS2( psrlq xmm6, 3*16) \ |
|
AS2( paddd xmm4, xmm6) \ |
|
|
|
#define Squ_SSE2_SaveShift(k) \ |
|
AS2( movq xmm0, xmm6) \ |
|
AS2( punpckhqdq xmm6, xmm0) \ |
|
AS2( movq xmm1, xmm7) \ |
|
AS2( punpckhqdq xmm7, xmm1) \ |
|
AS2( paddd xmm6, xmm0) \ |
|
AS2( pslldq xmm6, 4) \ |
|
AS2( paddd xmm7, xmm1) \ |
|
AS2( paddd xmm4, xmm6) \ |
|
AS2( pslldq xmm7, 4) \ |
|
AS2( movhlps xmm6, xmm4) \ |
|
AS2( movd DWORD PTR [ecx+8*(k)], xmm4) \ |
|
AS2( paddd xmm5, xmm7) \ |
|
AS2( movhps QWORD PTR [esp+12], xmm5)\ |
|
AS2( psrlq xmm4, 16) \ |
|
AS2( paddq xmm4, xmm5) \ |
|
AS2( movq QWORD PTR [ecx+8*(k)+2], xmm4) \ |
|
AS2( psrlq xmm4, 3*16) \ |
|
AS2( paddd xmm4, xmm6) \ |
|
AS2( movq QWORD PTR [esp+4], xmm4)\ |
|
|
|
#define SSE2_FirstMultiply(i) \ |
|
AS2( movdqa xmm7, [esi+(i)*16])\ |
|
AS2( movdqa xmm5, [edi-(i)*16])\ |
|
AS2( pmuludq xmm5, xmm7) \ |
|
AS2( movdqa xmm4, [ebx])\ |
|
AS2( movdqa xmm6, xmm4) \ |
|
AS2( pand xmm4, xmm5) \ |
|
AS2( psrld xmm5, 16) \ |
|
AS2( pmuludq xmm7, [edx-(i)*16])\ |
|
AS2( pand xmm6, xmm7) \ |
|
AS2( psrld xmm7, 16) |
|
|
|
#define Squ_Begin(n) \ |
|
SquPrologue \ |
|
AS2( mov esi, esp)\ |
|
AS2( and esp, 0xfffffff0)\ |
|
AS2( lea edi, [esp-32*n])\ |
|
AS2( sub esp, 32*n+16)\ |
|
AS1( push esi)\ |
|
AS2( mov esi, edi) \ |
|
AS2( xor edx, edx) \ |
|
ASL(1) \ |
|
ASS( pshufd xmm0, [eax+edx], 3,1,2,0) \ |
|
ASS( pshufd xmm1, [eax+edx], 2,0,3,1) \ |
|
AS2( movdqa [edi+2*edx], xmm0) \ |
|
AS2( psrlq xmm0, 32) \ |
|
AS2( movdqa [edi+2*edx+16], xmm0) \ |
|
AS2( movdqa [edi+16*n+2*edx], xmm1) \ |
|
AS2( psrlq xmm1, 32) \ |
|
AS2( movdqa [edi+16*n+2*edx+16], xmm1) \ |
|
AS2( add edx, 16) \ |
|
AS2( cmp edx, 8*(n)) \ |
|
ASJ( jne, 1, b) \ |
|
AS2( lea edx, [edi+16*n])\ |
|
SSE2_FirstMultiply(0) \ |
|
|
|
#define Squ_Acc(i) \ |
|
ASL(LSqu##i) \ |
|
AS2( movdqa xmm1, [esi+(i)*16]) \ |
|
AS2( movdqa xmm0, [edi-(i)*16]) \ |
|
AS2( movdqa xmm2, [ebx]) \ |
|
AS2( pmuludq xmm0, xmm1) \ |
|
AS2( pmuludq xmm1, [edx-(i)*16]) \ |
|
AS2( movdqa xmm3, xmm2) \ |
|
AS2( pand xmm2, xmm0) \ |
|
AS2( psrld xmm0, 16) \ |
|
AS2( paddd xmm4, xmm2) \ |
|
AS2( paddd xmm5, xmm0) \ |
|
AS2( pand xmm3, xmm1) \ |
|
AS2( psrld xmm1, 16) \ |
|
AS2( paddd xmm6, xmm3) \ |
|
AS2( paddd xmm7, xmm1) \ |
|
|
|
#define Squ_Acc1(i) |
|
#define Squ_Acc2(i) ASC(call, LSqu##i) |
|
#define Squ_Acc3(i) Squ_Acc2(i) |
|
#define Squ_Acc4(i) Squ_Acc2(i) |
|
#define Squ_Acc5(i) Squ_Acc2(i) |
|
#define Squ_Acc6(i) Squ_Acc2(i) |
|
#define Squ_Acc7(i) Squ_Acc2(i) |
|
#define Squ_Acc8(i) Squ_Acc2(i) |
|
|
|
#define SSE2_End(E, n) \ |
|
SSE2_SaveShift(2*(n)-3) \ |
|
AS2( movdqa xmm7, [esi+16]) \ |
|
AS2( movdqa xmm0, [edi]) \ |
|
AS2( pmuludq xmm0, xmm7) \ |
|
AS2( movdqa xmm2, [ebx]) \ |
|
AS2( pmuludq xmm7, [edx]) \ |
|
AS2( movdqa xmm6, xmm2) \ |
|
AS2( pand xmm2, xmm0) \ |
|
AS2( psrld xmm0, 16) \ |
|
AS2( paddd xmm4, xmm2) \ |
|
AS2( paddd xmm5, xmm0) \ |
|
AS2( pand xmm6, xmm7) \ |
|
AS2( psrld xmm7, 16) \ |
|
SSE2_SaveShift(2*(n)-2) \ |
|
SSE2_FinalSave(2*(n)-1) \ |
|
AS1( pop esp)\ |
|
E |
|
|
|
#define Squ_End(n) SSE2_End(SquEpilogue, n) |
|
#define Mul_End(n) SSE2_End(MulEpilogue, n) |
|
#define Top_End(n) SSE2_End(TopEpilogue, n) |
|
|
|
#define Squ_Column1(k, i) \ |
|
Squ_SSE2_SaveShift(k) \ |
|
AS2( add esi, 16) \ |
|
SSE2_FirstMultiply(1)\ |
|
Squ_Acc##i(i) \ |
|
AS2( paddd xmm4, xmm4) \ |
|
AS2( paddd xmm5, xmm5) \ |
|
AS2( movdqa xmm3, [esi]) \ |
|
AS2( movq xmm1, QWORD PTR [esi+8]) \ |
|
AS2( pmuludq xmm1, xmm3) \ |
|
AS2( pmuludq xmm3, xmm3) \ |
|
AS2( movdqa xmm0, [ebx])\ |
|
AS2( movdqa xmm2, xmm0) \ |
|
AS2( pand xmm0, xmm1) \ |
|
AS2( psrld xmm1, 16) \ |
|
AS2( paddd xmm6, xmm0) \ |
|
AS2( paddd xmm7, xmm1) \ |
|
AS2( pand xmm2, xmm3) \ |
|
AS2( psrld xmm3, 16) \ |
|
AS2( paddd xmm6, xmm6) \ |
|
AS2( paddd xmm7, xmm7) \ |
|
AS2( paddd xmm4, xmm2) \ |
|
AS2( paddd xmm5, xmm3) \ |
|
AS2( movq xmm0, QWORD PTR [esp+4])\ |
|
AS2( movq xmm1, QWORD PTR [esp+12])\ |
|
AS2( paddd xmm4, xmm0)\ |
|
AS2( paddd xmm5, xmm1)\ |
|
|
|
#define Squ_Column0(k, i) \ |
|
Squ_SSE2_SaveShift(k) \ |
|
AS2( add edi, 16) \ |
|
AS2( add edx, 16) \ |
|
SSE2_FirstMultiply(1)\ |
|
Squ_Acc##i(i) \ |
|
AS2( paddd xmm6, xmm6) \ |
|
AS2( paddd xmm7, xmm7) \ |
|
AS2( paddd xmm4, xmm4) \ |
|
AS2( paddd xmm5, xmm5) \ |
|
AS2( movq xmm0, QWORD PTR [esp+4])\ |
|
AS2( movq xmm1, QWORD PTR [esp+12])\ |
|
AS2( paddd xmm4, xmm0)\ |
|
AS2( paddd xmm5, xmm1)\ |
|
|
|
#define SSE2_MulAdd45 \ |
|
AS2( movdqa xmm7, [esi]) \ |
|
AS2( movdqa xmm0, [edi]) \ |
|
AS2( pmuludq xmm0, xmm7) \ |
|
AS2( movdqa xmm2, [ebx]) \ |
|
AS2( pmuludq xmm7, [edx]) \ |
|
AS2( movdqa xmm6, xmm2) \ |
|
AS2( pand xmm2, xmm0) \ |
|
AS2( psrld xmm0, 16) \ |
|
AS2( paddd xmm4, xmm2) \ |
|
AS2( paddd xmm5, xmm0) \ |
|
AS2( pand xmm6, xmm7) \ |
|
AS2( psrld xmm7, 16) |
|
|
|
#define Mul_Begin(n) \ |
|
MulPrologue \ |
|
AS2( mov esi, esp)\ |
|
AS2( and esp, 0xfffffff0)\ |
|
AS2( sub esp, 48*n+16)\ |
|
AS1( push esi)\ |
|
AS2( xor edx, edx) \ |
|
ASL(1) \ |
|
ASS( pshufd xmm0, [eax+edx], 3,1,2,0) \ |
|
ASS( pshufd xmm1, [eax+edx], 2,0,3,1) \ |
|
ASS( pshufd xmm2, [edi+edx], 3,1,2,0) \ |
|
AS2( movdqa [esp+20+2*edx], xmm0) \ |
|
AS2( psrlq xmm0, 32) \ |
|
AS2( movdqa [esp+20+2*edx+16], xmm0) \ |
|
AS2( movdqa [esp+20+16*n+2*edx], xmm1) \ |
|
AS2( psrlq xmm1, 32) \ |
|
AS2( movdqa [esp+20+16*n+2*edx+16], xmm1) \ |
|
AS2( movdqa [esp+20+32*n+2*edx], xmm2) \ |
|
AS2( psrlq xmm2, 32) \ |
|
AS2( movdqa [esp+20+32*n+2*edx+16], xmm2) \ |
|
AS2( add edx, 16) \ |
|
AS2( cmp edx, 8*(n)) \ |
|
ASJ( jne, 1, b) \ |
|
AS2( lea edi, [esp+20])\ |
|
AS2( lea edx, [esp+20+16*n])\ |
|
AS2( lea esi, [esp+20+32*n])\ |
|
SSE2_FirstMultiply(0) \ |
|
|
|
#define Mul_Acc(i) \ |
|
ASL(LMul##i) \ |
|
AS2( movdqa xmm1, [esi+i/2*(1-(i-2*(i/2))*2)*16]) \ |
|
AS2( movdqa xmm0, [edi-i/2*(1-(i-2*(i/2))*2)*16]) \ |
|
AS2( movdqa xmm2, [ebx]) \ |
|
AS2( pmuludq xmm0, xmm1) \ |
|
AS2( pmuludq xmm1, [edx-i/2*(1-(i-2*(i/2))*2)*16]) \ |
|
AS2( movdqa xmm3, xmm2) \ |
|
AS2( pand xmm2, xmm0) \ |
|
AS2( psrld xmm0, 16) \ |
|
AS2( paddd xmm4, xmm2) \ |
|
AS2( paddd xmm5, xmm0) \ |
|
AS2( pand xmm3, xmm1) \ |
|
AS2( psrld xmm1, 16) \ |
|
AS2( paddd xmm6, xmm3) \ |
|
AS2( paddd xmm7, xmm1) \ |
|
|
|
#define Mul_Acc1(i) |
|
#define Mul_Acc2(i) ASC(call, LMul##i) |
|
#define Mul_Acc3(i) Mul_Acc2(i) |
|
#define Mul_Acc4(i) Mul_Acc2(i) |
|
#define Mul_Acc5(i) Mul_Acc2(i) |
|
#define Mul_Acc6(i) Mul_Acc2(i) |
|
#define Mul_Acc7(i) Mul_Acc2(i) |
|
#define Mul_Acc8(i) Mul_Acc2(i) |
|
#define Mul_Acc9(i) Mul_Acc2(i) |
|
#define Mul_Acc10(i) Mul_Acc2(i) |
|
#define Mul_Acc11(i) Mul_Acc2(i) |
|
#define Mul_Acc12(i) Mul_Acc2(i) |
|
#define Mul_Acc13(i) Mul_Acc2(i) |
|
#define Mul_Acc14(i) Mul_Acc2(i) |
|
#define Mul_Acc15(i) Mul_Acc2(i) |
|
#define Mul_Acc16(i) Mul_Acc2(i) |
|
|
|
#define Mul_Column1(k, i) \ |
|
SSE2_SaveShift(k) \ |
|
AS2( add esi, 16) \ |
|
SSE2_MulAdd45\ |
|
Mul_Acc##i(i) \ |
|
|
|
#define Mul_Column0(k, i) \ |
|
SSE2_SaveShift(k) \ |
|
AS2( add edi, 16) \ |
|
AS2( add edx, 16) \ |
|
SSE2_MulAdd45\ |
|
Mul_Acc##i(i) \ |
|
|
|
#define Bot_Acc(i) \ |
|
AS2( movdqa xmm1, [esi+i/2*(1-(i-2*(i/2))*2)*16]) \ |
|
AS2( movdqa xmm0, [edi-i/2*(1-(i-2*(i/2))*2)*16]) \ |
|
AS2( pmuludq xmm0, xmm1) \ |
|
AS2( pmuludq xmm1, [edx-i/2*(1-(i-2*(i/2))*2)*16]) \ |
|
AS2( paddq xmm4, xmm0) \ |
|
AS2( paddd xmm6, xmm1) |
|
|
|
#define Bot_SaveAcc(k) \ |
|
SSE2_SaveShift(k) \ |
|
AS2( add edi, 16) \ |
|
AS2( add edx, 16) \ |
|
AS2( movdqa xmm6, [esi]) \ |
|
AS2( movdqa xmm0, [edi]) \ |
|
AS2( pmuludq xmm0, xmm6) \ |
|
AS2( paddq xmm4, xmm0) \ |
|
AS2( psllq xmm5, 16) \ |
|
AS2( paddq xmm4, xmm5) \ |
|
AS2( pmuludq xmm6, [edx]) |
|
|
|
#define Bot_End(n) \ |
|
AS2( movhlps xmm7, xmm6) \ |
|
AS2( paddd xmm6, xmm7) \ |
|
AS2( psllq xmm6, 32) \ |
|
AS2( paddd xmm4, xmm6) \ |
|
AS2( movq QWORD PTR [ecx+8*((n)-1)], xmm4) \ |
|
AS1( pop esp)\ |
|
MulEpilogue |
|
|
|
#define Top_Begin(n) \ |
|
TopPrologue \ |
|
AS2( mov edx, esp)\ |
|
AS2( and esp, 0xfffffff0)\ |
|
AS2( sub esp, 48*n+16)\ |
|
AS1( push edx)\ |
|
AS2( xor edx, edx) \ |
|
ASL(1) \ |
|
ASS( pshufd xmm0, [eax+edx], 3,1,2,0) \ |
|
ASS( pshufd xmm1, [eax+edx], 2,0,3,1) \ |
|
ASS( pshufd xmm2, [edi+edx], 3,1,2,0) \ |
|
AS2( movdqa [esp+20+2*edx], xmm0) \ |
|
AS2( psrlq xmm0, 32) \ |
|
AS2( movdqa [esp+20+2*edx+16], xmm0) \ |
|
AS2( movdqa [esp+20+16*n+2*edx], xmm1) \ |
|
AS2( psrlq xmm1, 32) \ |
|
AS2( movdqa [esp+20+16*n+2*edx+16], xmm1) \ |
|
AS2( movdqa [esp+20+32*n+2*edx], xmm2) \ |
|
AS2( psrlq xmm2, 32) \ |
|
AS2( movdqa [esp+20+32*n+2*edx+16], xmm2) \ |
|
AS2( add edx, 16) \ |
|
AS2( cmp edx, 8*(n)) \ |
|
ASJ( jne, 1, b) \ |
|
AS2( mov eax, esi) \ |
|
AS2( lea edi, [esp+20+00*n+16*(n/2-1)])\ |
|
AS2( lea edx, [esp+20+16*n+16*(n/2-1)])\ |
|
AS2( lea esi, [esp+20+32*n+16*(n/2-1)])\ |
|
AS2( pxor xmm4, xmm4)\ |
|
AS2( pxor xmm5, xmm5) |
|
|
|
#define Top_Acc(i) \ |
|
AS2( movq xmm0, QWORD PTR [esi+i/2*(1-(i-2*(i/2))*2)*16+8]) \ |
|
AS2( pmuludq xmm0, [edx-i/2*(1-(i-2*(i/2))*2)*16]) \ |
|
AS2( psrlq xmm0, 48) \ |
|
AS2( paddd xmm5, xmm0)\ |
|
|
|
#define Top_Column0(i) \ |
|
AS2( psllq xmm5, 32) \ |
|
AS2( add edi, 16) \ |
|
AS2( add edx, 16) \ |
|
SSE2_MulAdd45\ |
|
Mul_Acc##i(i) \ |
|
|
|
#define Top_Column1(i) \ |
|
SSE2_SaveShift(0) \ |
|
AS2( add esi, 16) \ |
|
SSE2_MulAdd45\ |
|
Mul_Acc##i(i) \ |
|
AS2( shr eax, 16) \ |
|
AS2( movd xmm0, eax)\ |
|
AS2( movd xmm1, [ecx+4])\ |
|
AS2( psrld xmm1, 16)\ |
|
AS2( pcmpgtd xmm1, xmm0)\ |
|
AS2( psrld xmm1, 31)\ |
|
AS2( paddd xmm4, xmm1)\ |
|
|
|
void SSE2_Square4(word *C, const word *A) |
|
{ |
|
Squ_Begin(2) |
|
Squ_Column0(0, 1) |
|
Squ_End(2) |
|
} |
|
|
|
void SSE2_Square8(word *C, const word *A) |
|
{ |
|
Squ_Begin(4) |
|
#ifndef __GNUC__ |
|
ASJ( jmp, 0, f) |
|
Squ_Acc(2) |
|
AS1( ret) ASL(0) |
|
#endif |
|
Squ_Column0(0, 1) |
|
Squ_Column1(1, 1) |
|
Squ_Column0(2, 2) |
|
Squ_Column1(3, 1) |
|
Squ_Column0(4, 1) |
|
Squ_End(4) |
|
} |
|
|
|
void SSE2_Square16(word *C, const word *A) |
|
{ |
|
Squ_Begin(8) |
|
#ifndef __GNUC__ |
|
ASJ( jmp, 0, f) |
|
Squ_Acc(4) Squ_Acc(3) Squ_Acc(2) |
|
AS1( ret) ASL(0) |
|
#endif |
|
Squ_Column0(0, 1) |
|
Squ_Column1(1, 1) |
|
Squ_Column0(2, 2) |
|
Squ_Column1(3, 2) |
|
Squ_Column0(4, 3) |
|
Squ_Column1(5, 3) |
|
Squ_Column0(6, 4) |
|
Squ_Column1(7, 3) |
|
Squ_Column0(8, 3) |
|
Squ_Column1(9, 2) |
|
Squ_Column0(10, 2) |
|
Squ_Column1(11, 1) |
|
Squ_Column0(12, 1) |
|
Squ_End(8) |
|
} |
|
|
|
void SSE2_Square32(word *C, const word *A) |
|
{ |
|
Squ_Begin(16) |
|
ASJ( jmp, 0, f) |
|
Squ_Acc(8) Squ_Acc(7) Squ_Acc(6) Squ_Acc(5) Squ_Acc(4) Squ_Acc(3) Squ_Acc(2) |
|
AS1( ret) ASL(0) |
|
Squ_Column0(0, 1) |
|
Squ_Column1(1, 1) |
|
Squ_Column0(2, 2) |
|
Squ_Column1(3, 2) |
|
Squ_Column0(4, 3) |
|
Squ_Column1(5, 3) |
|
Squ_Column0(6, 4) |
|
Squ_Column1(7, 4) |
|
Squ_Column0(8, 5) |
|
Squ_Column1(9, 5) |
|
Squ_Column0(10, 6) |
|
Squ_Column1(11, 6) |
|
Squ_Column0(12, 7) |
|
Squ_Column1(13, 7) |
|
Squ_Column0(14, 8) |
|
Squ_Column1(15, 7) |
|
Squ_Column0(16, 7) |
|
Squ_Column1(17, 6) |
|
Squ_Column0(18, 6) |
|
Squ_Column1(19, 5) |
|
Squ_Column0(20, 5) |
|
Squ_Column1(21, 4) |
|
Squ_Column0(22, 4) |
|
Squ_Column1(23, 3) |
|
Squ_Column0(24, 3) |
|
Squ_Column1(25, 2) |
|
Squ_Column0(26, 2) |
|
Squ_Column1(27, 1) |
|
Squ_Column0(28, 1) |
|
Squ_End(16) |
|
} |
|
|
|
void SSE2_Multiply4(word *C, const word *A, const word *B) |
|
{ |
|
Mul_Begin(2) |
|
#ifndef __GNUC__ |
|
ASJ( jmp, 0, f) |
|
Mul_Acc(2) |
|
AS1( ret) ASL(0) |
|
#endif |
|
Mul_Column0(0, 2) |
|
Mul_End(2) |
|
} |
|
|
|
void SSE2_Multiply8(word *C, const word *A, const word *B) |
|
{ |
|
Mul_Begin(4) |
|
#ifndef __GNUC__ |
|
ASJ( jmp, 0, f) |
|
Mul_Acc(4) Mul_Acc(3) Mul_Acc(2) |
|
AS1( ret) ASL(0) |
|
#endif |
|
Mul_Column0(0, 2) |
|
Mul_Column1(1, 3) |
|
Mul_Column0(2, 4) |
|
Mul_Column1(3, 3) |
|
Mul_Column0(4, 2) |
|
Mul_End(4) |
|
} |
|
|
|
void SSE2_Multiply16(word *C, const word *A, const word *B) |
|
{ |
|
Mul_Begin(8) |
|
#ifndef __GNUC__ |
|
ASJ( jmp, 0, f) |
|
Mul_Acc(8) Mul_Acc(7) Mul_Acc(6) Mul_Acc(5) Mul_Acc(4) Mul_Acc(3) Mul_Acc(2) |
|
AS1( ret) ASL(0) |
|
#endif |
|
Mul_Column0(0, 2) |
|
Mul_Column1(1, 3) |
|
Mul_Column0(2, 4) |
|
Mul_Column1(3, 5) |
|
Mul_Column0(4, 6) |
|
Mul_Column1(5, 7) |
|
Mul_Column0(6, 8) |
|
Mul_Column1(7, 7) |
|
Mul_Column0(8, 6) |
|
Mul_Column1(9, 5) |
|
Mul_Column0(10, 4) |
|
Mul_Column1(11, 3) |
|
Mul_Column0(12, 2) |
|
Mul_End(8) |
|
} |
|
|
|
void SSE2_Multiply32(word *C, const word *A, const word *B) |
|
{ |
|
Mul_Begin(16) |
|
ASJ( jmp, 0, f) |
|
Mul_Acc(16) Mul_Acc(15) Mul_Acc(14) Mul_Acc(13) Mul_Acc(12) Mul_Acc(11) Mul_Acc(10) Mul_Acc(9) Mul_Acc(8) Mul_Acc(7) Mul_Acc(6) Mul_Acc(5) Mul_Acc(4) Mul_Acc(3) Mul_Acc(2) |
|
AS1( ret) ASL(0) |
|
Mul_Column0(0, 2) |
|
Mul_Column1(1, 3) |
|
Mul_Column0(2, 4) |
|
Mul_Column1(3, 5) |
|
Mul_Column0(4, 6) |
|
Mul_Column1(5, 7) |
|
Mul_Column0(6, 8) |
|
Mul_Column1(7, 9) |
|
Mul_Column0(8, 10) |
|
Mul_Column1(9, 11) |
|
Mul_Column0(10, 12) |
|
Mul_Column1(11, 13) |
|
Mul_Column0(12, 14) |
|
Mul_Column1(13, 15) |
|
Mul_Column0(14, 16) |
|
Mul_Column1(15, 15) |
|
Mul_Column0(16, 14) |
|
Mul_Column1(17, 13) |
|
Mul_Column0(18, 12) |
|
Mul_Column1(19, 11) |
|
Mul_Column0(20, 10) |
|
Mul_Column1(21, 9) |
|
Mul_Column0(22, 8) |
|
Mul_Column1(23, 7) |
|
Mul_Column0(24, 6) |
|
Mul_Column1(25, 5) |
|
Mul_Column0(26, 4) |
|
Mul_Column1(27, 3) |
|
Mul_Column0(28, 2) |
|
Mul_End(16) |
|
} |
|
|
|
void SSE2_MultiplyBottom4(word *C, const word *A, const word *B) |
|
{ |
|
Mul_Begin(2) |
|
Bot_SaveAcc(0) Bot_Acc(2) |
|
Bot_End(2) |
|
} |
|
|
|
void SSE2_MultiplyBottom8(word *C, const word *A, const word *B) |
|
{ |
|
Mul_Begin(4) |
|
#ifndef __GNUC__ |
|
ASJ( jmp, 0, f) |
|
Mul_Acc(3) Mul_Acc(2) |
|
AS1( ret) ASL(0) |
|
#endif |
|
Mul_Column0(0, 2) |
|
Mul_Column1(1, 3) |
|
Bot_SaveAcc(2) Bot_Acc(4) Bot_Acc(3) Bot_Acc(2) |
|
Bot_End(4) |
|
} |
|
|
|
void SSE2_MultiplyBottom16(word *C, const word *A, const word *B) |
|
{ |
|
Mul_Begin(8) |
|
#ifndef __GNUC__ |
|
ASJ( jmp, 0, f) |
|
Mul_Acc(7) Mul_Acc(6) Mul_Acc(5) Mul_Acc(4) Mul_Acc(3) Mul_Acc(2) |
|
AS1( ret) ASL(0) |
|
#endif |
|
Mul_Column0(0, 2) |
|
Mul_Column1(1, 3) |
|
Mul_Column0(2, 4) |
|
Mul_Column1(3, 5) |
|
Mul_Column0(4, 6) |
|
Mul_Column1(5, 7) |
|
Bot_SaveAcc(6) Bot_Acc(8) Bot_Acc(7) Bot_Acc(6) Bot_Acc(5) Bot_Acc(4) Bot_Acc(3) Bot_Acc(2) |
|
Bot_End(8) |
|
} |
|
|
|
void SSE2_MultiplyBottom32(word *C, const word *A, const word *B) |
|
{ |
|
Mul_Begin(16) |
|
#ifndef __GNUC__ |
|
ASJ( jmp, 0, f) |
|
Mul_Acc(15) Mul_Acc(14) Mul_Acc(13) Mul_Acc(12) Mul_Acc(11) Mul_Acc(10) Mul_Acc(9) Mul_Acc(8) Mul_Acc(7) Mul_Acc(6) Mul_Acc(5) Mul_Acc(4) Mul_Acc(3) Mul_Acc(2) |
|
AS1( ret) ASL(0) |
|
#endif |
|
Mul_Column0(0, 2) |
|
Mul_Column1(1, 3) |
|
Mul_Column0(2, 4) |
|
Mul_Column1(3, 5) |
|
Mul_Column0(4, 6) |
|
Mul_Column1(5, 7) |
|
Mul_Column0(6, 8) |
|
Mul_Column1(7, 9) |
|
Mul_Column0(8, 10) |
|
Mul_Column1(9, 11) |
|
Mul_Column0(10, 12) |
|
Mul_Column1(11, 13) |
|
Mul_Column0(12, 14) |
|
Mul_Column1(13, 15) |
|
Bot_SaveAcc(14) Bot_Acc(16) Bot_Acc(15) Bot_Acc(14) Bot_Acc(13) Bot_Acc(12) Bot_Acc(11) Bot_Acc(10) Bot_Acc(9) Bot_Acc(8) Bot_Acc(7) Bot_Acc(6) Bot_Acc(5) Bot_Acc(4) Bot_Acc(3) Bot_Acc(2) |
|
Bot_End(16) |
|
} |
|
|
|
void SSE2_MultiplyTop8(word *C, const word *A, const word *B, word L) |
|
{ |
|
Top_Begin(4) |
|
Top_Acc(3) Top_Acc(2) Top_Acc(1) |
|
#ifndef __GNUC__ |
|
ASJ( jmp, 0, f) |
|
Mul_Acc(4) Mul_Acc(3) Mul_Acc(2) |
|
AS1( ret) ASL(0) |
|
#endif |
|
Top_Column0(4) |
|
Top_Column1(3) |
|
Mul_Column0(0, 2) |
|
Top_End(2) |
|
} |
|
|
|
void SSE2_MultiplyTop16(word *C, const word *A, const word *B, word L) |
|
{ |
|
Top_Begin(8) |
|
Top_Acc(7) Top_Acc(6) Top_Acc(5) Top_Acc(4) Top_Acc(3) Top_Acc(2) Top_Acc(1) |
|
#ifndef __GNUC__ |
|
ASJ( jmp, 0, f) |
|
Mul_Acc(8) Mul_Acc(7) Mul_Acc(6) Mul_Acc(5) Mul_Acc(4) Mul_Acc(3) Mul_Acc(2) |
|
AS1( ret) ASL(0) |
|
#endif |
|
Top_Column0(8) |
|
Top_Column1(7) |
|
Mul_Column0(0, 6) |
|
Mul_Column1(1, 5) |
|
Mul_Column0(2, 4) |
|
Mul_Column1(3, 3) |
|
Mul_Column0(4, 2) |
|
Top_End(4) |
|
} |
|
|
|
void SSE2_MultiplyTop32(word *C, const word *A, const word *B, word L) |
|
{ |
|
Top_Begin(16) |
|
Top_Acc(15) Top_Acc(14) Top_Acc(13) Top_Acc(12) Top_Acc(11) Top_Acc(10) Top_Acc(9) Top_Acc(8) Top_Acc(7) Top_Acc(6) Top_Acc(5) Top_Acc(4) Top_Acc(3) Top_Acc(2) Top_Acc(1) |
|
#ifndef __GNUC__ |
|
ASJ( jmp, 0, f) |
|
Mul_Acc(16) Mul_Acc(15) Mul_Acc(14) Mul_Acc(13) Mul_Acc(12) Mul_Acc(11) Mul_Acc(10) Mul_Acc(9) Mul_Acc(8) Mul_Acc(7) Mul_Acc(6) Mul_Acc(5) Mul_Acc(4) Mul_Acc(3) Mul_Acc(2) |
|
AS1( ret) ASL(0) |
|
#endif |
|
Top_Column0(16) |
|
Top_Column1(15) |
|
Mul_Column0(0, 14) |
|
Mul_Column1(1, 13) |
|
Mul_Column0(2, 12) |
|
Mul_Column1(3, 11) |
|
Mul_Column0(4, 10) |
|
Mul_Column1(5, 9) |
|
Mul_Column0(6, 8) |
|
Mul_Column1(7, 7) |
|
Mul_Column0(8, 6) |
|
Mul_Column1(9, 5) |
|
Mul_Column0(10, 4) |
|
Mul_Column1(11, 3) |
|
Mul_Column0(12, 2) |
|
Top_End(8) |
|
} |
|
|
|
#endif // #if CRYPTOPP_INTEGER_SSE2 |
|
|
|
// ******************************************************** |
|
|
|
typedef int (CRYPTOPP_FASTCALL * PAdd)(size_t N, word *C, const word *A, const word *B); |
|
typedef void (* PMul)(word *C, const word *A, const word *B); |
|
typedef void (* PSqu)(word *C, const word *A); |
|
typedef void (* PMulTop)(word *C, const word *A, const word *B, word L); |
|
|
|
#if CRYPTOPP_INTEGER_SSE2 |
|
static PAdd s_pAdd = &Baseline_Add, s_pSub = &Baseline_Sub; |
|
static size_t s_recursionLimit = 8; |
|
#else |
|
static const size_t s_recursionLimit = 16; |
|
#endif |
|
|
|
static PMul s_pMul[9], s_pBot[9]; |
|
static PSqu s_pSqu[9]; |
|
static PMulTop s_pTop[9]; |
|
|
|
static void SetFunctionPointers() |
|
{ |
|
s_pMul[0] = &Baseline_Multiply2; |
|
s_pBot[0] = &Baseline_MultiplyBottom2; |
|
s_pSqu[0] = &Baseline_Square2; |
|
s_pTop[0] = &Baseline_MultiplyTop2; |
|
s_pTop[1] = &Baseline_MultiplyTop4; |
|
|
|
#if CRYPTOPP_INTEGER_SSE2 |
|
if (HasSSE2()) |
|
{ |
|
#if _MSC_VER != 1200 || defined(NDEBUG) |
|
if (IsP4()) |
|
{ |
|
s_pAdd = &SSE2_Add; |
|
s_pSub = &SSE2_Sub; |
|
} |
|
#endif |
|
|
|
s_recursionLimit = 32; |
|
|
|
s_pMul[1] = &SSE2_Multiply4; |
|
s_pMul[2] = &SSE2_Multiply8; |
|
s_pMul[4] = &SSE2_Multiply16; |
|
s_pMul[8] = &SSE2_Multiply32; |
|
|
|
s_pBot[1] = &SSE2_MultiplyBottom4; |
|
s_pBot[2] = &SSE2_MultiplyBottom8; |
|
s_pBot[4] = &SSE2_MultiplyBottom16; |
|
s_pBot[8] = &SSE2_MultiplyBottom32; |
|
|
|
s_pSqu[1] = &SSE2_Square4; |
|
s_pSqu[2] = &SSE2_Square8; |
|
s_pSqu[4] = &SSE2_Square16; |
|
s_pSqu[8] = &SSE2_Square32; |
|
|
|
s_pTop[2] = &SSE2_MultiplyTop8; |
|
s_pTop[4] = &SSE2_MultiplyTop16; |
|
s_pTop[8] = &SSE2_MultiplyTop32; |
|
} |
|
else |
|
#endif |
|
{ |
|
s_pMul[1] = &Baseline_Multiply4; |
|
s_pMul[2] = &Baseline_Multiply8; |
|
|
|
s_pBot[1] = &Baseline_MultiplyBottom4; |
|
s_pBot[2] = &Baseline_MultiplyBottom8; |
|
|
|
s_pSqu[1] = &Baseline_Square4; |
|
s_pSqu[2] = &Baseline_Square8; |
|
|
|
s_pTop[2] = &Baseline_MultiplyTop8; |
|
|
|
#if !CRYPTOPP_INTEGER_SSE2 |
|
s_pMul[4] = &Baseline_Multiply16; |
|
s_pBot[4] = &Baseline_MultiplyBottom16; |
|
s_pSqu[4] = &Baseline_Square16; |
|
s_pTop[4] = &Baseline_MultiplyTop16; |
|
#endif |
|
} |
|
} |
|
|
|
inline int Add(word *C, const word *A, const word *B, size_t N) |
|
{ |
|
#if CRYPTOPP_INTEGER_SSE2 |
|
return s_pAdd(N, C, A, B); |
|
#else |
|
return Baseline_Add(N, C, A, B); |
|
#endif |
|
} |
|
|
|
inline int Subtract(word *C, const word *A, const word *B, size_t N) |
|
{ |
|
#if CRYPTOPP_INTEGER_SSE2 |
|
return s_pSub(N, C, A, B); |
|
#else |
|
return Baseline_Sub(N, C, A, B); |
|
#endif |
|
} |
|
|
|
// ******************************************************** |
|
|
|
|
|
#define A0 A |
|
#define A1 (A+N2) |
|
#define B0 B |
|
#define B1 (B+N2) |
|
|
|
#define T0 T |
|
#define T1 (T+N2) |
|
#define T2 (T+N) |
|
#define T3 (T+N+N2) |
|
|
|
#define R0 R |
|
#define R1 (R+N2) |
|
#define R2 (R+N) |
|
#define R3 (R+N+N2) |
|
|
|
// R[2*N] - result = A*B |
|
// T[2*N] - temporary work space |
|
// A[N] --- multiplier |
|
// B[N] --- multiplicant |
|
|
|
void RecursiveMultiply(word *R, word *T, const word *A, const word *B, size_t N) |
|
{ |
|
assert(N>=2 && N%2==0); |
|
|
|
if (N <= s_recursionLimit) |
|
s_pMul[N/4](R, A, B); |
|
else |
|
{ |
|
const size_t N2 = N/2; |
|
|
|
size_t AN2 = Compare(A0, A1, N2) > 0 ? 0 : N2; |
|
Subtract(R0, A + AN2, A + (N2 ^ AN2), N2); |
|
|
|
size_t BN2 = Compare(B0, B1, N2) > 0 ? 0 : N2; |
|
Subtract(R1, B + BN2, B + (N2 ^ BN2), N2); |
|
|
|
RecursiveMultiply(R2, T2, A1, B1, N2); |
|
RecursiveMultiply(T0, T2, R0, R1, N2); |
|
RecursiveMultiply(R0, T2, A0, B0, N2); |
|
|
|
// now T[01] holds (A1-A0)*(B0-B1), R[01] holds A0*B0, R[23] holds A1*B1 |
|
|
|
int c2 = Add(R2, R2, R1, N2); |
|
int c3 = c2; |
|
c2 += Add(R1, R2, R0, N2); |
|
c3 += Add(R2, R2, R3, N2); |
|
|
|
if (AN2 == BN2) |
|
c3 -= Subtract(R1, R1, T0, N); |
|
else |
|
c3 += Add(R1, R1, T0, N); |
|
|
|
c3 += Increment(R2, N2, c2); |
|
assert (c3 >= 0 && c3 <= 2); |
|
Increment(R3, N2, c3); |
|
} |
|
} |
|
|
|
// R[2*N] - result = A*A |
|
// T[2*N] - temporary work space |
|
// A[N] --- number to be squared |
|
|
|
void RecursiveSquare(word *R, word *T, const word *A, size_t N) |
|
{ |
|
assert(N && N%2==0); |
|
|
|
if (N <= s_recursionLimit) |
|
s_pSqu[N/4](R, A); |
|
else |
|
{ |
|
const size_t N2 = N/2; |
|
|
|
RecursiveSquare(R0, T2, A0, N2); |
|
RecursiveSquare(R2, T2, A1, N2); |
|
RecursiveMultiply(T0, T2, A0, A1, N2); |
|
|
|
int carry = Add(R1, R1, T0, N); |
|
carry += Add(R1, R1, T0, N); |
|
Increment(R3, N2, carry); |
|
} |
|
} |
|
|
|
// R[N] - bottom half of A*B |
|
// T[3*N/2] - temporary work space |
|
// A[N] - multiplier |
|
// B[N] - multiplicant |
|
|
|
void RecursiveMultiplyBottom(word *R, word *T, const word *A, const word *B, size_t N) |
|
{ |
|
assert(N>=2 && N%2==0); |
|
|
|
if (N <= s_recursionLimit) |
|
s_pBot[N/4](R, A, B); |
|
else |
|
{ |
|
const size_t N2 = N/2; |
|
|
|
RecursiveMultiply(R, T, A0, B0, N2); |
|
RecursiveMultiplyBottom(T0, T1, A1, B0, N2); |
|
Add(R1, R1, T0, N2); |
|
RecursiveMultiplyBottom(T0, T1, A0, B1, N2); |
|
Add(R1, R1, T0, N2); |
|
} |
|
} |
|
|
|
// R[N] --- upper half of A*B |
|
// T[2*N] - temporary work space |
|
// L[N] --- lower half of A*B |
|
// A[N] --- multiplier |
|
// B[N] --- multiplicant |
|
|
|
void MultiplyTop(word *R, word *T, const word *L, const word *A, const word *B, size_t N) |
|
{ |
|
assert(N>=2 && N%2==0); |
|
|
|
if (N <= s_recursionLimit) |
|
s_pTop[N/4](R, A, B, L[N-1]); |
|
else |
|
{ |
|
const size_t N2 = N/2; |
|
|
|
size_t AN2 = Compare(A0, A1, N2) > 0 ? 0 : N2; |
|
Subtract(R0, A + AN2, A + (N2 ^ AN2), N2); |
|
|
|
size_t BN2 = Compare(B0, B1, N2) > 0 ? 0 : N2; |
|
Subtract(R1, B + BN2, B + (N2 ^ BN2), N2); |
|
|
|
RecursiveMultiply(T0, T2, R0, R1, N2); |
|
RecursiveMultiply(R0, T2, A1, B1, N2); |
|
|
|
// now T[01] holds (A1-A0)*(B0-B1) = A1*B0+A0*B1-A1*B1-A0*B0, R[01] holds A1*B1 |
|
|
|
int t, c3; |
|
int c2 = Subtract(T2, L+N2, L, N2); |
|
|
|
if (AN2 == BN2) |
|
{ |
|
c2 -= Add(T2, T2, T0, N2); |
|
t = (Compare(T2, R0, N2) == -1); |
|
c3 = t - Subtract(T2, T2, T1, N2); |
|
} |
|
else |
|
{ |
|
c2 += Subtract(T2, T2, T0, N2); |
|
t = (Compare(T2, R0, N2) == -1); |
|
c3 = t + Add(T2, T2, T1, N2); |
|
} |
|
|
|
c2 += t; |
|
if (c2 >= 0) |
|
c3 += Increment(T2, N2, c2); |
|
else |
|
c3 -= Decrement(T2, N2, -c2); |
|
c3 += Add(R0, T2, R1, N2); |
|
|
|
assert (c3 >= 0 && c3 <= 2); |
|
Increment(R1, N2, c3); |
|
} |
|
} |
|
|
|
inline void Multiply(word *R, word *T, const word *A, const word *B, size_t N) |
|
{ |
|
RecursiveMultiply(R, T, A, B, N); |
|
} |
|
|
|
inline void Square(word *R, word *T, const word *A, size_t N) |
|
{ |
|
RecursiveSquare(R, T, A, N); |
|
} |
|
|
|
inline void MultiplyBottom(word *R, word *T, const word *A, const word *B, size_t N) |
|
{ |
|
RecursiveMultiplyBottom(R, T, A, B, N); |
|
} |
|
|
|
// R[NA+NB] - result = A*B |
|
// T[NA+NB] - temporary work space |
|
// A[NA] ---- multiplier |
|
// B[NB] ---- multiplicant |
|
|
|
void AsymmetricMultiply(word *R, word *T, const word *A, size_t NA, const word *B, size_t NB) |
|
{ |
|
if (NA == NB) |
|
{ |
|
if (A == B) |
|
Square(R, T, A, NA); |
|
else |
|
Multiply(R, T, A, B, NA); |
|
|
|
return; |
|
} |
|
|
|
if (NA > NB) |
|
{ |
|
std::swap(A, B); |
|
std::swap(NA, NB); |
|
} |
|
|
|
assert(NB % NA == 0); |
|
|
|
if (NA==2 && !A[1]) |
|
{ |
|
switch (A[0]) |
|
{ |
|
case 0: |
|
SetWords(R, 0, NB+2); |
|
return; |
|
case 1: |
|
CopyWords(R, B, NB); |
|
R[NB] = R[NB+1] = 0; |
|
return; |
|
default: |
|
R[NB] = LinearMultiply(R, B, A[0], NB); |
|
R[NB+1] = 0; |
|
return; |
|
} |
|
} |
|
|
|
size_t i; |
|
if ((NB/NA)%2 == 0) |
|
{ |
|
Multiply(R, T, A, B, NA); |
|
CopyWords(T+2*NA, R+NA, NA); |
|
|
|
for (i=2*NA; i<NB; i+=2*NA) |
|
Multiply(T+NA+i, T, A, B+i, NA); |
|
for (i=NA; i<NB; i+=2*NA) |
|
Multiply(R+i, T, A, B+i, NA); |
|
} |
|
else |
|
{ |
|
for (i=0; i<NB; i+=2*NA) |
|
Multiply(R+i, T, A, B+i, NA); |
|
for (i=NA; i<NB; i+=2*NA) |
|
Multiply(T+NA+i, T, A, B+i, NA); |
|
} |
|
|
|
if (Add(R+NA, R+NA, T+2*NA, NB-NA)) |
|
Increment(R+NB, NA); |
|
} |
|
|
|
// R[N] ----- result = A inverse mod 2**(WORD_BITS*N) |
|
// T[3*N/2] - temporary work space |
|
// A[N] ----- an odd number as input |
|
|
|
void RecursiveInverseModPower2(word *R, word *T, const word *A, size_t N) |
|
{ |
|
if (N==2) |
|
{ |
|
T[0] = AtomicInverseModPower2(A[0]); |
|
T[1] = 0; |
|
s_pBot[0](T+2, T, A); |
|
TwosComplement(T+2, 2); |
|
Increment(T+2, 2, 2); |
|
s_pBot[0](R, T, T+2); |
|
} |
|
else |
|
{ |
|
const size_t N2 = N/2; |
|
RecursiveInverseModPower2(R0, T0, A0, N2); |
|
T0[0] = 1; |
|
SetWords(T0+1, 0, N2-1); |
|
MultiplyTop(R1, T1, T0, R0, A0, N2); |
|
MultiplyBottom(T0, T1, R0, A1, N2); |
|
Add(T0, R1, T0, N2); |
|
TwosComplement(T0, N2); |
|
MultiplyBottom(R1, T1, R0, T0, N2); |
|
} |
|
} |
|
|
|
// R[N] --- result = X/(2**(WORD_BITS*N)) mod M |
|
// T[3*N] - temporary work space |
|
// X[2*N] - number to be reduced |
|
// M[N] --- modulus |
|
// U[N] --- multiplicative inverse of M mod 2**(WORD_BITS*N) |
|
|
|
void MontgomeryReduce(word *R, word *T, word *X, const word *M, const word *U, size_t N) |
|
{ |
|
#if 1 |
|
MultiplyBottom(R, T, X, U, N); |
|
MultiplyTop(T, T+N, X, R, M, N); |
|
word borrow = Subtract(T, X+N, T, N); |
|
// defend against timing attack by doing this Add even when not needed |
|
word carry = Add(T+N, T, M, N); |
|
assert(carry | !borrow); |
|
CopyWords(R, T + ((0-borrow) & N), N); |
|
#elif 0 |
|
const word u = 0-U[0]; |
|
Declare2Words(p) |
|
for (size_t i=0; i<N; i++) |
|
{ |
|
const word t = u * X[i]; |
|
word c = 0; |
|
for (size_t j=0; j<N; j+=2) |
|
{ |
|
MultiplyWords(p, t, M[j]); |
|
Acc2WordsBy1(p, X[i+j]); |
|
Acc2WordsBy1(p, c); |
|
X[i+j] = LowWord(p); |
|
c = HighWord(p); |
|
MultiplyWords(p, t, M[j+1]); |
|
Acc2WordsBy1(p, X[i+j+1]); |
|
Acc2WordsBy1(p, c); |
|
X[i+j+1] = LowWord(p); |
|
c = HighWord(p); |
|
} |
|
|
|
if (Increment(X+N+i, N-i, c)) |
|
while (!Subtract(X+N, X+N, M, N)) {} |
|
} |
|
|
|
memcpy(R, X+N, N*WORD_SIZE); |
|
#else |
|
__m64 u = _mm_cvtsi32_si64(0-U[0]), p; |
|
for (size_t i=0; i<N; i++) |
|
{ |
|
__m64 t = _mm_cvtsi32_si64(X[i]); |
|
t = _mm_mul_su32(t, u); |
|
__m64 c = _mm_setzero_si64(); |
|
for (size_t j=0; j<N; j+=2) |
|
{ |
|
p = _mm_mul_su32(t, _mm_cvtsi32_si64(M[j])); |
|
p = _mm_add_si64(p, _mm_cvtsi32_si64(X[i+j])); |
|
c = _mm_add_si64(c, p); |
|
X[i+j] = _mm_cvtsi64_si32(c); |
|
c = _mm_srli_si64(c, 32); |
|
p = _mm_mul_su32(t, _mm_cvtsi32_si64(M[j+1])); |
|
p = _mm_add_si64(p, _mm_cvtsi32_si64(X[i+j+1])); |
|
c = _mm_add_si64(c, p); |
|
X[i+j+1] = _mm_cvtsi64_si32(c); |
|
c = _mm_srli_si64(c, 32); |
|
} |
|
|
|
if (Increment(X+N+i, N-i, _mm_cvtsi64_si32(c))) |
|
while (!Subtract(X+N, X+N, M, N)) {} |
|
} |
|
|
|
memcpy(R, X+N, N*WORD_SIZE); |
|
_mm_empty(); |
|
#endif |
|
} |
|
|
|
// R[N] --- result = X/(2**(WORD_BITS*N/2)) mod M |
|
// T[2*N] - temporary work space |
|
// X[2*N] - number to be reduced |
|
// M[N] --- modulus |
|
// U[N/2] - multiplicative inverse of M mod 2**(WORD_BITS*N/2) |
|
// V[N] --- 2**(WORD_BITS*3*N/2) mod M |
|
|
|
void HalfMontgomeryReduce(word *R, word *T, const word *X, const word *M, const word *U, const word *V, size_t N) |
|
{ |
|
assert(N%2==0 && N>=4); |
|
|
|
#define M0 M |
|
#define M1 (M+N2) |
|
#define V0 V |
|
#define V1 (V+N2) |
|
|
|
#define X0 X |
|
#define X1 (X+N2) |
|
#define X2 (X+N) |
|
#define X3 (X+N+N2) |
|
|
|
const size_t N2 = N/2; |
|
Multiply(T0, T2, V0, X3, N2); |
|
int c2 = Add(T0, T0, X0, N); |
|
MultiplyBottom(T3, T2, T0, U, N2); |
|
MultiplyTop(T2, R, T0, T3, M0, N2); |
|
c2 -= Subtract(T2, T1, T2, N2); |
|
Multiply(T0, R, T3, M1, N2); |
|
c2 -= Subtract(T0, T2, T0, N2); |
|
int c3 = -(int)Subtract(T1, X2, T1, N2); |
|
Multiply(R0, T2, V1, X3, N2); |
|
c3 += Add(R, R, T, N); |
|
|
|
if (c2>0) |
|
c3 += Increment(R1, N2); |
|
else if (c2<0) |
|
c3 -= Decrement(R1, N2, -c2); |
|
|
|
assert(c3>=-1 && c3<=1); |
|
if (c3>0) |
|
Subtract(R, R, M, N); |
|
else if (c3<0) |
|
Add(R, R, M, N); |
|
|
|
#undef M0 |
|
#undef M1 |
|
#undef V0 |
|
#undef V1 |
|
|
|
#undef X0 |
|
#undef X1 |
|
#undef X2 |
|
#undef X3 |
|
} |
|
|
|
#undef A0 |
|
#undef A1 |
|
#undef B0 |
|
#undef B1 |
|
|
|
#undef T0 |
|
#undef T1 |
|
#undef T2 |
|
#undef T3 |
|
|
|
#undef R0 |
|
#undef R1 |
|
#undef R2 |
|
#undef R3 |
|
|
|
/* |
|
// do a 3 word by 2 word divide, returns quotient and leaves remainder in A |
|
static word SubatomicDivide(word *A, word B0, word B1) |
|
{ |
|
// assert {A[2],A[1]} < {B1,B0}, so quotient can fit in a word |
|
assert(A[2] < B1 || (A[2]==B1 && A[1] < B0)); |
|
|
|
// estimate the quotient: do a 2 word by 1 word divide |
|
word Q; |
|
if (B1+1 == 0) |
|
Q = A[2]; |
|
else |
|
Q = DWord(A[1], A[2]).DividedBy(B1+1); |
|
|
|
// now subtract Q*B from A |
|
DWord p = DWord::Multiply(B0, Q); |
|
DWord u = (DWord) A[0] - p.GetLowHalf(); |
|
A[0] = u.GetLowHalf(); |
|
u = (DWord) A[1] - p.GetHighHalf() - u.GetHighHalfAsBorrow() - DWord::Multiply(B1, Q); |
|
A[1] = u.GetLowHalf(); |
|
A[2] += u.GetHighHalf(); |
|
|
|
// Q <= actual quotient, so fix it |
|
while (A[2] || A[1] > B1 || (A[1]==B1 && A[0]>=B0)) |
|
{ |
|
u = (DWord) A[0] - B0; |
|
A[0] = u.GetLowHalf(); |
|
u = (DWord) A[1] - B1 - u.GetHighHalfAsBorrow(); |
|
A[1] = u.GetLowHalf(); |
|
A[2] += u.GetHighHalf(); |
|
Q++; |
|
assert(Q); // shouldn't overflow |
|
} |
|
|
|
return Q; |
|
} |
|
|
|
// do a 4 word by 2 word divide, returns 2 word quotient in Q0 and Q1 |
|
static inline void AtomicDivide(word *Q, const word *A, const word *B) |
|
{ |
|
if (!B[0] && !B[1]) // if divisor is 0, we assume divisor==2**(2*WORD_BITS) |
|
{ |
|
Q[0] = A[2]; |
|
Q[1] = A[3]; |
|
} |
|
else |
|
{ |
|
word T[4]; |
|
T[0] = A[0]; T[1] = A[1]; T[2] = A[2]; T[3] = A[3]; |
|
Q[1] = SubatomicDivide(T+1, B[0], B[1]); |
|
Q[0] = SubatomicDivide(T, B[0], B[1]); |
|
|
|
#ifndef NDEBUG |
|
// multiply quotient and divisor and add remainder, make sure it equals dividend |
|
assert(!T[2] && !T[3] && (T[1] < B[1] || (T[1]==B[1] && T[0]<B[0]))); |
|
word P[4]; |
|
LowLevel::Multiply2(P, Q, B); |
|
Add(P, P, T, 4); |
|
assert(memcmp(P, A, 4*WORD_SIZE)==0); |
|
#endif |
|
} |
|
} |
|
*/ |
|
|
|
static inline void AtomicDivide(word *Q, const word *A, const word *B) |
|
{ |
|
word T[4]; |
|
DWord q = DivideFourWordsByTwo<word, DWord>(T, DWord(A[0], A[1]), DWord(A[2], A[3]), DWord(B[0], B[1])); |
|
Q[0] = q.GetLowHalf(); |
|
Q[1] = q.GetHighHalf(); |
|
|
|
#ifndef NDEBUG |
|
if (B[0] || B[1]) |
|
{ |
|
// multiply quotient and divisor and add remainder, make sure it equals dividend |
|
assert(!T[2] && !T[3] && (T[1] < B[1] || (T[1]==B[1] && T[0]<B[0]))); |
|
word P[4]; |
|
s_pMul[0](P, Q, B); |
|
Add(P, P, T, 4); |
|
assert(memcmp(P, A, 4*WORD_SIZE)==0); |
|
} |
|
#endif |
|
} |
|
|
|
// for use by Divide(), corrects the underestimated quotient {Q1,Q0} |
|
static void CorrectQuotientEstimate(word *R, word *T, word *Q, const word *B, size_t N) |
|
{ |
|
assert(N && N%2==0); |
|
|
|
AsymmetricMultiply(T, T+N+2, Q, 2, B, N); |
|
|
|
word borrow = Subtract(R, R, T, N+2); |
|
assert(!borrow && !R[N+1]); |
|
|
|
while (R[N] || Compare(R, B, N) >= 0) |
|
{ |
|
R[N] -= Subtract(R, R, B, N); |
|
Q[1] += (++Q[0]==0); |
|
assert(Q[0] || Q[1]); // no overflow |
|
} |
|
} |
|
|
|
// R[NB] -------- remainder = A%B |
|
// Q[NA-NB+2] --- quotient = A/B |
|
// T[NA+3*(NB+2)] - temp work space |
|
// A[NA] -------- dividend |
|
// B[NB] -------- divisor |
|
|
|
void Divide(word *R, word *Q, word *T, const word *A, size_t NA, const word *B, size_t NB) |
|
{ |
|
assert(NA && NB && NA%2==0 && NB%2==0); |
|
assert(B[NB-1] || B[NB-2]); |
|
assert(NB <= NA); |
|
|
|
// set up temporary work space |
|
word *const TA=T; |
|
word *const TB=T+NA+2; |
|
word *const TP=T+NA+2+NB; |
|
|
|
// copy B into TB and normalize it so that TB has highest bit set to 1 |
|
unsigned shiftWords = (B[NB-1]==0); |
|
TB[0] = TB[NB-1] = 0; |
|
CopyWords(TB+shiftWords, B, NB-shiftWords); |
|
unsigned shiftBits = WORD_BITS - BitPrecision(TB[NB-1]); |
|
assert(shiftBits < WORD_BITS); |
|
ShiftWordsLeftByBits(TB, NB, shiftBits); |
|
|
|
// copy A into TA and normalize it |
|
TA[0] = TA[NA] = TA[NA+1] = 0; |
|
CopyWords(TA+shiftWords, A, NA); |
|
ShiftWordsLeftByBits(TA, NA+2, shiftBits); |
|
|
|
if (TA[NA+1]==0 && TA[NA] <= 1) |
|
{ |
|
Q[NA-NB+1] = Q[NA-NB] = 0; |
|
while (TA[NA] || Compare(TA+NA-NB, TB, NB) >= 0) |
|
{ |
|
TA[NA] -= Subtract(TA+NA-NB, TA+NA-NB, TB, NB); |
|
++Q[NA-NB]; |
|
} |
|
} |
|
else |
|
{ |
|
NA+=2; |
|
assert(Compare(TA+NA-NB, TB, NB) < 0); |
|
} |
|
|
|
word BT[2]; |
|
BT[0] = TB[NB-2] + 1; |
|
BT[1] = TB[NB-1] + (BT[0]==0); |
|
|
|
// start reducing TA mod TB, 2 words at a time |
|
for (size_t i=NA-2; i>=NB; i-=2) |
|
{ |
|
AtomicDivide(Q+i-NB, TA+i-2, BT); |
|
CorrectQuotientEstimate(TA+i-NB, TP, Q+i-NB, TB, NB); |
|
} |
|
|
|
// copy TA into R, and denormalize it |
|
CopyWords(R, TA+shiftWords, NB); |
|
ShiftWordsRightByBits(R, NB, shiftBits); |
|
} |
|
|
|
static inline size_t EvenWordCount(const word *X, size_t N) |
|
{ |
|
while (N && X[N-2]==0 && X[N-1]==0) |
|
N-=2; |
|
return N; |
|
} |
|
|
|
// return k |
|
// R[N] --- result = A^(-1) * 2^k mod M |
|
// T[4*N] - temporary work space |
|
// A[NA] -- number to take inverse of |
|
// M[N] --- modulus |
|
|
|
unsigned int AlmostInverse(word *R, word *T, const word *A, size_t NA, const word *M, size_t N) |
|
{ |
|
assert(NA<=N && N && N%2==0); |
|
|
|
word *b = T; |
|
word *c = T+N; |
|
word *f = T+2*N; |
|
word *g = T+3*N; |
|
size_t bcLen=2, fgLen=EvenWordCount(M, N); |
|
unsigned int k=0; |
|
bool s=false; |
|
|
|
SetWords(T, 0, 3*N); |
|
b[0]=1; |
|
CopyWords(f, A, NA); |
|
CopyWords(g, M, N); |
|
|
|
while (1) |
|
{ |
|
word t=f[0]; |
|
while (!t) |
|
{ |
|
if (EvenWordCount(f, fgLen)==0) |
|
{ |
|
SetWords(R, 0, N); |
|
return 0; |
|
} |
|
|
|
ShiftWordsRightByWords(f, fgLen, 1); |
|
bcLen += 2 * (c[bcLen-1] != 0); |
|
assert(bcLen <= N); |
|
ShiftWordsLeftByWords(c, bcLen, 1); |
|
k+=WORD_BITS; |
|
t=f[0]; |
|
} |
|
|
|
unsigned int i = TrailingZeros(t); |
|
t >>= i; |
|
k += i; |
|
|
|
if (t==1 && f[1]==0 && EvenWordCount(f+2, fgLen-2)==0) |
|
{ |
|
if (s) |
|
Subtract(R, M, b, N); |
|
else |
|
CopyWords(R, b, N); |
|
return k; |
|
} |
|
|
|
ShiftWordsRightByBits(f, fgLen, i); |
|
t = ShiftWordsLeftByBits(c, bcLen, i); |
|
c[bcLen] += t; |
|
bcLen += 2 * (t!=0); |
|
assert(bcLen <= N); |
|
|
|
bool swap = Compare(f, g, fgLen)==-1; |
|
ConditionalSwapPointers(swap, f, g); |
|
ConditionalSwapPointers(swap, b, c); |
|
s ^= swap; |
|
|
|
fgLen -= 2 * !(f[fgLen-2] | f[fgLen-1]); |
|
|
|
Subtract(f, f, g, fgLen); |
|
t = Add(b, b, c, bcLen); |
|
b[bcLen] += t; |
|
bcLen += 2*t; |
|
assert(bcLen <= N); |
|
} |
|
} |
|
|
|
// R[N] - result = A/(2^k) mod M |
|
// A[N] - input |
|
// M[N] - modulus |
|
|
|
void DivideByPower2Mod(word *R, const word *A, size_t k, const word *M, size_t N) |
|
{ |
|
CopyWords(R, A, N); |
|
|
|
while (k--) |
|
{ |
|
if (R[0]%2==0) |
|
ShiftWordsRightByBits(R, N, 1); |
|
else |
|
{ |
|
word carry = Add(R, R, M, N); |
|
ShiftWordsRightByBits(R, N, 1); |
|
R[N-1] += carry<<(WORD_BITS-1); |
|
} |
|
} |
|
} |
|
|
|
// R[N] - result = A*(2^k) mod M |
|
// A[N] - input |
|
// M[N] - modulus |
|
|
|
void MultiplyByPower2Mod(word *R, const word *A, size_t k, const word *M, size_t N) |
|
{ |
|
CopyWords(R, A, N); |
|
|
|
while (k--) |
|
if (ShiftWordsLeftByBits(R, N, 1) || Compare(R, M, N)>=0) |
|
Subtract(R, R, M, N); |
|
} |
|
|
|
// ****************************************************************** |
|
|
|
InitializeInteger::InitializeInteger() |
|
{ |
|
if (!g_pAssignIntToInteger) |
|
{ |
|
SetFunctionPointers(); |
|
g_pAssignIntToInteger = AssignIntToInteger; |
|
} |
|
} |
|
|
|
static const unsigned int RoundupSizeTable[] = {2, 2, 2, 4, 4, 8, 8, 8, 8}; |
|
|
|
static inline size_t RoundupSize(size_t n) |
|
{ |
|
if (n<=8) |
|
return RoundupSizeTable[n]; |
|
else if (n<=16) |
|
return 16; |
|
else if (n<=32) |
|
return 32; |
|
else if (n<=64) |
|
return 64; |
|
else return size_t(1) << BitPrecision(n-1); |
|
} |
|
|
|
Integer::Integer() |
|
: reg(2), sign(POSITIVE) |
|
{ |
|
reg[0] = reg[1] = 0; |
|
} |
|
|
|
Integer::Integer(const Integer& t) |
|
: reg(RoundupSize(t.WordCount())), sign(t.sign) |
|
{ |
|
CopyWords(reg, t.reg, reg.size()); |
|
} |
|
|
|
Integer::Integer(Sign s, lword value) |
|
: reg(2), sign(s) |
|
{ |
|
reg[0] = word(value); |
|
reg[1] = word(SafeRightShift<WORD_BITS>(value)); |
|
} |
|
|
|
Integer::Integer(signed long value) |
|
: reg(2) |
|
{ |
|
if (value >= 0) |
|
sign = POSITIVE; |
|
else |
|
{ |
|
sign = NEGATIVE; |
|
value = -value; |
|
} |
|
reg[0] = word(value); |
|
reg[1] = word(SafeRightShift<WORD_BITS>((unsigned long)value)); |
|
} |
|
|
|
Integer::Integer(Sign s, word high, word low) |
|
: reg(2), sign(s) |
|
{ |
|
reg[0] = low; |
|
reg[1] = high; |
|
} |
|
|
|
bool Integer::IsConvertableToLong() const |
|
{ |
|
if (ByteCount() > sizeof(long)) |
|
return false; |
|
|
|
unsigned long value = (unsigned long)reg[0]; |
|
value += SafeLeftShift<WORD_BITS, unsigned long>((unsigned long)reg[1]); |
|
|
|
if (sign==POSITIVE) |
|
return (signed long)value >= 0; |
|
else |
|
return -(signed long)value < 0; |
|
} |
|
|
|
signed long Integer::ConvertToLong() const |
|
{ |
|
assert(IsConvertableToLong()); |
|
|
|
unsigned long value = (unsigned long)reg[0]; |
|
value += SafeLeftShift<WORD_BITS, unsigned long>((unsigned long)reg[1]); |
|
return sign==POSITIVE ? value : -(signed long)value; |
|
} |
|
|
|
Integer::Integer(BufferedTransformation &encodedInteger, size_t byteCount, Signedness s) |
|
{ |
|
Decode(encodedInteger, byteCount, s); |
|
} |
|
|
|
Integer::Integer(const byte *encodedInteger, size_t byteCount, Signedness s) |
|
{ |
|
Decode(encodedInteger, byteCount, s); |
|
} |
|
|
|
Integer::Integer(BufferedTransformation &bt) |
|
{ |
|
BERDecode(bt); |
|
} |
|
|
|
Integer::Integer(RandomNumberGenerator &rng, size_t bitcount) |
|
{ |
|
Randomize(rng, bitcount); |
|
} |
|
|
|
Integer::Integer(RandomNumberGenerator &rng, const Integer &min, const Integer &max, RandomNumberType rnType, const Integer &equiv, const Integer &mod) |
|
{ |
|
if (!Randomize(rng, min, max, rnType, equiv, mod)) |
|
throw Integer::RandomNumberNotFound(); |
|
} |
|
|
|
Integer Integer::Power2(size_t e) |
|
{ |
|
Integer r((word)0, BitsToWords(e+1)); |
|
r.SetBit(e); |
|
return r; |
|
} |
|
|
|
template <long i> |
|
struct NewInteger |
|
{ |
|
Integer * operator()() const |
|
{ |
|
return new Integer(i); |
|
} |
|
}; |
|
|
|
const Integer &Integer::Zero() |
|
{ |
|
return Singleton<Integer>().Ref(); |
|
} |
|
|
|
const Integer &Integer::One() |
|
{ |
|
return Singleton<Integer, NewInteger<1> >().Ref(); |
|
} |
|
|
|
const Integer &Integer::Two() |
|
{ |
|
return Singleton<Integer, NewInteger<2> >().Ref(); |
|
} |
|
|
|
bool Integer::operator!() const |
|
{ |
|
return IsNegative() ? false : (reg[0]==0 && WordCount()==0); |
|
} |
|
|
|
Integer& Integer::operator=(const Integer& t) |
|
{ |
|
if (this != &t) |
|
{ |
|
if (reg.size() != t.reg.size() || t.reg[t.reg.size()/2] == 0) |
|
reg.New(RoundupSize(t.WordCount())); |
|
CopyWords(reg, t.reg, reg.size()); |
|
sign = t.sign; |
|
} |
|
return *this; |
|
} |
|
|
|
bool Integer::GetBit(size_t n) const |
|
{ |
|
if (n/WORD_BITS >= reg.size()) |
|
return 0; |
|
else |
|
return bool((reg[n/WORD_BITS] >> (n % WORD_BITS)) & 1); |
|
} |
|
|
|
void Integer::SetBit(size_t n, bool value) |
|
{ |
|
if (value) |
|
{ |
|
reg.CleanGrow(RoundupSize(BitsToWords(n+1))); |
|
reg[n/WORD_BITS] |= (word(1) << (n%WORD_BITS)); |
|
} |
|
else |
|
{ |
|
if (n/WORD_BITS < reg.size()) |
|
reg[n/WORD_BITS] &= ~(word(1) << (n%WORD_BITS)); |
|
} |
|
} |
|
|
|
byte Integer::GetByte(size_t n) const |
|
{ |
|
if (n/WORD_SIZE >= reg.size()) |
|
return 0; |
|
else |
|
return byte(reg[n/WORD_SIZE] >> ((n%WORD_SIZE)*8)); |
|
} |
|
|
|
void Integer::SetByte(size_t n, byte value) |
|
{ |
|
reg.CleanGrow(RoundupSize(BytesToWords(n+1))); |
|
reg[n/WORD_SIZE] &= ~(word(0xff) << 8*(n%WORD_SIZE)); |
|
reg[n/WORD_SIZE] |= (word(value) << 8*(n%WORD_SIZE)); |
|
} |
|
|
|
lword Integer::GetBits(size_t i, size_t n) const |
|
{ |
|
lword v = 0; |
|
assert(n <= sizeof(v)*8); |
|
for (unsigned int j=0; j<n; j++) |
|
v |= lword(GetBit(i+j)) << j; |
|
return v; |
|
} |
|
|
|
Integer Integer::operator-() const |
|
{ |
|
Integer result(*this); |
|
result.Negate(); |
|
return result; |
|
} |
|
|
|
Integer Integer::AbsoluteValue() const |
|
{ |
|
Integer result(*this); |
|
result.sign = POSITIVE; |
|
return result; |
|
} |
|
|
|
void Integer::swap(Integer &a) |
|
{ |
|
reg.swap(a.reg); |
|
std::swap(sign, a.sign); |
|
} |
|
|
|
Integer::Integer(word value, size_t length) |
|
: reg(RoundupSize(length)), sign(POSITIVE) |
|
{ |
|
reg[0] = value; |
|
SetWords(reg+1, 0, reg.size()-1); |
|
} |
|
|
|
template <class T> |
|
static Integer StringToInteger(const T *str) |
|
{ |
|
int radix; |
|
// GCC workaround |
|
// std::char_traits<wchar_t>::length() not defined in GCC 3.2 and STLport 4.5.3 |
|
unsigned int length; |
|
for (length = 0; str[length] != 0; length++) {} |
|
|
|
Integer v; |
|
|
|
if (length == 0) |
|
return v; |
|
|
|
switch (str[length-1]) |
|
{ |
|
case 'h': |
|
case 'H': |
|
radix=16; |
|
break; |
|
case 'o': |
|
case 'O': |
|
radix=8; |
|
break; |
|
case 'b': |
|
case 'B': |
|
radix=2; |
|
break; |
|
default: |
|
radix=10; |
|
} |
|
|
|
if (length > 2 && str[0] == '0' && str[1] == 'x') |
|
radix = 16; |
|
|
|
for (unsigned i=0; i<length; i++) |
|
{ |
|
int digit; |
|
|
|
if (str[i] >= '0' && str[i] <= '9') |
|
digit = str[i] - '0'; |
|
else if (str[i] >= 'A' && str[i] <= 'F') |
|
digit = str[i] - 'A' + 10; |
|
else if (str[i] >= 'a' && str[i] <= 'f') |
|
digit = str[i] - 'a' + 10; |
|
else |
|
digit = radix; |
|
|
|
if (digit < radix) |
|
{ |
|
v *= radix; |
|
v += digit; |
|
} |
|
} |
|
|
|
if (str[0] == '-') |
|
v.Negate(); |
|
|
|
return v; |
|
} |
|
|
|
Integer::Integer(const char *str) |
|
: reg(2), sign(POSITIVE) |
|
{ |
|
*this = StringToInteger(str); |
|
} |
|
|
|
Integer::Integer(const wchar_t *str) |
|
: reg(2), sign(POSITIVE) |
|
{ |
|
*this = StringToInteger(str); |
|
} |
|
|
|
unsigned int Integer::WordCount() const |
|
{ |
|
return (unsigned int)CountWords(reg, reg.size()); |
|
} |
|
|
|
unsigned int Integer::ByteCount() const |
|
{ |
|
unsigned wordCount = WordCount(); |
|
if (wordCount) |
|
return (wordCount-1)*WORD_SIZE + BytePrecision(reg[wordCount-1]); |
|
else |
|
return 0; |
|
} |
|
|
|
unsigned int Integer::BitCount() const |
|
{ |
|
unsigned wordCount = WordCount(); |
|
if (wordCount) |
|
return (wordCount-1)*WORD_BITS + BitPrecision(reg[wordCount-1]); |
|
else |
|
return 0; |
|
} |
|
|
|
void Integer::Decode(const byte *input, size_t inputLen, Signedness s) |
|
{ |
|
StringStore store(input, inputLen); |
|
Decode(store, inputLen, s); |
|
} |
|
|
|
void Integer::Decode(BufferedTransformation &bt, size_t inputLen, Signedness s) |
|
{ |
|
assert(bt.MaxRetrievable() >= inputLen); |
|
|
|
byte b; |
|
bt.Peek(b); |
|
sign = ((s==SIGNED) && (b & 0x80)) ? NEGATIVE : POSITIVE; |
|
|
|
while (inputLen>0 && (sign==POSITIVE ? b==0 : b==0xff)) |
|
{ |
|
bt.Skip(1); |
|
inputLen--; |
|
bt.Peek(b); |
|
} |
|
|
|
reg.CleanNew(RoundupSize(BytesToWords(inputLen))); |
|
|
|
for (size_t i=inputLen; i > 0; i--) |
|
{ |
|
bt.Get(b); |
|
reg[(i-1)/WORD_SIZE] |= word(b) << ((i-1)%WORD_SIZE)*8; |
|
} |
|
|
|
if (sign == NEGATIVE) |
|
{ |
|
for (size_t i=inputLen; i<reg.size()*WORD_SIZE; i++) |
|
reg[i/WORD_SIZE] |= word(0xff) << (i%WORD_SIZE)*8; |
|
TwosComplement(reg, reg.size()); |
|
} |
|
} |
|
|
|
size_t Integer::MinEncodedSize(Signedness signedness) const |
|
{ |
|
unsigned int outputLen = STDMAX(1U, ByteCount()); |
|
if (signedness == UNSIGNED) |
|
return outputLen; |
|
if (NotNegative() && (GetByte(outputLen-1) & 0x80)) |
|
outputLen++; |
|
if (IsNegative() && *this < -Power2(outputLen*8-1)) |
|
outputLen++; |
|
return outputLen; |
|
} |
|
|
|
void Integer::Encode(byte *output, size_t outputLen, Signedness signedness) const |
|
{ |
|
ArraySink sink(output, outputLen); |
|
Encode(sink, outputLen, signedness); |
|
} |
|
|
|
void Integer::Encode(BufferedTransformation &bt, size_t outputLen, Signedness signedness) const |
|
{ |
|
if (signedness == UNSIGNED || NotNegative()) |
|
{ |
|
for (size_t i=outputLen; i > 0; i--) |
|
bt.Put(GetByte(i-1)); |
|
} |
|
else |
|
{ |
|
// take two's complement of *this |
|
Integer temp = Integer::Power2(8*STDMAX((size_t)ByteCount(), outputLen)) + *this; |
|
temp.Encode(bt, outputLen, UNSIGNED); |
|
} |
|
} |
|
|
|
void Integer::DEREncode(BufferedTransformation &bt) const |
|
{ |
|
DERGeneralEncoder enc(bt, INTEGER); |
|
Encode(enc, MinEncodedSize(SIGNED), SIGNED); |
|
enc.MessageEnd(); |
|
} |
|
|
|
void Integer::BERDecode(const byte *input, size_t len) |
|
{ |
|
StringStore store(input, len); |
|
BERDecode(store); |
|
} |
|
|
|
void Integer::BERDecode(BufferedTransformation &bt) |
|
{ |
|
BERGeneralDecoder dec(bt, INTEGER); |
|
if (!dec.IsDefiniteLength() || dec.MaxRetrievable() < dec.RemainingLength()) |
|
BERDecodeError(); |
|
Decode(dec, (size_t)dec.RemainingLength(), SIGNED); |
|
dec.MessageEnd(); |
|
} |
|
|
|
void Integer::DEREncodeAsOctetString(BufferedTransformation &bt, size_t length) const |
|
{ |
|
DERGeneralEncoder enc(bt, OCTET_STRING); |
|
Encode(enc, length); |
|
enc.MessageEnd(); |
|
} |
|
|
|
void Integer::BERDecodeAsOctetString(BufferedTransformation &bt, size_t length) |
|
{ |
|
BERGeneralDecoder dec(bt, OCTET_STRING); |
|
if (!dec.IsDefiniteLength() || dec.RemainingLength() != length) |
|
BERDecodeError(); |
|
Decode(dec, length); |
|
dec.MessageEnd(); |
|
} |
|
|
|
size_t Integer::OpenPGPEncode(byte *output, size_t len) const |
|
{ |
|
ArraySink sink(output, len); |
|
return OpenPGPEncode(sink); |
|
} |
|
|
|
size_t Integer::OpenPGPEncode(BufferedTransformation &bt) const |
|
{ |
|
word16 bitCount = BitCount(); |
|
bt.PutWord16(bitCount); |
|
size_t byteCount = BitsToBytes(bitCount); |
|
Encode(bt, byteCount); |
|
return 2 + byteCount; |
|
} |
|
|
|
void Integer::OpenPGPDecode(const byte *input, size_t len) |
|
{ |
|
StringStore store(input, len); |
|
OpenPGPDecode(store); |
|
} |
|
|
|
void Integer::OpenPGPDecode(BufferedTransformation &bt) |
|
{ |
|
word16 bitCount; |
|
if (bt.GetWord16(bitCount) != 2 || bt.MaxRetrievable() < BitsToBytes(bitCount)) |
|
throw OpenPGPDecodeErr(); |
|
Decode(bt, BitsToBytes(bitCount)); |
|
} |
|
|
|
void Integer::Randomize(RandomNumberGenerator &rng, size_t nbits) |
|
{ |
|
const size_t nbytes = nbits/8 + 1; |
|
SecByteBlock buf(nbytes); |
|
rng.GenerateBlock(buf, nbytes); |
|
if (nbytes) |
|
buf[0] = (byte)Crop(buf[0], nbits % 8); |
|
Decode(buf, nbytes, UNSIGNED); |
|
} |
|
|
|
void Integer::Randomize(RandomNumberGenerator &rng, const Integer &min, const Integer &max) |
|
{ |
|
if (min > max) |
|
throw InvalidArgument("Integer: Min must be no greater than Max"); |
|
|
|
Integer range = max - min; |
|
const unsigned int nbits = range.BitCount(); |
|
|
|
do |
|
{ |
|
Randomize(rng, nbits); |
|
} |
|
while (*this > range); |
|
|
|
*this += min; |
|
} |
|
|
|
bool Integer::Randomize(RandomNumberGenerator &rng, const Integer &min, const Integer &max, RandomNumberType rnType, const Integer &equiv, const Integer &mod) |
|
{ |
|
return GenerateRandomNoThrow(rng, MakeParameters("Min", min)("Max", max)("RandomNumberType", rnType)("EquivalentTo", equiv)("Mod", mod)); |
|
} |
|
|
|
class KDF2_RNG : public RandomNumberGenerator |
|
{ |
|
public: |
|
KDF2_RNG(const byte *seed, size_t seedSize) |
|
: m_counter(0), m_counterAndSeed(seedSize + 4) |
|
{ |
|
memcpy(m_counterAndSeed + 4, seed, seedSize); |
|
} |
|
|
|
void GenerateBlock(byte *output, size_t size) |
|
{ |
|
PutWord(false, BIG_ENDIAN_ORDER, m_counterAndSeed, m_counter); |
|
++m_counter; |
|
P1363_KDF2<SHA1>::DeriveKey(output, size, m_counterAndSeed, m_counterAndSeed.size(), NULL, 0); |
|
} |
|
|
|
private: |
|
word32 m_counter; |
|
SecByteBlock m_counterAndSeed; |
|
}; |
|
|
|
bool Integer::GenerateRandomNoThrow(RandomNumberGenerator &i_rng, const NameValuePairs ¶ms) |
|
{ |
|
Integer min = params.GetValueWithDefault("Min", Integer::Zero()); |
|
Integer max; |
|
if (!params.GetValue("Max", max)) |
|
{ |
|
int bitLength; |
|
if (params.GetIntValue("BitLength", bitLength)) |
|
max = Integer::Power2(bitLength); |
|
else |
|
throw InvalidArgument("Integer: missing Max argument"); |
|
} |
|
if (min > max) |
|
throw InvalidArgument("Integer: Min must be no greater than Max"); |
|
|
|
Integer equiv = params.GetValueWithDefault("EquivalentTo", Integer::Zero()); |
|
Integer mod = params.GetValueWithDefault("Mod", Integer::One()); |
|
|
|
if (equiv.IsNegative() || equiv >= mod) |
|
throw InvalidArgument("Integer: invalid EquivalentTo and/or Mod argument"); |
|
|
|
Integer::RandomNumberType rnType = params.GetValueWithDefault("RandomNumberType", Integer::ANY); |
|
|
|
member_ptr<KDF2_RNG> kdf2Rng; |
|
ConstByteArrayParameter seed; |
|
if (params.GetValue(Name::Seed(), seed)) |
|
{ |
|
ByteQueue bq; |
|
DERSequenceEncoder seq(bq); |
|
min.DEREncode(seq); |
|
max.DEREncode(seq); |
|
equiv.DEREncode(seq); |
|
mod.DEREncode(seq); |
|
DEREncodeUnsigned(seq, rnType); |
|
DEREncodeOctetString(seq, seed.begin(), seed.size()); |
|
seq.MessageEnd(); |
|
|
|
SecByteBlock finalSeed((size_t)bq.MaxRetrievable()); |
|
bq.Get(finalSeed, finalSeed.size()); |
|
kdf2Rng.reset(new KDF2_RNG(finalSeed.begin(), finalSeed.size())); |
|
} |
|
RandomNumberGenerator &rng = kdf2Rng.get() ? (RandomNumberGenerator &)*kdf2Rng : i_rng; |
|
|
|
switch (rnType) |
|
{ |
|
case ANY: |
|
if (mod == One()) |
|
Randomize(rng, min, max); |
|
else |
|
{ |
|
Integer min1 = min + (equiv-min)%mod; |
|
if (max < min1) |
|
return false; |
|
Randomize(rng, Zero(), (max - min1) / mod); |
|
*this *= mod; |
|
*this += min1; |
|
} |
|
return true; |
|
|
|
case PRIME: |
|
{ |
|
const PrimeSelector *pSelector = params.GetValueWithDefault(Name::PointerToPrimeSelector(), (const PrimeSelector *)NULL); |
|
|
|
int i; |
|
i = 0; |
|
while (1) |
|
{ |
|
if (++i==16) |
|
{ |
|
// check if there are any suitable primes in [min, max] |
|
Integer first = min; |
|
if (FirstPrime(first, max, equiv, mod, pSelector)) |
|
{ |
|
// if there is only one suitable prime, we're done |
|
*this = first; |
|
if (!FirstPrime(first, max, equiv, mod, pSelector)) |
|
return true; |
|
} |
|
else |
|
return false; |
|
} |
|
|
|
Randomize(rng, min, max); |
|
if (FirstPrime(*this, STDMIN(*this+mod*PrimeSearchInterval(max), max), equiv, mod, pSelector)) |
|
return true; |
|
} |
|
} |
|
|
|
default: |
|
throw InvalidArgument("Integer: invalid RandomNumberType argument"); |
|
} |
|
} |
|
|
|
std::istream& operator>>(std::istream& in, Integer &a) |
|
{ |
|
char c; |
|
unsigned int length = 0; |
|
SecBlock<char> str(length + 16); |
|
|
|
std::ws(in); |
|
|
|
do |
|
{ |
|
in.read(&c, 1); |
|
str[length++] = c; |
|
if (length >= str.size()) |
|
str.Grow(length + 16); |
|
} |
|
while (in && (c=='-' || c=='x' || (c>='0' && c<='9') || (c>='a' && c<='f') || (c>='A' && c<='F') || c=='h' || c=='H' || c=='o' || c=='O' || c==',' || c=='.')); |
|
|
|
if (in.gcount()) |
|
in.putback(c); |
|
str[length-1] = '\0'; |
|
a = Integer(str); |
|
|
|
return in; |
|
} |
|
|
|
std::ostream& operator<<(std::ostream& out, const Integer &a) |
|
{ |
|
// Get relevant conversion specifications from ostream. |
|
long f = out.flags() & std::ios::basefield; // Get base digits. |
|
int base, block; |
|
char suffix; |
|
switch(f) |
|
{ |
|
case std::ios::oct : |
|
base = 8; |
|
block = 8; |
|
suffix = 'o'; |
|
break; |
|
case std::ios::hex : |
|
base = 16; |
|
block = 4; |
|
suffix = 'h'; |
|
break; |
|
default : |
|
base = 10; |
|
block = 3; |
|
suffix = '.'; |
|
} |
|
|
|
Integer temp1=a, temp2; |
|
|
|
if (a.IsNegative()) |
|
{ |
|
out << '-'; |
|
temp1.Negate(); |
|
} |
|
|
|
if (!a) |
|
out << '0'; |
|
|
|
static const char upper[]="0123456789ABCDEF"; |
|
static const char lower[]="0123456789abcdef"; |
|
|
|
const char* vec = (out.flags() & std::ios::uppercase) ? upper : lower; |
|
unsigned i=0; |
|
SecBlock<char> s(a.BitCount() / (BitPrecision(base)-1) + 1); |
|
|
|
while (!!temp1) |
|
{ |
|
word digit; |
|
Integer::Divide(digit, temp2, temp1, base); |
|
s[i++]=vec[digit]; |
|
temp1.swap(temp2); |
|
} |
|
|
|
while (i--) |
|
{ |
|
out << s[i]; |
|
// if (i && !(i%block)) |
|
// out << ","; |
|
} |
|
return out << suffix; |
|
} |
|
|
|
Integer& Integer::operator++() |
|
{ |
|
if (NotNegative()) |
|
{ |
|
if (Increment(reg, reg.size())) |
|
{ |
|
reg.CleanGrow(2*reg.size()); |
|
reg[reg.size()/2]=1; |
|
} |
|
} |
|
else |
|
{ |
|
word borrow = Decrement(reg, reg.size()); |
|
assert(!borrow); |
|
if (WordCount()==0) |
|
*this = Zero(); |
|
} |
|
return *this; |
|
} |
|
|
|
Integer& Integer::operator--() |
|
{ |
|
if (IsNegative()) |
|
{ |
|
if (Increment(reg, reg.size())) |
|
{ |
|
reg.CleanGrow(2*reg.size()); |
|
reg[reg.size()/2]=1; |
|
} |
|
} |
|
else |
|
{ |
|
if (Decrement(reg, reg.size())) |
|
*this = -One(); |
|
} |
|
return *this; |
|
} |
|
|
|
void PositiveAdd(Integer &sum, const Integer &a, const Integer& b) |
|
{ |
|
int carry; |
|
if (a.reg.size() == b.reg.size()) |
|
carry = Add(sum.reg, a.reg, b.reg, a.reg.size()); |
|
else if (a.reg.size() > b.reg.size()) |
|
{ |
|
carry = Add(sum.reg, a.reg, b.reg, b.reg.size()); |
|
CopyWords(sum.reg+b.reg.size(), a.reg+b.reg.size(), a.reg.size()-b.reg.size()); |
|
carry = Increment(sum.reg+b.reg.size(), a.reg.size()-b.reg.size(), carry); |
|
} |
|
else |
|
{ |
|
carry = Add(sum.reg, a.reg, b.reg, a.reg.size()); |
|
CopyWords(sum.reg+a.reg.size(), b.reg+a.reg.size(), b.reg.size()-a.reg.size()); |
|
carry = Increment(sum.reg+a.reg.size(), b.reg.size()-a.reg.size(), carry); |
|
} |
|
|
|
if (carry) |
|
{ |
|
sum.reg.CleanGrow(2*sum.reg.size()); |
|
sum.reg[sum.reg.size()/2] = 1; |
|
} |
|
sum.sign = Integer::POSITIVE; |
|
} |
|
|
|
void PositiveSubtract(Integer &diff, const Integer &a, const Integer& b) |
|
{ |
|
unsigned aSize = a.WordCount(); |
|
aSize += aSize%2; |
|
unsigned bSize = b.WordCount(); |
|
bSize += bSize%2; |
|
|
|
if (aSize == bSize) |
|
{ |
|
if (Compare(a.reg, b.reg, aSize) >= 0) |
|
{ |
|
Subtract(diff.reg, a.reg, b.reg, aSize); |
|
diff.sign = Integer::POSITIVE; |
|
} |
|
else |
|
{ |
|
Subtract(diff.reg, b.reg, a.reg, aSize); |
|
diff.sign = Integer::NEGATIVE; |
|
} |
|
} |
|
else if (aSize > bSize) |
|
{ |
|
word borrow = Subtract(diff.reg, a.reg, b.reg, bSize); |
|
CopyWords(diff.reg+bSize, a.reg+bSize, aSize-bSize); |
|
borrow = Decrement(diff.reg+bSize, aSize-bSize, borrow); |
|
assert(!borrow); |
|
diff.sign = Integer::POSITIVE; |
|
} |
|
else |
|
{ |
|
word borrow = Subtract(diff.reg, b.reg, a.reg, aSize); |
|
CopyWords(diff.reg+aSize, b.reg+aSize, bSize-aSize); |
|
borrow = Decrement(diff.reg+aSize, bSize-aSize, borrow); |
|
assert(!borrow); |
|
diff.sign = Integer::NEGATIVE; |
|
} |
|
} |
|
|
|
// MSVC .NET 2003 workaround |
|
template <class T> inline const T& STDMAX2(const T& a, const T& b) |
|
{ |
|
return a < b ? b : a; |
|
} |
|
|
|
Integer Integer::Plus(const Integer& b) const |
|
{ |
|
Integer sum((word)0, STDMAX2(reg.size(), b.reg.size())); |
|
if (NotNegative()) |
|
{ |
|
if (b.NotNegative()) |
|
PositiveAdd(sum, *this, b); |
|
else |
|
PositiveSubtract(sum, *this, b); |
|
} |
|
else |
|
{ |
|
if (b.NotNegative()) |
|
PositiveSubtract(sum, b, *this); |
|
else |
|
{ |
|
PositiveAdd(sum, *this, b); |
|
sum.sign = Integer::NEGATIVE; |
|
} |
|
} |
|
return sum; |
|
} |
|
|
|
Integer& Integer::operator+=(const Integer& t) |
|
{ |
|
reg.CleanGrow(t.reg.size()); |
|
if (NotNegative()) |
|
{ |
|
if (t.NotNegative()) |
|
PositiveAdd(*this, *this, t); |
|
else |
|
PositiveSubtract(*this, *this, t); |
|
} |
|
else |
|
{ |
|
if (t.NotNegative()) |
|
PositiveSubtract(*this, t, *this); |
|
else |
|
{ |
|
PositiveAdd(*this, *this, t); |
|
sign = Integer::NEGATIVE; |
|
} |
|
} |
|
return *this; |
|
} |
|
|
|
Integer Integer::Minus(const Integer& b) const |
|
{ |
|
Integer diff((word)0, STDMAX2(reg.size(), b.reg.size())); |
|
if (NotNegative()) |
|
{ |
|
if (b.NotNegative()) |
|
PositiveSubtract(diff, *this, b); |
|
else |
|
PositiveAdd(diff, *this, b); |
|
} |
|
else |
|
{ |
|
if (b.NotNegative()) |
|
{ |
|
PositiveAdd(diff, *this, b); |
|
diff.sign = Integer::NEGATIVE; |
|
} |
|
else |
|
PositiveSubtract(diff, b, *this); |
|
} |
|
return diff; |
|
} |
|
|
|
Integer& Integer::operator-=(const Integer& t) |
|
{ |
|
reg.CleanGrow(t.reg.size()); |
|
if (NotNegative()) |
|
{ |
|
if (t.NotNegative()) |
|
PositiveSubtract(*this, *this, t); |
|
else |
|
PositiveAdd(*this, *this, t); |
|
} |
|
else |
|
{ |
|
if (t.NotNegative()) |
|
{ |
|
PositiveAdd(*this, *this, t); |
|
sign = Integer::NEGATIVE; |
|
} |
|
else |
|
PositiveSubtract(*this, t, *this); |
|
} |
|
return *this; |
|
} |
|
|
|
Integer& Integer::operator<<=(size_t n) |
|
{ |
|
const size_t wordCount = WordCount(); |
|
const size_t shiftWords = n / WORD_BITS; |
|
const unsigned int shiftBits = (unsigned int)(n % WORD_BITS); |
|
|
|
reg.CleanGrow(RoundupSize(wordCount+BitsToWords(n))); |
|
ShiftWordsLeftByWords(reg, wordCount + shiftWords, shiftWords); |
|
ShiftWordsLeftByBits(reg+shiftWords, wordCount+BitsToWords(shiftBits), shiftBits); |
|
return *this; |
|
} |
|
|
|
Integer& Integer::operator>>=(size_t n) |
|
{ |
|
const size_t wordCount = WordCount(); |
|
const size_t shiftWords = n / WORD_BITS; |
|
const unsigned int shiftBits = (unsigned int)(n % WORD_BITS); |
|
|
|
ShiftWordsRightByWords(reg, wordCount, shiftWords); |
|
if (wordCount > shiftWords) |
|
ShiftWordsRightByBits(reg, wordCount-shiftWords, shiftBits); |
|
if (IsNegative() && WordCount()==0) // avoid -0 |
|
*this = Zero(); |
|
return *this; |
|
} |
|
|
|
void PositiveMultiply(Integer &product, const Integer &a, const Integer &b) |
|
{ |
|
size_t aSize = RoundupSize(a.WordCount()); |
|
size_t bSize = RoundupSize(b.WordCount()); |
|
|
|
product.reg.CleanNew(RoundupSize(aSize+bSize)); |
|
product.sign = Integer::POSITIVE; |
|
|
|
IntegerSecBlock workspace(aSize + bSize); |
|
AsymmetricMultiply(product.reg, workspace, a.reg, aSize, b.reg, bSize); |
|
} |
|
|
|
void Multiply(Integer &product, const Integer &a, const Integer &b) |
|
{ |
|
PositiveMultiply(product, a, b); |
|
|
|
if (a.NotNegative() != b.NotNegative()) |
|
product.Negate(); |
|
} |
|
|
|
Integer Integer::Times(const Integer &b) const |
|
{ |
|
Integer product; |
|
Multiply(product, *this, b); |
|
return product; |
|
} |
|
|
|
/* |
|
void PositiveDivide(Integer &remainder, Integer "ient, |
|
const Integer ÷nd, const Integer &divisor) |
|
{ |
|
remainder.reg.CleanNew(divisor.reg.size()); |
|
remainder.sign = Integer::POSITIVE; |
|
quotient.reg.New(0); |
|
quotient.sign = Integer::POSITIVE; |
|
unsigned i=dividend.BitCount(); |
|
while (i--) |
|
{ |
|
word overflow = ShiftWordsLeftByBits(remainder.reg, remainder.reg.size(), 1); |
|
remainder.reg[0] |= dividend[i]; |
|
if (overflow || remainder >= divisor) |
|
{ |
|
Subtract(remainder.reg, remainder.reg, divisor.reg, remainder.reg.size()); |
|
quotient.SetBit(i); |
|
} |
|
} |
|
} |
|
*/ |
|
|
|
void PositiveDivide(Integer &remainder, Integer "ient, |
|
const Integer &a, const Integer &b) |
|
{ |
|
unsigned aSize = a.WordCount(); |
|
unsigned bSize = b.WordCount(); |
|
|
|
if (!bSize) |
|
throw Integer::DivideByZero(); |
|
|
|
if (aSize < bSize) |
|
{ |
|
remainder = a; |
|
remainder.sign = Integer::POSITIVE; |
|
quotient = Integer::Zero(); |
|
return; |
|
} |
|
|
|
aSize += aSize%2; // round up to next even number |
|
bSize += bSize%2; |
|
|
|
remainder.reg.CleanNew(RoundupSize(bSize)); |
|
remainder.sign = Integer::POSITIVE; |
|
quotient.reg.CleanNew(RoundupSize(aSize-bSize+2)); |
|
quotient.sign = Integer::POSITIVE; |
|
|
|
IntegerSecBlock T(aSize+3*(bSize+2)); |
|
Divide(remainder.reg, quotient.reg, T, a.reg, aSize, b.reg, bSize); |
|
} |
|
|
|
void Integer::Divide(Integer &remainder, Integer "ient, const Integer ÷nd, const Integer &divisor) |
|
{ |
|
PositiveDivide(remainder, quotient, dividend, divisor); |
|
|
|
if (dividend.IsNegative()) |
|
{ |
|
quotient.Negate(); |
|
if (remainder.NotZero()) |
|
{ |
|
--quotient; |
|
remainder = divisor.AbsoluteValue() - remainder; |
|
} |
|
} |
|
|
|
if (divisor.IsNegative()) |
|
quotient.Negate(); |
|
} |
|
|
|
void Integer::DivideByPowerOf2(Integer &r, Integer &q, const Integer &a, unsigned int n) |
|
{ |
|
q = a; |
|
q >>= n; |
|
|
|
const size_t wordCount = BitsToWords(n); |
|
if (wordCount <= a.WordCount()) |
|
{ |
|
r.reg.resize(RoundupSize(wordCount)); |
|
CopyWords(r.reg, a.reg, wordCount); |
|
SetWords(r.reg+wordCount, 0, r.reg.size()-wordCount); |
|
if (n % WORD_BITS != 0) |
|
r.reg[wordCount-1] %= (word(1) << (n % WORD_BITS)); |
|
} |
|
else |
|
{ |
|
r.reg.resize(RoundupSize(a.WordCount())); |
|
CopyWords(r.reg, a.reg, r.reg.size()); |
|
} |
|
r.sign = POSITIVE; |
|
|
|
if (a.IsNegative() && r.NotZero()) |
|
{ |
|
--q; |
|
r = Power2(n) - r; |
|
} |
|
} |
|
|
|
Integer Integer::DividedBy(const Integer &b) const |
|
{ |
|
Integer remainder, quotient; |
|
Integer::Divide(remainder, quotient, *this, b); |
|
return quotient; |
|
} |
|
|
|
Integer Integer::Modulo(const Integer &b) const |
|
{ |
|
Integer remainder, quotient; |
|
Integer::Divide(remainder, quotient, *this, b); |
|
return remainder; |
|
} |
|
|
|
void Integer::Divide(word &remainder, Integer "ient, const Integer ÷nd, word divisor) |
|
{ |
|
if (!divisor) |
|
throw Integer::DivideByZero(); |
|
|
|
assert(divisor); |
|
|
|
if ((divisor & (divisor-1)) == 0) // divisor is a power of 2 |
|
{ |
|
quotient = dividend >> (BitPrecision(divisor)-1); |
|
remainder = dividend.reg[0] & (divisor-1); |
|
return; |
|
} |
|
|
|
unsigned int i = dividend.WordCount(); |
|
quotient.reg.CleanNew(RoundupSize(i)); |
|
remainder = 0; |
|
while (i--) |
|
{ |
|
quotient.reg[i] = DWord(dividend.reg[i], remainder) / divisor; |
|
remainder = DWord(dividend.reg[i], remainder) % divisor; |
|
} |
|
|
|
if (dividend.NotNegative()) |
|
quotient.sign = POSITIVE; |
|
else |
|
{ |
|
quotient.sign = NEGATIVE; |
|
if (remainder) |
|
{ |
|
--quotient; |
|
remainder = divisor - remainder; |
|
} |
|
} |
|
} |
|
|
|
Integer Integer::DividedBy(word b) const |
|
{ |
|
word remainder; |
|
Integer quotient; |
|
Integer::Divide(remainder, quotient, *this, b); |
|
return quotient; |
|
} |
|
|
|
word Integer::Modulo(word divisor) const |
|
{ |
|
if (!divisor) |
|
throw Integer::DivideByZero(); |
|
|
|
assert(divisor); |
|
|
|
word remainder; |
|
|
|
if ((divisor & (divisor-1)) == 0) // divisor is a power of 2 |
|
remainder = reg[0] & (divisor-1); |
|
else |
|
{ |
|
unsigned int i = WordCount(); |
|
|
|
if (divisor <= 5) |
|
{ |
|
DWord sum(0, 0); |
|
while (i--) |
|
sum += reg[i]; |
|
remainder = sum % divisor; |
|
} |
|
else |
|
{ |
|
remainder = 0; |
|
while (i--) |
|
remainder = DWord(reg[i], remainder) % divisor; |
|
} |
|
} |
|
|
|
if (IsNegative() && remainder) |
|
remainder = divisor - remainder; |
|
|
|
return remainder; |
|
} |
|
|
|
void Integer::Negate() |
|
{ |
|
if (!!(*this)) // don't flip sign if *this==0 |
|
sign = Sign(1-sign); |
|
} |
|
|
|
int Integer::PositiveCompare(const Integer& t) const |
|
{ |
|
unsigned size = WordCount(), tSize = t.WordCount(); |
|
|
|
if (size == tSize) |
|
return CryptoPP::Compare(reg, t.reg, size); |
|
else |
|
return size > tSize ? 1 : -1; |
|
} |
|
|
|
int Integer::Compare(const Integer& t) const |
|
{ |
|
if (NotNegative()) |
|
{ |
|
if (t.NotNegative()) |
|
return PositiveCompare(t); |
|
else |
|
return 1; |
|
} |
|
else |
|
{ |
|
if (t.NotNegative()) |
|
return -1; |
|
else |
|
return -PositiveCompare(t); |
|
} |
|
} |
|
|
|
Integer Integer::SquareRoot() const |
|
{ |
|
if (!IsPositive()) |
|
return Zero(); |
|
|
|
// overestimate square root |
|
Integer x, y = Power2((BitCount()+1)/2); |
|
assert(y*y >= *this); |
|
|
|
do |
|
{ |
|
x = y; |
|
y = (x + *this/x) >> 1; |
|
} while (y<x); |
|
|
|
return x; |
|
} |
|
|
|
bool Integer::IsSquare() const |
|
{ |
|
Integer r = SquareRoot(); |
|
return *this == r.Squared(); |
|
} |
|
|
|
bool Integer::IsUnit() const |
|
{ |
|
return (WordCount() == 1) && (reg[0] == 1); |
|
} |
|
|
|
Integer Integer::MultiplicativeInverse() const |
|
{ |
|
return IsUnit() ? *this : Zero(); |
|
} |
|
|
|
Integer a_times_b_mod_c(const Integer &x, const Integer& y, const Integer& m) |
|
{ |
|
return x*y%m; |
|
} |
|
|
|
Integer a_exp_b_mod_c(const Integer &x, const Integer& e, const Integer& m) |
|
{ |
|
ModularArithmetic mr(m); |
|
return mr.Exponentiate(x, e); |
|
} |
|
|
|
Integer Integer::Gcd(const Integer &a, const Integer &b) |
|
{ |
|
return EuclideanDomainOf<Integer>().Gcd(a, b); |
|
} |
|
|
|
Integer Integer::InverseMod(const Integer &m) const |
|
{ |
|
assert(m.NotNegative()); |
|
|
|
if (IsNegative()) |
|
return Modulo(m).InverseMod(m); |
|
|
|
if (m.IsEven()) |
|
{ |
|
if (!m || IsEven()) |
|
return Zero(); // no inverse |
|
if (*this == One()) |
|
return One(); |
|
|
|
Integer u = m.Modulo(*this).InverseMod(*this); |
|
return !u ? Zero() : (m*(*this-u)+1)/(*this); |
|
} |
|
|
|
SecBlock<word> T(m.reg.size() * 4); |
|
Integer r((word)0, m.reg.size()); |
|
unsigned k = AlmostInverse(r.reg, T, reg, reg.size(), m.reg, m.reg.size()); |
|
DivideByPower2Mod(r.reg, r.reg, k, m.reg, m.reg.size()); |
|
return r; |
|
} |
|
|
|
word Integer::InverseMod(word mod) const |
|
{ |
|
word g0 = mod, g1 = *this % mod; |
|
word v0 = 0, v1 = 1; |
|
word y; |
|
|
|
while (g1) |
|
{ |
|
if (g1 == 1) |
|
return v1; |
|
y = g0 / g1; |
|
g0 = g0 % g1; |
|
v0 += y * v1; |
|
|
|
if (!g0) |
|
break; |
|
if (g0 == 1) |
|
return mod-v0; |
|
y = g1 / g0; |
|
g1 = g1 % g0; |
|
v1 += y * v0; |
|
} |
|
return 0; |
|
} |
|
|
|
// ******************************************************** |
|
|
|
ModularArithmetic::ModularArithmetic(BufferedTransformation &bt) |
|
{ |
|
BERSequenceDecoder seq(bt); |
|
OID oid(seq); |
|
if (oid != ASN1::prime_field()) |
|
BERDecodeError(); |
|
m_modulus.BERDecode(seq); |
|
seq.MessageEnd(); |
|
m_result.reg.resize(m_modulus.reg.size()); |
|
} |
|
|
|
void ModularArithmetic::DEREncode(BufferedTransformation &bt) const |
|
{ |
|
DERSequenceEncoder seq(bt); |
|
ASN1::prime_field().DEREncode(seq); |
|
m_modulus.DEREncode(seq); |
|
seq.MessageEnd(); |
|
} |
|
|
|
void ModularArithmetic::DEREncodeElement(BufferedTransformation &out, const Element &a) const |
|
{ |
|
a.DEREncodeAsOctetString(out, MaxElementByteLength()); |
|
} |
|
|
|
void ModularArithmetic::BERDecodeElement(BufferedTransformation &in, Element &a) const |
|
{ |
|
a.BERDecodeAsOctetString(in, MaxElementByteLength()); |
|
} |
|
|
|
const Integer& ModularArithmetic::Half(const Integer &a) const |
|
{ |
|
if (a.reg.size()==m_modulus.reg.size()) |
|
{ |
|
CryptoPP::DivideByPower2Mod(m_result.reg.begin(), a.reg, 1, m_modulus.reg, a.reg.size()); |
|
return m_result; |
|
} |
|
else |
|
return m_result1 = (a.IsEven() ? (a >> 1) : ((a+m_modulus) >> 1)); |
|
} |
|
|
|
const Integer& ModularArithmetic::Add(const Integer &a, const Integer &b) const |
|
{ |
|
if (a.reg.size()==m_modulus.reg.size() && b.reg.size()==m_modulus.reg.size()) |
|
{ |
|
if (CryptoPP::Add(m_result.reg.begin(), a.reg, b.reg, a.reg.size()) |
|
|| Compare(m_result.reg, m_modulus.reg, a.reg.size()) >= 0) |
|
{ |
|
CryptoPP::Subtract(m_result.reg.begin(), m_result.reg, m_modulus.reg, a.reg.size()); |
|
} |
|
return m_result; |
|
} |
|
else |
|
{ |
|
m_result1 = a+b; |
|
if (m_result1 >= m_modulus) |
|
m_result1 -= m_modulus; |
|
return m_result1; |
|
} |
|
} |
|
|
|
Integer& ModularArithmetic::Accumulate(Integer &a, const Integer &b) const |
|
{ |
|
if (a.reg.size()==m_modulus.reg.size() && b.reg.size()==m_modulus.reg.size()) |
|
{ |
|
if (CryptoPP::Add(a.reg, a.reg, b.reg, a.reg.size()) |
|
|| Compare(a.reg, m_modulus.reg, a.reg.size()) >= 0) |
|
{ |
|
CryptoPP::Subtract(a.reg, a.reg, m_modulus.reg, a.reg.size()); |
|
} |
|
} |
|
else |
|
{ |
|
a+=b; |
|
if (a>=m_modulus) |
|
a-=m_modulus; |
|
} |
|
|
|
return a; |
|
} |
|
|
|
const Integer& ModularArithmetic::Subtract(const Integer &a, const Integer &b) const |
|
{ |
|
if (a.reg.size()==m_modulus.reg.size() && b.reg.size()==m_modulus.reg.size()) |
|
{ |
|
if (CryptoPP::Subtract(m_result.reg.begin(), a.reg, b.reg, a.reg.size())) |
|
CryptoPP::Add(m_result.reg.begin(), m_result.reg, m_modulus.reg, a.reg.size()); |
|
return m_result; |
|
} |
|
else |
|
{ |
|
m_result1 = a-b; |
|
if (m_result1.IsNegative()) |
|
m_result1 += m_modulus; |
|
return m_result1; |
|
} |
|
} |
|
|
|
Integer& ModularArithmetic::Reduce(Integer &a, const Integer &b) const |
|
{ |
|
if (a.reg.size()==m_modulus.reg.size() && b.reg.size()==m_modulus.reg.size()) |
|
{ |
|
if (CryptoPP::Subtract(a.reg, a.reg, b.reg, a.reg.size())) |
|
CryptoPP::Add(a.reg, a.reg, m_modulus.reg, a.reg.size()); |
|
} |
|
else |
|
{ |
|
a-=b; |
|
if (a.IsNegative()) |
|
a+=m_modulus; |
|
} |
|
|
|
return a; |
|
} |
|
|
|
const Integer& ModularArithmetic::Inverse(const Integer &a) const |
|
{ |
|
if (!a) |
|
return a; |
|
|
|
CopyWords(m_result.reg.begin(), m_modulus.reg, m_modulus.reg.size()); |
|
if (CryptoPP::Subtract(m_result.reg.begin(), m_result.reg, a.reg, a.reg.size())) |
|
Decrement(m_result.reg.begin()+a.reg.size(), m_modulus.reg.size()-a.reg.size()); |
|
|
|
return m_result; |
|
} |
|
|
|
Integer ModularArithmetic::CascadeExponentiate(const Integer &x, const Integer &e1, const Integer &y, const Integer &e2) const |
|
{ |
|
if (m_modulus.IsOdd()) |
|
{ |
|
MontgomeryRepresentation dr(m_modulus); |
|
return dr.ConvertOut(dr.CascadeExponentiate(dr.ConvertIn(x), e1, dr.ConvertIn(y), e2)); |
|
} |
|
else |
|
return AbstractRing<Integer>::CascadeExponentiate(x, e1, y, e2); |
|
} |
|
|
|
void ModularArithmetic::SimultaneousExponentiate(Integer *results, const Integer &base, const Integer *exponents, unsigned int exponentsCount) const |
|
{ |
|
if (m_modulus.IsOdd()) |
|
{ |
|
MontgomeryRepresentation dr(m_modulus); |
|
dr.SimultaneousExponentiate(results, dr.ConvertIn(base), exponents, exponentsCount); |
|
for (unsigned int i=0; i<exponentsCount; i++) |
|
results[i] = dr.ConvertOut(results[i]); |
|
} |
|
else |
|
AbstractRing<Integer>::SimultaneousExponentiate(results, base, exponents, exponentsCount); |
|
} |
|
|
|
MontgomeryRepresentation::MontgomeryRepresentation(const Integer &m) // modulus must be odd |
|
: ModularArithmetic(m), |
|
m_u((word)0, m_modulus.reg.size()), |
|
m_workspace(5*m_modulus.reg.size()) |
|
{ |
|
if (!m_modulus.IsOdd()) |
|
throw InvalidArgument("MontgomeryRepresentation: Montgomery representation requires an odd modulus"); |
|
|
|
RecursiveInverseModPower2(m_u.reg, m_workspace, m_modulus.reg, m_modulus.reg.size()); |
|
} |
|
|
|
const Integer& MontgomeryRepresentation::Multiply(const Integer &a, const Integer &b) const |
|
{ |
|
word *const T = m_workspace.begin(); |
|
word *const R = m_result.reg.begin(); |
|
const size_t N = m_modulus.reg.size(); |
|
assert(a.reg.size()<=N && b.reg.size()<=N); |
|
|
|
AsymmetricMultiply(T, T+2*N, a.reg, a.reg.size(), b.reg, b.reg.size()); |
|
SetWords(T+a.reg.size()+b.reg.size(), 0, 2*N-a.reg.size()-b.reg.size()); |
|
MontgomeryReduce(R, T+2*N, T, m_modulus.reg, m_u.reg, N); |
|
return m_result; |
|
} |
|
|
|
const Integer& MontgomeryRepresentation::Square(const Integer &a) const |
|
{ |
|
word *const T = m_workspace.begin(); |
|
word *const R = m_result.reg.begin(); |
|
const size_t N = m_modulus.reg.size(); |
|
assert(a.reg.size()<=N); |
|
|
|
CryptoPP::Square(T, T+2*N, a.reg, a.reg.size()); |
|
SetWords(T+2*a.reg.size(), 0, 2*N-2*a.reg.size()); |
|
MontgomeryReduce(R, T+2*N, T, m_modulus.reg, m_u.reg, N); |
|
return m_result; |
|
} |
|
|
|
Integer MontgomeryRepresentation::ConvertOut(const Integer &a) const |
|
{ |
|
word *const T = m_workspace.begin(); |
|
word *const R = m_result.reg.begin(); |
|
const size_t N = m_modulus.reg.size(); |
|
assert(a.reg.size()<=N); |
|
|
|
CopyWords(T, a.reg, a.reg.size()); |
|
SetWords(T+a.reg.size(), 0, 2*N-a.reg.size()); |
|
MontgomeryReduce(R, T+2*N, T, m_modulus.reg, m_u.reg, N); |
|
return m_result; |
|
} |
|
|
|
const Integer& MontgomeryRepresentation::MultiplicativeInverse(const Integer &a) const |
|
{ |
|
// return (EuclideanMultiplicativeInverse(a, modulus)<<(2*WORD_BITS*modulus.reg.size()))%modulus; |
|
word *const T = m_workspace.begin(); |
|
word *const R = m_result.reg.begin(); |
|
const size_t N = m_modulus.reg.size(); |
|
assert(a.reg.size()<=N); |
|
|
|
CopyWords(T, a.reg, a.reg.size()); |
|
SetWords(T+a.reg.size(), 0, 2*N-a.reg.size()); |
|
MontgomeryReduce(R, T+2*N, T, m_modulus.reg, m_u.reg, N); |
|
unsigned k = AlmostInverse(R, T, R, N, m_modulus.reg, N); |
|
|
|
// cout << "k=" << k << " N*32=" << 32*N << endl; |
|
|
|
if (k>N*WORD_BITS) |
|
DivideByPower2Mod(R, R, k-N*WORD_BITS, m_modulus.reg, N); |
|
else |
|
MultiplyByPower2Mod(R, R, N*WORD_BITS-k, m_modulus.reg, N); |
|
|
|
return m_result; |
|
} |
|
|
|
NAMESPACE_END |
|
|
|
#endif
|
|
|